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Abstract 
Effective groundwater resource management requires appropriate conceptualization of 

aquifer heterogeneity, which is challenging for pro-deltaic systems. This study focuses on 

heterogeneity within the Valin River paleodelta (Canada), a complex granular aquifer 

constituting a system that is a regional water supply source. This study integrates laboratory 

and field-based experimental measurements of various hydrogeological properties and 

classifies the sediments using diverse statistical techniques. It demonstrates the advantage 

of diversified characterization for a better understanding of aquifer heterogeneity. The 

hydrogeological properties (i.e., hydraulic conductivity (K) and porosity (n)) of 27 

lithofacies identified in nine sandpits were estimated and assigned a range of values. The 

identified lithofacies were grouped into four operative-lithofacies before assigned to three 

primary hydrofacies that were used to define the aquifer heterogeneity. The importance of 

integrated sediment and hydraulic properties assessment is that the techniques allow an 

understanding of the heterogeneity within a complex pro-deltaic aquifer type. Two scales 

of heterogeneity are defined: (i) lithofacial scale wherein small differences in sediment 
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texture (grain size properties), in sedimentary structures, and in other sediment features of 

lithofacies (mean grain diameter, sorting, skewness, and kurtosis) cause significant changes 

in K and n, (ii) hydrofacial scale wherein specific lithology units define larger-scale aquifer 

flow and potential solute movement. The multi-methodology approach used for 

characterizing the aquifer heterogeneity is a prerequisite to complete necessary information 

for developing more accurate and complex hydrogeological models. 
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1. Introduction 

Granular aquifers are used worldwide as major sources for water supply given their 

potential to provide appreciable groundwater quantity and quality (Mohammed et al. 2014; 

Pauloo et al. 2021; Rongier and Peeters 2022). Access to such groundwater has allowed 

significant social and economic development, but is often accompanied by uncontrolled 

anthropogenic practices  leading to deterioration of groundwater quality (Boumaiza et al. 

2020a, 2022a 2022d; Elmeknassi et al. 2022). Effective and sustainable groundwater 

resource management requires a detailed information on the internal architecture of 

granular deposits. This detailed information is helpful for multiple implications such as 

suitable understanding  of groundwater flow patterns and contaminant transport (Slomka 

et al. 2019; De Caro et al. 2020), accurate assessment of groundwater travel time 

(Boumaiza et al. 2020b), effective design of wellhead protection areas (Rasmussen et al. 

2006), and feasibility of managed aquifer groundwater recharge plans (Maples et al. 2019). 

Several studies show that heterogeneity within porous media on centimetre to decimetre 

scales significantly influences the spread of contaminants (Iversen et al. 2008; Possemiers 

et al. 2012; Winiarski et al. 2013). Therefore, neglecting the effect of aquifer heterogeneity 

could lead to profound implications on groundwater management and contamination 

potential. In addition, aquifer heterogeneity plays an important role in evaluating the 

potential spreading rate of various contaminants where longitudinal and transverse 

dispersivity are critical in the development of plans to remediate contamination (Sun et al. 

2008; Yin et al. 2023).  

For a better understanding of the internal heterogeneity of fluvial deposits, 

knowledge about the links between the sediment units and their hydrogeological properties 
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is required, which has led to sedimentological applications to hydrogeologic problems 

(Anderson 1989a; Fogg and Zhang 2016; Ma et al. 2017). Several studies demonstrate that 

sediment hydrogeological properties, such as hydraulic conductivity (K) and porosity (n), 

are controlled by sedimentological characteristics including the texture, sorting, and 

structure of sediments (Anderson 1989a). It is clearly understood that well-sorted 

sediments featuring large grain sizes with a high degree of rounding have higher K values 

compared to poorly sorted sediments dominated by very fine-grained material (Anderson 

1989a; Bierkens and Weerts 1994). Some researchers applied a simple approach to 

characterize the heterogeneity of aquifers by using sedimentary lithological units 

(lithofacies); then grouping lithofacies featuring relative homogeneity of hydrogeological 

properties into hydrofacies (Poeter and Gaylord 1990; Eaton 2006). The challenge is the 

ability to identify subsurface lithofacies and to accurately characterize their 

hydrogeological properties. 

Subsurface field hydrogeological tests, such as pumping tests can be used to 

measure aquifer hydraulic properties. However, this assessment involves a much larger 

aquifer volume than the small-scale sedimentological heterogeneity controlling smaller-

scale hydraulic properties. Also, pumping test-based methods generally assume 

homogeneous and isotropic porous media with uniform thickness of the saturated zone 

(Theis 1935; De Clercq et al. 2020). These simplifications in most cases do not correspond 

to the actual distribution of hydraulic properties within most aquifers. Outcrops can be used 

to identify sediment lithology and to conduct in-situ measurements of hydrogeological 

properties. This allows developing alternative aquifer analogs to be used in subsurface 

conceptual models (Huggenberger and Aigner 1999; Lévesque et al. 2023). However, 
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sedimentary outcrops are often exposed to erosion and diagenetic processes, which can 

introduce discrepancies between the outcrop lithology and that preserved in the subsurface. 

Geophysical methods are also used to investigate the internal architecture of granular 

aquifers (Hinnell et al. 2010; Lévesque et al. 2021). However, these indirect methods can 

only provide an approximate characterization of subsurface structures, and do not permit 

an accurate assessment of hydrogeological properties without detailed calibration (Becht 

et al. 2007; Brauchler et al. 2010). To overcome this shortfall, a number of researchers have 

adopted small-scale hydrofacies analysis of open operational artificial pits to ascertain the 

heterogeneity of aquifers at a larger scale (Klingbeil et al. 1999; Heinz and Aigner 2003; 

Heinz et al. 2003). Open freshly excavated exposures offer easy access to lithofacies, 

allowing identification of their sedimentological characteristics, and to perform 

hydrogeological tests (e.g., grain size analyses and hydraulic conductivity measurements 

at different depths in the stratigraphic section) (Franco et al. 2017). 

Klingbeil et al. (1999) investigated a glaciofluvial deposit, in which they linked 

several different lithofacies, featuring identical K and n, to a unique hydrofacies. 

Conversely, Zappa et al. (2006) identified several lithofacies with different 

hydrogeological properties in a case study of an alluvial aquifer, despite the fact that these 

lithofacies were characterized by the same class and grain size fractions. Similarly, Heinz 

et al. (2003) and Kostic et al. (2005) showed considerable variability in hydrogeological 

properties for lithofacies identified in Quaternary gravel deposits. Due to the heterogeneity 

of natural granular deposits, significant differences in lithofacies hydrogeological 

properties can be observed (Won et al. 2019; Amiri et al. 2022; Ma et al. 2023). Deltaic 

deposits usually feature a great diversity of lithofacies (Postma, 1984; Prior et al. 1984; 
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Maizels 1993; Ouellon et al. 2008), resulting in highly heterogeneous aquifers, where the 

same lithofacies can be present in more than one location within an aquifer caused by 

variability in hydrogeological properties. Despite efforts to understand the heterogeneity 

of aquifers, there are limited studies illustrating the advantage of a multi-methodology 

approach to better understand the heterogeneity of complex deltaic aquifers.  

The present study aims to show the advantage of diversified characterization 

methods of the lithofacies to better describe the variability of their hydrogeological 

properties within a pro-deltaic system. This study integrates laboratory and field-based 

experimental measurements of various hydrogeological features and describes the 

lithofacies according to diverse statistical techniques. The present study is focused on the 

aquifers of the Valin River paleodeltaic system in Quebec (Canada). This granular system 

contains several operational sandpits offering an excellent opportunity to complete 

sediment-to-aquifer hydrogeological characterization based on a proposed multi-

techniques approach. The present study does not investigate the sedimentation processes 

from the identified lithofacies. The selected Valin River paleodelta system constitutes a 

major source of water supply under anthropogenic development activities. Hence, 

understanding the aquifer heterogeneity is expected to contribute to the effective and 

sustainable management of the aquifer system and its protection.  

2. Setting of study area 

2.1 Geographic location, physiography and climate conditions 

The study area covers a surface area of approximately 60 km2 and is located in the 

Saguenay-Lac-Saint-Jean (SLSJ) region of Quebec, Canada (Fig. 1a). It features flat to 

irregular topography with land surface covered by forest, agricultural lands, urban areas, 
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and the Saint-Honoré Airport. The study area experiences a humid continental climate, 

with average monthly temperatures ranging from −16°C in January to +18°C in July. An 

average annual precipitation of 900 mm occurs over the study area, and is received as both 

rainfall and snowfall. Precipitation in the summer-autumn seasons is mainly received as 

rainfall, whereas snowfall is dominating during the winter-spring period ranging from 

November to March/April (Government of Canada 2022).  

2.2 Geological overview 

The study area belongs to the SLSJ region, which was marked by the last phase of the 

Wisconsinan glaciation that ended approximately 7,000 years ago (Parent and Occhietti 

1988; Lévesque et al. 2020). During its retreat toward the north, the last glacier covering 

the SLSJ region left behind a discontinuous/heterogeneous layer of till, several terminal 

moraines and glaciolacustrine/fluvio-glacial deposits, which were derived from the rock-

basement (Lasalle and Tremblay 1978; Pagé 1999; Daigneault et al. 2011). Following 

glacial retreat, the isostatic depression caused by its weight, combined with a rapid global 

rise in sea level, led to a marine transgression, and the incursion of the Laflamme Sea into 

the SLSJ region approximately 12,900 years ago (Nutz et al. 2013, 2015). This resulted in 

deposition of semi-continuous impermeable clayey silt and silty clay, overlain by post-

glacial granular sediments (i.e., prograding littoral/deltaic deposits) that were deposited 

during the Laflamme Sea regression. In the SLSJ region, the deltaic system of the study 

area was formed at the mouth of the Valin River that prograded north to south into the post-

glacial Laflamme Sea. During the later isostatic rebound, the Valin River bed deepened 

after the retreat of the Laflamme Sea and cut the deltaic system into two parts, thus, creating 
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two separate aquifers with one to the west (Saint-Honoré) and the other one to the east 

(Saint-Fulgence) (Fig. 1b).  

The aquifers of the Valin River paleodelta system vary in thickness with a 

maximum of 50 m. They are mainly constituted of post-glacial Quaternary deposits 

composed of sand with silt overlying (i) impermeable unconsolidated material from 

Laflamme Sea transgression, or (ii) directly a Precambrian crystalline bedrock, belonging 

to the Canadian Shield, with discontinuous Ordovician limestone (cross-section A-A’ in 

Fig. 1c) of variable thickness (Hébert and Lacoste 1998; CERM-PACES 2013). 

2.3 Hydrogeological background 

The aquifers of the Valin River paleodelta constitute an important groundwater reservoir, 

supplying 34% of the local demand for domestic, commercial and industrial uses (CERM-

PACES 2013). The groundwater recharge was estimated at 60% of the annual precipitation, 

and occurs mainly during summer-autumn period as the heavy snow accumulation during 

the winter/fall cold period limits the water infiltration into the subsurface due to the 

presence of frozen snowpack and ground acting as a barrier to infiltration (Boumaiza et al. 

2020c, 2022b). The water table within the Valin River paleodelta system generally varies 

between 1 and 7 m below ground surface and generally mimics the land surface 

topography. Groundwater discharges primarily into some local surface water bodies, then 

drains further into the Saguenay River (Tremblay 2005; Boumaiza 2008; Boumaiza et al. 

2021a). The bedrock of the study area has not been well documented, but it has been 

described for neighboring regions (Chesnaux and Elliott 2011; CERM-PACES 2013). It 

may be hydraulically connected with the overlying granular deposits through faults and 

fractures occurring in the upper part of the bedrock. The granular deposits and fractured-
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rock aquifer groundwater have an elevated dissolved calcium concentration. The source of 

the calcium is from the dissolution of limestone and/or Ca-plagioclase minerals (Walter et 

al. 2018, 2023; Boumaiza et al. 2022d). 

3. Materials and methods 

3.1 Lithofacies identification, sampling, and codification 

Nine sandpits (identified as 1 to 9 in Fig. 1) were selected over the study area for sampling 

and analysis. These sandpits offered exposed faces, which allowed lithofacies to be visually 

delineated and mapped based on the structure and texture of sediments. In addition, fresh 

sediments were manually sampled for physical properties determination. Sampling 

occurred after removing the ~15 cm-layer directly exposed to sun/air. For determining 

properties by granulometric analysis (section 3.2), about 600 g of sediment was collected 

at each site from the fresh-exposed face using a sampler-spoon, which was cleaned with 

dry towels after each collection to minimize fluid cross-transmission, and then the samples 

were stored in separately labeled polyethylene bags. A total of 27 sediment samples were 

collected from the nine selected sandpits and transported to the laboratory of the Université 

du Québec à Chicoutimi for grain size analyses. For determining sediment properties by 

drying (section 3.2), samples were collected from fresh-exposed faces using a specific 

metal cylinder of a given volume (71 cm3), and immediately sealed to prevent moisture 

loss due to evaporation. Some lithofacies dominated by coarse-grained sediments were not 

sampled due to the difficulty in driving the sampler-metal cylinder into the sediments. A 

total of 24 samples were collected for physical analysis. 

The samples were codified according to two main classifications. The first 

approach, adapted from Zappa et al. (2006), is used to codify the coarse-grained sediments. 
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This codification consists of determining the dominant grain size class (>50%) for which 

a capital letter is used (e.g., "G" for gravel). The capital letter of the code is preceded by a 

lowercase letter representing the particle size fraction of the dominant grain size class, for 

which "f" is employed for a fine fraction, whereas "c" is used for a coarse fraction. A third 

lowercase letter, placed at the end of lithofacies code, is used to describe the sediment 

structure (e.g., "h" for horizontal stratification). If two comparable grain size classes 

dominate a given lithofacies, the relative code then combines these two dominants’ classes, 

e.g., "SG" for a lithofacies consisting of sandy gravel. If a grain size class is dominated 

(e.g., 70% of sand) with a second class having 10-30% material (e.g., 25% of gravel), the 

corresponding code then includes the dominant class with a capital letter and second class 

with a lowercase letter (e.g., fSgh code corresponds to fine sand with 10-30% of gravel 

material having horizontal stratification). The second coding approach, proposed by Miall 

(1978), is used to codify fine-grained sediments, such as clay lithofacies. For this group, 

specific codes are used. For example, Fm corresponds to fine-grained sediment constituted 

of massive clay. 

3.2 Measurement of hydrogeological properties of lithofacies 

Measurements of porosity and hydraulic conductivity of unlithified sediments contain 

variable degrees of error based on field and laboratory conditions. Such aspects as the size 

of a sample, and whether it is truly representative of the lithofacies in which it occurs are 

judgement based. Therefore, all of the measurements are actually estimates made using the 

best available methods and using due care during the measurement process. Careful 

statistical analysis ends in constricting the impacts of the error range of individual 
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measurements and is useful in aiding characterization of heterogeneous granular aquifers, 

particularly for modeling of groundwater flow and solute transport. 

3.2.1 Porosity 

3.2.1.1 Laboratory measurement of the porosity 

After measuring the total weight (g) of the sediment samples stored in metal cylinders, they 

were placed in an oven for 48h at a temperature of 105 ◦C, and the dry sediment weights 

(g) were then determined. The dry bulk density (Db, g/cm3) was determined using Eq. 1, 

and used to calculate n for each sediment sample using Eq. 2 (Black et al. 1965). Here, a 

particle density (ρp) of 2.69 g/cm3 was assumed as lower bulk densities are not expected 

due to the absence of organic matter within the vadose zone of the studied sandpits 

(Boumaiza et al. 2015, 2017, 2019).  

 

Db  = 
weight of dry soil 

volume of specific cylinder
 (1) 

n = 100 · �1 - �
Db

ρp
�� (2) 

 

3.2.2.1 In-situ measurement of the porosity 

A porosimeter was developed at the Université du Québec à Chicoutimi for an in-situ 

measurement of n. This porosimeter (Fig. 2) consists of a sampler-cylindrical tube 

measuring 20.4 cm in length with 10.14 cm in diameter. The cylindrical tube is sealed at 

one extremity whereas its other end is open with a bevelled-boundary allowing its insertion 

with limited disturbance of the sampled sediments. The sampler-cylindrical tube is 

connected to a graduated small water-supply container by a flexible plastic pipe, which is 
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equipped with a control-valve with a connection to the cylindrical tube at an injection point 

located at its base. In the field, the sampler-cylindrical tube was used to collect full 

cylindrical samples from the sandpit fresh-exposed face. When this cylindrical sediment 

sample is collected, it is maintained vertically and connected to the water-supply container, 

which is maintained higher than the cylindrical tube by using a solid-support (Fig. 2). The 

base-location of the water injection point ensures an upward evacuation of the air within 

the cylindrical sample, therefore, providing a relatively complete filling of the sediment 

sample voids by the injected water. As soon as the first traces of water appear on the top 

surface of the cylindrical sediment sample, the water injection rate is reduced, using the 

control-valve, until the complete saturation of the sample; the control-valve is then totally 

closed. 

Using the porosimeter, n was measured based on Eq. 3 with pore volume 

representing the volume of the injected water (cm3), while the total volume is the volume 

of the sampler-cylindrical tube (1647 cm3). However, it was necessary to consider the 

initial volumetric water content (θV) of the collected sediment samples. The in-situ n was 

then calculated by summing θV and n from porosimeter-based method, therefore expressing 

porosity in %. The collected metal cylinder samples, used to measure n in laboratory, were 

simultaneously used to evaluate θV. The gravimetric water content (θG) of each single 

sediment sample (expressed in %) was firstly determined according to Eq. 4 with all units 

in g (Gardner 1965). Once θG was estimated, the θV (expressed in %) was assessed using 

Eq. 5 (Gardner 1965), assuming a water density (ρw) of 1 g/cm3. To maintain the same 

sampling conditions, the distance between the sampling point of the porosimeter-

cylindrical tube and that of the metal cylinder did not exceed 30 cm. 



13 
 

n  = 
volume of voids

total volume
 (3) 

𝜽𝜽𝐆𝐆  = 
weight of wet soil  -  weight of dry soil

weight of dry soil
  ·  100 (4) 

𝜽𝜽𝐕𝐕 = θG .
𝑫𝑫𝐛𝐛

𝝆𝝆𝐰𝐰
 (5) 

3.2.2 Hydraulic conductivity 

3.2.2.1 Laboratory measurement of the hydraulic conductivity 

The present study focuses on assessing the saturated hydraulic conductivity. The sediment 

samples collected in separately labeled polyethylene bags were subjected to granulometric 

analyses for generating representative grain size curves (% passing versus grain diameter), 

which were used to predict K. In the present study, grain size sieve analysis was performed 

on the coarse-grained sediment samples, whereas the fine-grained sediment samples were 

analyzed by a hydrometer, following the procedure described by Robitaille and Tremblay 

(1997). The Wentworth classification is used to distinguish the sediments (clay: <0.003 

mm, silt: 0.003-0.06 mm, fine sand: 0.06-0.5 mm, coarse sand: 0.5-2 mm, fine gravel: 2-4 

mm, coarse gravel: 4-64 mm, pebbles: >64 mm) (Wentworth 1922). Several grain 

diameter-based predictive equations for K have been proposed (Masch and Denny 1996; 

Chapuis 2012). In this study, five empirical equations are selected to evaluate K: Hazen 

(1892), Beyer (1964), Chapuis (2004), Sauerbrey (1932), and USBR (Vukovic and Soro 

1992). These five selected empirical equations, with their characteristics and applicable 

conditions, are summarized in Table 1. They are selected to consider a wide range of 

applicability conditions. Nonetheless, each sediment sample is finally represented by a 

single mean K value from the applied empirical equations.  
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Table 1. Selected empirical equations used to predict K and the applicability conditions. 
Method Empirical formula Conditions 

Hazen K (cm/s) = (d10)2 
with d10 in mm 

a. Sand and gravel 
b. Cu ≤ 5 
c. 0.1 mm ≤ d10 ≤ 3 mm 

Chapuis K (cm/s) = 2.4622((d10)2e3)/(1 + e))0.7825 
with d10 in mm 

a. All natural sediments 
b. 0.003 mm ≤ d10 ≤ 3 mm 
c. 0.3 ≤ e ≤ 1 

Beyer K (cm/s) = 0.45(d10)2log(500/Cu) 
with d10 in mm 

a. Sand 
b. 0.06 mm ≤ d10 ≤ 0.6 mm 
c. 1 ≤ Cu ≤ 20 

Sauerbrey K (cm/s) = 2.436n3(d17)2/(1 – n)2 
with d17 in mm 

a. Sand and silty sand 
b. d10 ≤ 0.5 mm 

USBR K (cm/s) = 0.36(d20)2.3 
with d20 in mm 

a. Sand and gravel 
b. Cu ≤ 5 

dx: effective grain size (% by weight of soil) 
e: void’s ratio calculated as n/1-n with n from laboratory estimation. 
Cu: coefficient of uniformity of sediments (Cu =d10/d60) 
 
3.2.2.2 In-situ measurement of the hydraulic conductivity 

Several instruments have been developed for in-situ measurement of K in granular 

sediments (Chossat 2005). In the present study, a mini-disc infiltrometer (DDI 2012), based 

on the principle of infiltrated water rate into the subsurface, was used to assess K. The mini-

disc infiltrometer was chosen for field measurements because it can be applied to granular 

sediments with less mobilization, requiring a reasonable field-operating amount of water. 

More details on this instrument and the relative analytical equations used for calculating K 

are available in (Zhang 1997; Boumaiza 2008; Naik et al. 2019).  

3.2.3 Statistical analyses of sediment properties   

3.2.3.1 Sediment hydraulic conductivity and porosity 

Statistical correlation between the in-situ estimations and those assessed in laboratory, both 

for n and K, were conducted. First, the distribution of the investigated hydrogeological 

properties was evaluated using a Gaussian kernel density plot (Duong 2007), which is a 

smoother-based data visualization technique to assess the distribution of samples. Usually, 

the plot x-axis considers the data set variation, while the y-axis of a density plot represents 
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the probability density. The kernel density plot is an effective technique as it is a non-

parametric way to analyze the distribution of a set of variables (Petrelli 2021). Second, the 

normality of the distribution was evaluated by using the Shapiro-Wilk test (Shapiro and 

Wilk 1965), which states a null hypothesis that the set variables are normally distributed. 

If the test p-value is <0.05 (confidence level), then the null hypothesis is rejected, and the 

distribution is considered not normal. Otherwise, if the p-value >0.05, the null hypothesis 

is not rejected, and the analyzed dataset with variable distribution is statistically normal. A 

third statistical tool was used to evaluate the trend tendency of the investigated 

hydrogeological properties via the Mann-Kendall test (Mann 1945; Kendall 1975) 

integrated into the XLSTAT software (Addinsoft 2021). A positive Kendall τ value 

corresponds to an upward trend, whereas a negative Kendall τ value indicates a downward 

trend. Note that an associated Kendall test p-value <0.05 denotes a significant trend, 

whereas a p-value >0.05 indicates no significant trend tendency (Pohlert 2020). 

3.2.3.2 Sediment grain size Folk parameters 

Sediment grain size analysis was based on the statistical parameters of Folk and Ward 

(1957) by using the cumulative grain size frequencies versus the grain diameter of the 

analyzed sediment samples. Four grain size statistical parameters were used, including the 

mean grain diameter (M, Eq. 6), the sorting (σ, Eq. 7), the skewness (Sk, Eq. 8), and the 

kurtosis (Ku, Eq. 9), all expressed in Фx units, which represents the –log2 grain diameter 

[mm] corresponding to the x-cumulative frequency (Krumbein 1934). The Folk 

classifications were used to distinguish σ, Sk, and Ku sediment parameters (Folk 1980). The 

σ values were classified as follows: σ <0.35 very well sorted, σ = 0.35-0.5 well sorted, σ = 

0.5-0.71 well moderately sorted, σ = 0.71-1 moderately sorted, σ = 1-2 poorly sorted, σ = 
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2-4 very poorly sorted, σ ˃4 extremely poorly sorted. The Sk values were classified as 

follows: Sk = −1 to −0.3 very fine skewed, Sk = −0.3 to −0.1 fine skewed, Sk = −0.1 to +0.1 

symmetrical, Sk = +0.1 to +0.3 coarse skewed, Sk = +0.3 to +1 very coarse skewed. The Ku 

values were classified as follows: Ku <0.6 very platykurtic (very flat), Ku = 0.67-0.9 

platykurtic (flat), Ku = 0.9-1.11 mesokurtic (not especially peaked), Ku = 1.11-1.5 

leptokurtic (highly peaked), Ku = 1.5-3 very leptokurtic (very highly peaked), Ku >3 

extremely leptokurtic (extremely highly peaked).  

M  = 
Φ16 +  Φ50 +  Φ84

3
 (6) 

σ  = 
Φ84 −  Φ16

4
 + 
Φ95 −  Φ5

6.6
 (7) 

Sk  = 
Φ84 +  Φ16 −  2Φ50

2 (Φ84 −  Φ16)  + 
Φ5 + Φ95 −  2Φ50

2 (Φ95 −  Φ5)  (8) 

Ku  = 
Φ95 –  Φ5

2.44 (Φ75 −  Φ25) (9) 

4. Results  

4.1 Defined and described lithofacies  

A total of 27 lithofacies were identified in the study area. Within the sandpits, diverse 

lithofacies were commonly observed on the same investigated face (see example on Fig. 

3), with some lithofacies observed at more than one stratigraphic position and identified in 

several distinct sandpits. Lithofacies diversity in the studied paleodeltaic system is 

expressed by their texture, where the corresponding grain size distribution curves of the 

identified lithofacies showed textures including pebbles, gravel, sand, silt and clay (Fig. 4). 

The sediment grain size fraction varies between fine and coarse from one lithofacies to 



17 
 

another. Sedimentary structures also reveal the mechanism acting during deposition, which 

also contributes to the diversity of lithofacies types. Several different sedimentary 

structures were observed. For example, at sandpit #6 (Fig. 3), the pebbly-gravel lithofacies 

Pgp was observed with planar laminations, whereas the coarse-sandy lithofacies cSt 

showed trough-laminations. The identified lithofacies are described in Table 2 along with 

their corresponding location, observed sedimentary structure, composition material, and 

established code. 

Table 2. Description of lithofacies identified through the selected sandpits. 

Sandpit Observed in-situ structure of 
sediments 

% of sediment material 
Lithofacies main material 

composition Code Pebbles 
Gravel Sand Silt & 

Clay Coarse 
gravel 

Fine 
gravel 

Coarse 
sand 

Fine 
sand 

#6 Laminated structure - - - - - 100 Clay Fsc 
#9 Massive structure - - - - - 100 Clay Fm 
#4 Ripple cross-laminations  0 0.9 2.2 27.4 50.7 15 Fine sand with fine material fSfr 
#1 Ripple cross-laminations 0 0 0.1 0.7 91.3 6.9 Fine sand fSr 
#6 Ripple cross-laminations  0 0.1 0.1 2.1 93.1 4.2 Fine sand fSr 
#1 Horizontal laminations 0 0 0.1 31.9 66.6 1.3 Fine sand fSh1 
#1 Horizontal laminations 0 0 0 0.1 93.4 6.1 Fine sand fSh2 
#2 Horizontal laminations  0 0.8 0.8 23.6 72.9 1.8 Fine sand fSh 
#6 Trough cross-laminations 0 0.3 0.3 36.5 62.2 0.4 Fine sand fSt 
#7 Trough cross laminations 0 0 0.1 26.4 69.9 3.2 Fine sand fSt 
#1 Chaotic structure 0 0 0.4 1.3 91.9 6.1 Fine sand fSc 
#4 Planar laminations 0 0.5 2.6 28.4 61.4 3.2 Fine sand fSp 
#5 Horizontal laminations 0 0.4 2.1 60.8 36.1 0.4 Coarse sand cSh 
#2 Horizontal laminations 0 0.1 0.8 56 42.8 0.3 Coarse sand cSh 
#4 Planar laminations 0 2.3 1 71.5 21.3 0 Coarse sand cSp 
#3 Planar laminations 0 0.5 2.4 72.3 24.3 0.2 Coarse sand cSp 
#6 Trough cross laminations 0 4.6 4.9 78.2 11.7 0.3 Coarse sand cSt 
#3 Trough cross laminations 0 3.9 5.7 59.9 29.6 0.7 Coarse sand cSt 
#8 Diverse inclined stratifications 0 0.7 3.8 55 39.6 0.5 Coarse sand cSi 
#7 Trough cross laminations 0 9.8 4.9 36.5 47.6 1.1 Coarse sand with gravel cSgt 
#9 Massive structure 0 12.7 11.9 69.1 5.9 0.2 Coarse sand with gravel cSgm 
#8 Diverse inclined stratifications 0 25.2 12.2 46 16 0.3 Coarse sand with gravel cSgi 
#5 Horizontal laminations 0 35.1 3.9 41.2 18.8 0.5 Sand with gravel Sgh 
#3 Trough cross laminations 0 31.9 17.8 44.1 5.9 0.2 Sandy gravel SGt 
#8 Diverse inclined stratifications 18.5 42.2 14.7 21.2 2.9 0.3 Coarse gravel with sandy pebbles cGspi 
#5 Massive structure 48.4 21.1 4.3 17.2 7.4 1.5 Pebbles with sandy gravel Psgm 
#6 Planar laminations 63.8 23.5 4.7 5.3 2.3 0.2 Pebbles with gravel Pgp 

 
4.2 Results of the total porosity measurements 

Porosity was measured in-situ for 22 of the 27 identified lithofacies (Fig. 5). The in-situ 

tests were not undertaken on lithofacies #6-Fsc and #9-Fm due to their dominance by 

clayey sediment, making measurement of porosity very difficult. The other three untested 



18 
 

lithofacies were #8-cGsi, #5-Psgm and #6-Pgp; as they are constituted of coarse gravel 

associated with pebbles, placement of the sampler-porosimeter into the exposed face of the 

sandpits was not possible. Similarly, n was not estimated in the laboratory for the above 

three lithofacies due to the difficulty in implementing the sampler-metal cylinder (used to 

evaluate θV) into the exposed faces. Clayey lithofacies Fsc and Fm did not exhibit the 

highest porosities as expected, but their average n value (41%) falls into the range expected 

for clayey material (Freeze and Cherry 1979). The highest n value was not found in the 

same lithofacies according to the two estimation methods. The highest in-situ n value was 

53%, which was estimated for lithofacies fSr identified at sandpit #1, whereas the highest 

n value estimated in the laboratory was 45% observed for the lithofacies cSh identified at 

sandpit #5 (Fig. 5). Conversely, lithofacies #3-SGt shows the lowest n value according to 

the two estimation methods, i.e., 31% estimated in-situ and 34% estimated in the laboratory 

(Fig. 5).  

A discrepancy was observed between the in-situ n results and those measured in 

the laboratory for all the identified lithofacies, except lithofacies #3-cSt, for which both 

measured porosities were identical (Fig. 5). The discrepancy between the in-situ and 

laboratory results differs from one lithofacies to another. The largest discrepancy of 10% 

is noted for the lithofacies #1-fSr with measured n values of 53% and 43%, respectively, 

between the in-situ and in the laboratory methods (Fig. 5). However, approximately three-

quarters of the lithofacies showed a discrepancy ≤5%, which is a positive observation on 

the correlation between the in-situ and laboratory measurements.  

4.3 Results of the hydraulic conductivity measurements 
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Hydraulic conductivity was measured in-situ for 19 of the identified lithofacies, and in the 

laboratory for 25 lithofacies. An in-situ measurement was not completed for the lithofacies 

hosting gravelly material (cSgt, cSgm, cSgi, Sgh, SGt, cGsi, Psgm, Pgp) due to the absence 

of gravel-dimensionless coefficient values, which are needed for calculation. Laboratory 

measurements were not completed for lithofacies Psgm and Pgp due to the applicability 

limits of the empirical equations used including the considered d10 and Cu. Results of K 

measured in-situ and in laboratory are presented in Fig. 6. The reported laboratory K value 

for each lithofacies represents a mean value from the applied empirical equations. The 

highest in-situ K value is 1.16×10-1 cm/s measured for lithofacies #8-cSi, whereas the 

highest laboratory K value is 6.79×10-1 cm/s assessed for lithofacies #8-cGsi. The highest 

K values according to the in-situ/laboratory measurement did not correspond to the same 

lithofacies, but both occurred at the same sandpit #8. Lithofacies #6-Fsc revealed the lowest 

in-situ K value (1.25×10-4 cm/s), whereas the lowest laboratory K value (3.48×10-8 cm/s) 

was measured for lithofacies #9-Fm, both of which are fine-grained sediment samples. 

Similar to the finding from the study of granular deposits by Ritzi et al. (2018), both 

measured in-situ and laboratory K values increase synchronously with relative grain size 

of the identified lithofacies. Nonetheless, discrepancies were observed between the in-situ 

and laboratory K measurements (Fig. 6).  

5. Discussion 

5.1 Effectiveness of the field porosimeter measurements 

The distribution of the measured porosities is shown as a kernel density plot for both in-

situ and laboratory porosity values in Fig. 7. The estimated in-situ and laboratory n values 

were found to be normally distributed with comparable mean n values. This normal 
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distribution is supported by Shapiro-Wilk tests indicating p-values >0.05 for the in-situ (p-

value = 0.94) and laboratory (p-value = 0.54) set values. Furthermore, a clear decrease of 

n values, both estimated in-situ and in laboratory, versus the increase of lithofacies grain 

size was observed (Fig. 5). This observation was confirmed with negative Kendall τ values 

of −0.55 (p-value = 0.001) and −0.32 (p-value = 0.043) for in-situ n and laboratory 

estimations, respectively. All these observations demonstrate the usefulness of the 

porosimeter developed for the present study, although discrepancies may be associated 

with and/or amplified due to errors (discussed hereinafter) introduced during the field tests. 

The measurement of n in-situ and in-laboratory requires collecting a representative 

sediment sample using the sampler-cylindrical tube and small metal cylinder, respectively. 

The sinking of the sampler-cylindrical tube or the small metal cylinder into the sandpit face 

occurs progressively until the end of these cylinders is just flush with the sandpit face. If 

the cylinders are pushed further, the collected sediment sample would be partially 

compacted. Conversely, if the cylinders are not efficiently pushed-in, extra “pore” volume 

would remain unfilled by sediment. Here, the related uncertainty level is expected to be 

low as the sinking is carefully proceeded. However, it remains that sediment sampling 

process can influence the quality of the collected samples, contributing to the discrepancy 

between the estimated in-situ and laboratory n values. Also, the in-situ estimation of n is 

based on evaluating the volume of water injected into the sampler-cylindrical tube of the 

porosimeter. The volume of the injected water was measured by multiplying the section of 

the water-supply container by the difference in its water-height corresponding to the start 

and the end of the test. For example, a water-height of 7.8 cm gives an in-situ n value of 

36%, whereas a water-height of 8 cm provides a value of 37%. This example shows how 
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inaccuracies in evaluating the water-height can influence the measured n value. Although 

a full upward evacuation of the air is assumed within the cylindrical sediment sample, as 

the water injecting point is placed at the base of the sampler-cylindrical tube, it is possible 

that the pores of the tested sediment sample are not perfectly filled by water due to possible 

air entrapment within the cylindrical sediment sample. In this case, uncertainties on the 

void volume could contribute to the discrepancies between the estimated in-situ and 

laboratory n values.  

5.2 Analysis of the hydraulic conductivity measurements 

Although the observed increase of K is not statistically significant (p-value = 0.32) for the 

in-situ K estimations, the increasing trend for laboratory K values are significant (p-value 

<0.0001) with a positive Kendall τ value of +0.71. The in-situ K values are normally 

distributed according to kernel density plot (Fig. 8), with a confirming p-value of 0.83 from 

Shapiro-Wilk test. Conversely, the laboratory K values are not normally distributed based 

on the Shapiro-Wilk test, which had a p-value of <0.05 (i.e., the null-hypothesis, suggesting 

that the distribution is similar to a normal distribution, is not accepted). However, both sets 

of the in-situ and laboratory K values revealed an identical mean of 5.23×10-2 cm/s (Fig. 

8), although discrepancies are observed between the in-situ and laboratory K 

measurements. Here, the observed discrepancies could be related to potential measurement 

errors during the hydraulic tests. For example, using the mini-disc infiltrometer, the 

infiltrating water ratio into the subsurface is considered after having reached steady-state 

condition (DDI 2012). Generally, this condition was evaluated by "eye", i.e., when regular 

evacuation of air bubbles in the infiltrometer was observed, steady-state condition was then 

assumed. Even though this evaluation approach is suggested, it remains subjective. 
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Distinguishing the representativeness of in-situ versus laboratory estimations is beyond the 

scope of this study, but this topic is still under discussion in the literature (Chesnaux et al. 

2011; Rosas et al. 2014; Singh and Sharma 2022). Therefore, each lithofacies was finally 

represented by a single K and n value, each of them represents a simple mean of the in-situ 

and laboratory values. The obtained mean values are used to discuss the variability of K 

and n below. 

5.3 Variability of hydraulic conductivity and porosity based on sediment properties 

The mean representative K and n values of the identified lithofacies are presented in Table 

3, which also includes the Folk grain size parameters (M, σ, Sk, and Ku all expressed in Ф 

units) with their interpretation according to the Folk classifications (Folk 1980). Some 

lithofacies are provided without the Folk parameters due to the absence of information on 

certain sediment cumulative frequencies. Overall, the range of variation of the mean 

estimated K for the coarse-grained sediment samples (8.53×10-3 to 6.79×10-1 cm/s) fits with 

previous local estimates derived from sediment sample grain size analysis and in-situ 

variable head permeability tests (Chesnaux and Stumpp 2018; Boumaiza et al. 2020c; b, 

2021b; Labrecque et al. 2020).  

The clayey lithofacies Fsc (K = 6.25×10-5 cm/s) and Fm (K = 2.01×10-4 cm/s) 

revealed variable K values despite being both dominated by clayey material. This is 

potentially related to the laminated stratification of Fsc leading to K values lower than that 

of Fm by one order of magnitude. Clayey lithofacies #6-Fsc and #9-Fm were not identified 

in the same sandpit, suggesting that different sediment local-scale depositional processes 

potentially cause significant changes in sediment texture that can lead to significant 

variability in their K values.  
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       Table 3. Hydrogeological properties and Folk’s parameters of the identified lithofacies. 
Sand
-pit lithof. K  

(cm/s) 
n 
(%) 

σ  
(Ф) 

σ 
interp. 

M  
(Ф) 

Sk  
(Ф) 

Sk 
interp. 

Ku  
(Ф) 

Ku 
interp. 

oper. 
lithof. 

corr. 
hydrof. 

K geom. 
mean (cm/s) 

6 Fsc 6.25×10-5 44 - - - - - - - F A 1.12×10-4 
9 Fm 2.01×10-4 38 - - - - - - - 
4 fSfr 4.10×10-2 42 1.51 PO 1.83 -0.15 F.S. 0.85 PL fS B 3.32×10-2   

to 
9.37×10-2 

1 fSr 3.05×10-2 48 0.78 MO 2.21 -0.15 F.S. 0.98 ME 
6 fSr 3.49×10-2 45 0.75 MO 2.05 -0.14 F.S. 0.74 PL 
1 fSh1 6.02×10-2 42 0.82 MO 1.21 0.07 SY 0.89 PL 
1 fSh2 5.19×10-2 47 0.71 MO 2.31 -0.15 F.S. 1.48 LE 
2 fSh 6.06×10-2 43 0.91 MO 1.35 0.06 SY 1.01 ME 
6 fSt 4.86×10-2 44 0.73 MO 1.08 0.13 C.S. 0.87 PL 
7 fSt 1.85×10-2 41 0.94 MO 1.45 0.11 C.S. 0.90 PL 
1 fSc 8.53×10-3 41 0.80 MO 1.85 0.18 C.S. 0.82 PL 
4 fSp 2.55×10-2 40 1.14 PO 1.33 -0.03 SY 0.96 ME 
5 cSh 7.29×10-2 48 0.86 MO 0.74 0.23 C.S. 1.09 ME cS 
2 cSh 3.44×10-2 38 0.98 MO 0.94 0.36 VCS 0.99 ME 
4 cSp 8.59×10-2 41 1.00 MO 0.36 0.05 SY 1.48 LE 
3 cSp 9.67×10-2 40 0.87 MO 0.39 0.10 SY 1.19 LE 
6 cSt 1.44×10-1 45 0.93 MO 0.04 -0.25 F.S. 1.42 LE 
3 cSt 9.39×10-2 40 1.14 PO 0.39 -0.04 SY 1.31 LE 
8 cSi 8.46×10-2 37 1.03 PO 0.69 0.18 C.S. 1.16 LE 
7 cSgt 5.11×10-2 41 - - 0.64 - - - - 
9 cSgm 3.13×10-1 36 - - -0.48 - - - - 
8 cSgi 1.37×10-1 36 - - - - - - - 
5 Sgh 1.42×10-1 38 - - - - - - - G C 3.17×10-1 
3 SGt 3.29×10-1 33 - - - - - - - 
8 cGspi 6.79×10-1 - - - - - - - - 
5 Psgm - - - - - - - - - - - - 
6 Pgp - - - - - - - - - - - - 

                       Legend: 
Lithof.: Lithofacies 
interp.: interpretation 
oper. lithof.: operative lithofacies 
corr. hydrof.: corresponding hydrofacies 
geom.: geometric  
σ: Sorting 
MO: Moderately sorted 
 

M: Mean grain diameter 
 Sk: Skewness 
F.S.: Fine skewed 
SY: Symmetrical 
C.S.: Coarse skewed 
VCS: Very coarse skewed 
Ku: Kurtosis 
 

PL: Platykurtic (Flat) 
PO: Poorly sorted  
ME: Mesokurtic (not especially peaked) 
LE: Leptokurtic (highly peaked) 
F: Fine-grained operative-lithofacies 
fS: Fine sand operative-lithofacies 
cS: Coarse sand operative-lithofacies 
G: Gravelly operative-lithofacies 
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Sandy lithofacies dominated by the fine grain size fraction (fS-lithofacies) were 

observed in several locations of an investigated face (e.g., fSr, fSh and fSc observed in 

sandpit #1), as well in various other investigated sandpit sites (e.g., #1-fSr versus #6-fSr). 

This diversity in fS-lithofacies is distinguished by different lithofacies structures that 

control the hydrogeological properties (Anderson 1989b; Heinz and Aigner 2003; Biteman 

et al. 2004), wherein K was observed to range from 8.53×10-3 to 6.06×10-2 cm/s, and n 

varied between 40 and 48% (Table 3). Interestingly, two lithofacies #1-fSc and #7-fSt 

revealed same n value (41%), and both are moderately sorted, platykurtic, and coarsely 

skewed (Table 3). However, they showed K values with a different order of magnitude 

(K#1-fSc = 8.53×10-3 cm/s versus K#7-fSt = 1.85×10-2 cm/s). These two lithofacies are both 

dominated by portion of fine sand (91.9% for #1-fSc and 69.9% for #7-fSt), but #1-fSc 

contained 6.1% of fine material (silt and clay) compared to #7-fSt having only 3.2% of fine 

material (Table 2). The lower portion of silt and clay in sample #7-fSt, associated also with 

26.4% of coarse sand, allowed #7-fSt to feature high K compared to #1-fSc. A clear 

negative trend in K with increasing mean grain diameter (Ф) was observed in other studies 

of granular sediments (Lopez et al. 2015, 2020). This framework accordingly supports the 

low K of #1-fSc, having mean grain diameter of 1.8 Ф, when compared to K of lithofacies 

#7-fSt featuring a mean grain diameter of 1.4 Ф (Table 3). It is possible that sedimentary 

structures influence K; both #1-fSc and #7-fSt are coarse skewed, as lithofacies #1-fSc is 

chaotic fine sand, whereas lithofacies #7-fSt featured trough cross-laminations. Although 

#1-fSc and #6-fSr are both composed of comparable sediment grain sizes (Table 2) and 

both are moderately sorted with platykurtic grains (Table 3), they revealed different K and 

n values (Table 3) presumably related to the influence from observations of chaotic 
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structure of #1-fSc versus ripple cross-stratification of #6-fSr. The lithofacies #2-fSh and 

#4-fSp are composed of comparable sediment grain size portions, both are symmetrical 

skewed with mesokurtic grains, and featured a comparable mean grain diameter (Table 2, 

3). However, these two lithofacies show different values of K and n. Poorly sorted 

lithofacies #4-fSp showed a measured K value (2.55×10-2 cm/s) lower than that of the 

moderately sorted lithofacies #2-fSh (6.06×10-2 cm/s) presumably related to difference in 

sorting as K decreases with poorer sorting (Beard and Weyl 1973). 

Fine sandy lithofacies with ripple cross-laminations were identified in sandpits #1, 

#6, and #4 with respective n values of 48, 45, and 42%; and respective K values of 3.05×10-

2, 3.49×10-2, and 4.10×10-2 cm/s (Table 3). Here, the same identified lithofacies revealed 

different K and n values from one sandpit to another, with an inverse behavior between K 

and n values, although having a same sediment grain size distribution. It appears that there 

is an influence of lithofacies texture on n and K, as lithofacies #4-fSfr contained higher 

portion of the fine-grained sediment fraction (silt-clay) (15%) compared to lithofacies #6-

fSr and #1-fSr, which contained 4.2 and 6.9% of fines respectively (Table 2). Fine-grained 

sediment material like clay is known to feature high n and low K; the higher specific surface 

area of small size grains increases the frictional resistance of water flow and provides fine-

grained sediments with low K (Freeze and Cherry 1979; Fetter 2001). This explains the 

contribution of 15% of silt-clay material in increasing n and decreasing K of lithofacies #4-

fSfr when compared to #6-fSr and #1-fSr. Also, these three lithofacies are fine skewed, but 

#4-fSfr is poorly sorted compared to #6-fSr and #1-fSr, which are moderately sorted (Table 

3). The observed size distribution containing sand grains and fine particles of silt and clay 

provided the opportunity for interstitial clogging to occur, causing slower flow, dead end 
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pore occurrence, and longer flow pathways. The result is a lower hydraulic conductivity 

for the poorly sorted lithofacies (Masch and Denny 1996; Goutaland et al. 2013).  

Lithofacies #6-fSr and #1-fSr have similar grain size distribution and Folk 

parameters, except for kurtosis (platykurtic for #1-fSr versus mesokurtic for #6-fSr), shows 

that micro-texture differences can cause variability in n and K (Anderson 1989a; Fraser 

and Davis 1998). The sediment micro-texture influence in the present study is also 

evidenced through the observed variability of K and n for lithofacies fSh1 and fSh2, both 

identified at sandpit #1, with different K values of 6.02×10-2 cm/s (#1-fSh1) and 5.19×10-

2 (#1-fSh2), as well as different n values of 42% (#1-fSh1) and 47% (#1-fSh2). These two 

moderately sorted lithofacies are dominated by fine sand. However, they also contain small 

portions of fine-grained sediment measured at 1.3% in #1-fSh1 and 6.1% in #1-fSh2 (Table 

2). Accordingly, the higher portion of fine-grained sediment material in #1-fSh2, when 

compared to that of #1-fSh2, contributed to a decrease in K. This finding of the sediment 

micro-texture influence is further supported by a difference in Sk and Ku values (Table 3). 

Changes in grain size of the lithofacies fSh1 versus fSh2, in same sandpit #1, reflect both 

variable sedimentation energy and difference in grain size (Heinz et al. 2003). Such 

differences in micro-textures and percentage of fine sediment can cause differences in 

sediment packing that, in turn, can influence both K and n. 

Sandy lithofacies dominated by the coarse grain size fraction (cS-lithofacies) were 

observed in several investigated sandpits, with various sediment structures including 

horizontal (h), planar (p), trough cross-lamination (t), and inclined stratification (i). The 

two cSh lithofacies, identified in sandpits #2 and #5, exhibited variable K and n values 

(Table 3), despite being both moderately sorted with mesokurtic grains and being observed 
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in the field with similar horizontal stratification. The K of these two lithofacies is on the 

same order of magnitude, but the K of #2-cSh (3.44×10-2 cm/s) is slightly lower than that 

of #5-cSh (7.29×10-2 cm/s). As K is inversely correlated to mean grain diameter  (Lopez et 

al. 2020), the difference in K can be related to the identified difference in the mean grain 

diameter. Lithofacies #2-cSh featured a mean grain diameter of 0.94 Ф, which exhibited a 

low K value when compared to #5-cSh which has a mean grain diameter of 0.74 Ф. Porosity 

of lithofacies #2-cSh (38%) is lower than that of #5-cSh (48%), despite both lithofacies 

being moderately sorted with comparable content of silt-clay sediment (0.3-0.4%). These 

observations lead to the conclusion that the difference in fine/coarse sand content within 

lithofacies #2-cSh and #5-cSh (Table 2), combined with the identified difference in grain 

skewness, could constitute the reasons why there is a difference in n between these 

lithofacies. The effect of sediment texture is also a possible explanation of the differences 

in K and n in lithofacies #3-cSt and #6-cSt. Lithofacies #3-cSt showed a lower n value 

(40%) when compared to #6-cSt (45%), possibly due to the grain sorting effect, as #3-cSt 

is poorly sorted whereas #6-cSt is moderately sorted. Also, #3-cSt and #6-cSt revealed 

comparable Ku values, and comparable distributions of grain sizes, but #3-cSt is 

symmetrically skewed while #6-cSt is fine skewed. The difference in grain skewness could 

contribute to the observed difference in n. Lithofacies #3-cSt features K value (9.39×10-2 

cm/s) lower than that of #6-cSt (1.44×10-1 cm/s) due to the potential effect of the mean 

grain diameter, as #3-cSt featured mean grain diameter (0.39 Ф) greater than that of #6-cSt 

(0.04 Ф). Lithofacies #3-cSp and #4-cSp are both moderately sorted and symmetrically 

skewed with a leptokurtic classification (Table 3). They also exhibited comparable mean 

grain diameters and similar grain size distributions (Tables 2 and 3). All these features 
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provided #3-cSp and #4-cSp with comparable K and n values. Based on the grain size 

characteristics and moderate to small differences in sediment texture, the observed 

variation in K and n can be explained by difference in sediment packed caused by the 

textural variations. 

Lithofacies identified with coarse sand containing 10-30% of gravel (cSg) were 

observed in the investigated sandpits #7, #8, and #9, with trough cross-laminations (#7-

cSgt), inclined stratifications (#8-cSgi), and massive structure (#9-cSgm). Lithofacies #8-

cSgi has a measured K value (1.37×10-1 cm/s) slightly lower than that of #9-cSgm 

(3.13×10-1 cm/s), but they have same n value of 36%. Based on the sediment grain size 

distribution, as less information on the Folk parameters are available for these lithofacies, 

#8-cSgi and #9-cSgm are composed of similar sediment grain size distribution providing 

them to have the same n and a slightly different K, probably due to the structure of the 

sediment caused by different current regimes during deposition (Table 2). Lithofacies #7-

cSgt has measured K value (5.11×10-2 cm/s) lower by one order of magnitude than that of 

#9-cSgm (3.13×10-1 cm/s). In addition to the potential effect of sedimentary structures, the 

identified variability in K is likely caused by differences in mean grain diameter between 

#7-cSgm (0.64 Ф) and #9-cSgm (−0.48 Ф). Also, the fine-grained sediment portion in #7-

cSgt (1.1%) is not enough to exert a noteworthy effect on K, but it also contributes to the 

difference in K in that the fine-grained sediment portion within #9-cSgm is only 0.2%. 

Variability in the investigated K and n is also observed through the gravelly lithofacies #8-

cGspi and #3-SGt, wherein #8-cGspi contained 56.9% of gravel associated with 24.1% of 

sand and 18.5% of pebbles compared to #3-SGt which constitutes of only sand and gravel 

with equal portions of 50% each. Lithofacies with such a heterometric distribution, from 
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sand to gravel, were found to experience lower K in glaciofluvial deposits (Goutaland et 

al. 2013). However, both #8-cGspi and #3-SGt in the present study showed high K values 

of 6.79×10-1 cm/s and 3.29×10-1 cm/s, respectively, due potentially to the quasi-absence of 

a fine-grained sediment fraction (0.2-0.3%) (Heinz and Aigner 2003).  

5.4 Corresponding hydrofacies 

A hydrofacies is defined as a sedimentary medium in which the hydrogeological properties 

are controlled by sediment texture and structure (Klingbeil et al. 1999; Eaton 2006; Roy et 

al. 2006). Zappa et al. (2006) have grouped lithofacies with similar texture into operative-

lithofacies (e.g., fS-operative-lithofacies) that share common characteristics. Each 

operative-lithofacies is defined by a range of hydrogeological properties from the 

corresponding grouped lithofacies. Determining hydrofacies consists of grouping a set of 

operative-lithofacies featuring similar ranges of variability in hydrogeological properties. 

Therefore, a hydrofacies is considered to be a representative elementary volume, which is 

constrained by its interval of variability in hydrogeological properties (Anderson 1989b; 

Bayer et al. 2011). In the present study, a simplified scheme of operative-lithofacies was 

developed by assigning four groups: (1) F-operative-lithofacies grouping fine-grained 

sediment samples, (2) fS-operative-lithofacies featuring fine sand, (3) cS-operative-

lithofacies dominated by coarse sand, and (4) G-operative-lithofacies containing gravel and 

coarse-grained sediment (Table 3). Lithofacies #5-Psgm and #6-Pgp were not considered 

as they do not host estimations of hydrogeological properties. Within each operative-

lithofacies, the values of K and n of the corresponding lithofacies are separately presented 

in a box-and-whisker diagram (boxplot). The boxplots consider the interquartile properties 

including the statistical upper quartile (Q3 50–75% above the median) and the lower 
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quartile (Q1 the lowest 25% of numbers), the maximum (elevated), the minimum (lower), 

and the geometric mean, which provide a reliable mean approximation for a wide range of 

values (Zappa et al. 2006; Atkinson et al. 2014). 

The boxplot distributions of K and n within the determined operative-lithofacies is 

shown in Fig. 9. A distinguished K-variability interval for each operative-lithofacies is 

clearly observed when considering the interquartile statistical properties, including the 

geometric mean (Fig. 9a). Similarly, specific n-variability interval is distinguished for each 

operative-lithofacies (Fig. 9b). However, the n-variability of F-operative-lithofacies 

overlaps with n-variability interval of sandy operative-lithofacies fS and cS. In this case, 

associating F-operative-lithofacies to fS/cS-operative-lithofacies is confusing as n-

variability intervals of these operative-lithofacies do not fit with those of K-variability 

intervals (Fig. 9). Hence, simultaneous consideration of K and n variability intervals for 

determining hydrofacies is not effective. Therefore, the approach followed in the present 

study consists of only considering K-variability intervals. 

The F-operative-lithofacies is constrained by interquartile K values ranging from 

9.72×10-5 to 1.67×10-4 cm/s including the geometric mean of 1.12×10-4 cm/s. The K-

variability interval of F-operative-lithofacies, resulting from K of two lithofacies Fsc and 

Fm, differs from those of all the other operative-lithofacies by specific order of magnitude, 

providing F-operative-lithofacies with direct correspondence to particular hydrofacies 

featuring very low K (hydrofacies A).  
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The fS- and cS-operative-lithofacies revealed different distinct K-variability 

intervals (Fig. 9a). The fS-interquartile ranging from 2.67×10-2 to 5.11×10-2 cm/s was 

obtained from ten fS-associated lithofacies, while the cS-interquartile, revealing values 

from 7.58×10-2 to 1.27×10-1 cm/s, was obtained from ten cS-based lithofacies (Table 3). 

Despite different K-variability intervals of fS- and cS-operative-lithofacies, they are 

characterized by geometric means of the same order of magnitude (K-fS = 3.32×10-2 cm/s; 

K-cS = 9.37×10-2 cm/s), allowing them to correspond to same hydrofacies considered here 

as hydrofacies B. Finally, the G-operative-lithofacies is distinguished by interquartile K 

values of one order of magnitude ranging from 2.36×10-1 to 5.04×10-1 cm/s, with a 

geometric mean value of 3.17×10-1 cm/s. This particular range of high K provided G-

operative-lithofacies with direct correspondence to a particular hydrofacies, named here as 

hydrofacies C, resulting from a set of the three lithofacies Sgh, SGt, and cGspi. The 

determined hydrofacies with their properties are presented in Table 3. It is noteworthy that 

hydrofacies could be assigned on the basis of different K-orders of magnitude (Ouellon et 

al. 2008; Bayer et al. 2011), but small ranges of K-variability of one order of magnitude as 

undertaken in the present study and other similar studies (Heinz et al. 2003; Fleckenstein 

and Fogg 2008) would be more suitable for accurately illustrating the deposit 

heterogeneities, which are present in most aquifers at various spatial scales (De Marsily et 

al. 2005).  

In the present study, hydrofacies are determined based on a limited number of 

investigated sandpits. Therefore, some potential missing detail on K-heterogeneity over the 

entire study area occurs by the simple definition of only three distinct hydrofacies. 

However, having too many hydrofacies can lead to significant overlap of K-variability 
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intervals that subsequently leads to confused/complicated correspondence between 

lithofacies and hydrofacies. Also, hydrofacies A and C are defined by single geometric 

mean values corresponding to very low and very high K, whereas hydrofacies B is defined 

by range of variation constrained by two resulted "intermediate" geometric mean values. 

This necessitates a judgment on the K range of the hydrofacies applied to the studied 

aquifer, which may not be applicable to other aquifer types or geographic locations. The 

overall effect of anisotropy was not investigated assuming that the hydrofacies constitute a 

homogenous representative elementary volume, but not necessarily isotropic (Anderson 

1989b). 

5.5 Microscopic and bed-scale tortuosity in heterogeneous granular aquifers 

The combined hydrofacies properties at the bed-scale and the variability with similar 

lithofacies helps define different scales of tortuosity that is important for assessing solute 

transport in this type of aquifer. Horizontal flow of water through the aquifer is likely 

controlled by the higher K hydrofacies and may avoid the lower K hydrofacies by deviating 

around them, thereby slowing movement of a solute but still allowing overall faster down-

gradient movement compared to solute assessment using a mean aquifer value. The 

definition of real hydrofacies and associated lithofacies within a granular aquifer is quite 

significant in terms of the modeling approach taken to assess various types of solutes and 

how to design sensitivity analyses to assess potential transport rates. The hydrofacies 

within a heterogeneously siliciclastic aquifer also affect key large-scale aquifer properties 

including longitudinal and transverse dispersivity. Within the finer-grained lithofacies that 

have low hydraulic conductivity, Fickian diffusion rates would be influenced with regard 

to solute movement and release into the larger scale groundwater flow.   
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6. Conclusion 

The present study reveals that deltaic granular deposits feature a great diversity in 

lithofacies ranging from those dominated by fine-grained sediments to those featuring 

coarse-grained sediments. Note that various lithofacies were often observed on the same 

investigated face, while others were observed in more than one stratigraphic position of an 

investigated face and identified at several distinct sandpits. Use of direct and indirect 

measurements of n and K in sandpits is shown to offer an opportunity to directly identify 

lithofacies and ultimately, hydrofacies within their actual structure and to define their 

hydraulic properties. This type of investigation allows a more comprehensive assessment 

to be made on the actual degree of aquifer heterogeneity and how it can be applied to 

groundwater solute transport modeling. 

Assessing K and n for coarse sediments, particularly pebbly gravel lithofacies, is 

still challenging and will require developing new measurement tools beyond those used in 

the present study. Improvement of the approach to the measurement of the coarse-grained 

lithofacies types could further improve aquifer characterization. However, coarse-grained 

lithofacies commonly contain poor sorting and may not increase the magnitude of the K 

values in hydrofacies. The present study highlights the usefulness of the developed 

porosimeter utilized for in-situ evaluation of the porosity, and therefore, this porosimeter 

can be adopted for future studies in diverse geographic regions. However, it is limited to 

conducting measurements within sandy-gravelly material, as pebbly material was found to 

inhibit sinking the sampler-cylindrical tube of the porosimeter into the sediment, while 

fine-grained sediment like clay was observed to inhibit water percolation. 
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As expected, variability in K and n was clearly observed between the fine-grained 

lithofacies and those featuring coarse-grained sediments. Within the groups of operative-

lithofacies, a clear impact of sediment texture and structure was observed. Several 

lithofacies featuring the same class and grain size fraction were observed with variable K 

and n caused by minor changes in textural properties. Grain size analyses were relevant to 

correctly designate lithofacies and their corresponding codes. Particular attention is 

required in the identification of lithofacies units because direct field observation in stead 

of sediment texture assessment can be misleading. For example, sometimes what appears 

to be a fine-sand lithofacies contains a coarse sand dominated grain size distribution found 

during laboratory grain size analysis. The influence of sedimentary structures on K and n 

was assessed through the results from lithofacies having similar texture but featuring 

differing sedimentary structures. The differing processes occurring during deposition led 

to minor texture variation that impacts K and n values in similar lithofacies. The Folk grain 

size parameters were helpful in describing the difference between lithofacies, with 

comparable outcomes to other studies showing that mean diameter and sorting of grains 

have significant effect on the variability of K and n.  

This investigation clearly confirmed the degree of hydrogeological heterogeneity 

within deltaic systems. Correspondence of lithofacies identified in the Valin River 

paleodelta with different K and n values into operative-lithofacies led subsequently to 

determine different hydrofacies that control large-scale groundwater flow patterns. 

However, simultaneous consideration of K and n for determining hydrofacies was found to 

be inappropriate because of the overlapping values of n, thereby requiring solely the use of 

K.  This issue does not underestimate the importance of n, which was found to be a relevant 
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property for other interpretations. Finally, this research demonstrates that even based on a 

limited number of investigated sandpits, the relevant basic information obtained is useful 

in defining the degree of aquifer heterogeneity, in developing conceptual hydrogeological 

models, and for evaluating groundwater flow and contaminant transport.  

Figures 
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       Deltaic sediments    
       Organic material                         
       Gravel/Sandy material 
       Thin layer of till 
       Clay of Laflamme Sea  
       Precambrian rocks 
       Floodplain sediments 
       Limestone 
       Saint-Fulgence Village  
       Saint-Honoré Village 
       Investigated Sandpit 
      Borehole, well, test-pit  
      Fault 

 
Fig. 1. (a) Geographic location of study area with (b) detail on the geology of surface deposits (Lasalle and Tremblay 1978), and (c) 
subsurface cross-section AA’ (CERM-PACES 2013). 
 

(a) (b) 

(c) 
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Fig. 2. Porosimeter used in this study with a general overview of its components. 

 
Fig. 3. Example of the identified lithofacies on the exposed face of sandpit #6. 
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Fig. 4. Grain-passing percentages versus diameter for (a) fine-sandy sediment samples, (b) coarse-sandy sediment samples, (c) 
sediment samples containing considerable gravelly/pebbly fraction, and (d) fine-grained sediment samples. The codes (e.g., #1-fSr) on 
the figure correspond to number of sandpit (e.g., #1) with the lithofacies code (e.g., fSr). 
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Fig. 5. Results of n, measured in-situ and in laboratory, of the identified lithofacies that are presented from fine (left) to coarse (right) 
grained-sediments. The solid lines connecting the plotted points do not signify any connection between the tested sites; they are rather 
introduced here to highlight potential trend.  
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Fig. 6. Results of K measured in-situ and in laboratory, of the identified lithofacies that are presented from fine (left) to coarse (right) 
grained-sediments. 
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Fig. 7. Density plot showing the distribution of n values of both in-situ and laboratory measurements. 
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Fig. 8. Density plot illustrating the distribution of K values of both in-situ and laboratory estimations. 
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Fig. 9. Boxplot distribution of (a) K values and (b) n values for the determined operative 
lithofacies (F: Fine-grained-operative-lithofacies; fS: Fine sand-operative-lithofacies; cS: 
Coarse sand-operative-lithofacies; G: Gravelly-operative-lithofacies). 
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