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ABSTRACT 

 

Power transformers are one of the most expensive and critical equipment in power networks. 
The ever-growing energy demand and the increasing age of power transformers population have 
expanded the interest in this assets' condition monitoring. The electrical industry has been dealing 
with many transformers that have reached or even passed their designed lifespan. These 
circumstances can directly affect the reliability of the network operations. Meanwhile, continuous 
monitoring allows for preventive repairs, planned replacements and increases system reliability. 

Among the diverse monitoring and diagnostic techniques, Frequency Response Analysis 
(FRA) stands out as an important method widely used in the electric industry for condition assessment 
of the transformer's active part. FRA has demonstrated its sensitivity for detecting various mechanical 
and electrical failure modes. The method graphically compares the transfer functions of power 
transformers over a range of frequencies. The deviations from current and previous traces indicate 
electrical or mechanical changes inside the transformer. 

Even though the FRA technique has been well studied at the international level in various 
working groups of CIGRÉ, IEC, IEEE and Chinese Standard, the interpretation of deviations up until 
now needs experts' analysis. Ultimately, the FRA measurement procedure has been well 
standardized. However, the interpretation of results is still challenging and an interesting subject of 
study. 

The challenge of FRA interpretation lies in the complex structure and the design particularities 
of power transformers. One of the fundamental shortcomings of experimental investigations is the 
generation of fault modes in real transformers to collect data in different scenarios and study them. 
This is especially complex due to the destructive characteristics of the faults. Besides, the availability 
of data from practical faulty transformers is very scarce. Although there has been more and more 
FRA testing being conducted worldwide, most of this data is not available and most available data is 
not released in the literature. 

To face these challenges, this research has the investigation and advance of FRA 
interpretation methods as the primary objective. For this purpose, the main interpretation methods for 
FRA are considered: numerical indices, artificial intelligence algorithms, and high-frequency models. 
The numerical indices are studied based on their capacity to well quantify deformations in FRA traces. 
Different algorithms are evaluated over their performance to automatically detect and classify different 
fault modes, such as axial displacements, radial deformations and short-circuits. The influence of 
temperature in FRA traces and its effects on automatic classification algorithms are also explored. In 
addition, a Finite Element Method simulation is used to develop a high-frequency model aiming at the 
reproduction of FRA traces. 

The research is based on the use of a laboratory winding model. One of the model's main 
features is the non-destructive interchangeability of its winding sections. This characteristic allows 
the reproducibility and repeatability of frequency response measurements and the possibility to 
produce and investigate different mechanical and electrical faults by comparing them to the same 
reference.  

The numerical indices analysis indicated that comparative standard deviation produced good 
results for evaluating deformations on the winding model. This conclusion is based on the index 
monotonic behaviour, sensitivity, and linear increase with fault severity.  

Additionally, the study of different artificial intelligence algorithms (namely support vector 
machine learning, radial basis function neural networks and the statistical k-nearest neighbour 
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method) are supportive and presented good accuracy when classifying winding faults and fault 
extents. 

The temperature influence in FRA traces was evaluated from −40 °C to 40 °C. The results 
show that if the temperature is not considered in the training dataset, the algorithm misclassifies 
healthy measurements as mechanical or electrical faults.  

Finally, numerical simulations based on the Finite Element method have reproduced FRA 
traces in good agreement with measured reference. Furthermore, once faults are introduced, and 
automatic classification algorithms evaluate the traces, the short-circuit faults have good classification 
scores, while axial displacements only present good classification at their highest extents.  

The findings presented in this research contribute to the advancement in FRA interpretation 
methods. These achievements help support the use of the proposed methods in machine learning 
algorithms and the generation of faulty frequency responses for classification.



 

RÉSUMÉ 

 

Les transformateurs de puissance sont l'un des équipements les plus coûteux et les plus 
critiques des réseaux électriques. La croissante constante de la demande d'énergie ainsi que l'âge 
croissant de la population de transformateurs de puissance ont accru l'intérêt pour la surveillance de 
l'état de ces actifs. L'industrie électrique a eu affaire à de nombreux transformateurs qui ont atteint 
ou même dépassé leur durée de vie prévue. Ces circonstances peuvent affecter directement la 
fiabilité des opérations du réseau. Pendant ce temps, la surveillance continue permet des réparations 
préventives, des remplacements planifiés et augmente la fiabilité du système. 

Parmi les diverses techniques de surveillance et de diagnostic, l'analyse de la réponse en 
fréquence (FRA) se distingue comme une méthode importante largement utilisée dans l'industrie 
électrique pour l'évaluation de l'état de la partie active du transformateur. FRA a démontré sa 
sensibilité pour détecter divers modes de défaillance mécanique et électrique. La méthode compare 
graphiquement les fonctions de transfert des transformateurs de puissance sur une gamme de 
fréquences. Les écarts par rapport aux traces réelles et précédentes indiquent des changements 
électriques ou mécaniques à l'intérieur du transformateur. 

Même si la technique FRA a été bien étudiée au niveau international dans divers groupes de 
travail du CIGRÉ, de l'IEC, de l’IEEE et de la norme chinoise, l'interprétation des écarts jusqu'à 
présent nécessite l'analyse d'experts. En fin de compte, la procédure de mesure FRA a été bien 
standardisée. Cependant, l'interprétation des résultats reste un défi et un sujet d'étude attrayant. 

Le défi de l'interprétation FRA réside dans la structure complexe et dans les particularités de 
conception des transformateurs de puissance. L'une des lacunes fondamentales des investigations 
expérimentales est la génération de modes de défaut dans des transformateurs réels pour collecter 
des données dans différents scénarios et les étudier. Ceci est particulièrement complexe en raison 
des caractéristiques destructrices des failles. En outre, la disponibilité de données provenant de 
transformateurs défectueux pratiques est très rare. Bien que de plus en plus de tests FRA soient 
effectués dans le monde, la plupart de ces données ne sont pas disponibles et la plupart des données 
disponibles ne sont pas en libre accès pour la publication. 

Pour faire face à ces défis, cette recherche a pour objectif principal l'investigation et 
l'avancement des méthodes d'interprétation FRA. À cette fin, les principales méthodes 
d'interprétation de FRA sont considérées : indices numériques, algorithmes d'intelligence artificielle 
et modèles de simulation haute fréquence. Les indices numériques sont étudiés en fonction de sa 
capacité à bien quantifier les déformations dans les traces FRA. Différents algorithmes sont évalués 
sur ses performances pour détecter et classer automatiquement différents modes de défaut, tels que 
les déplacements axiaux, les déformations radiales et les court-circuit. L'influence de la température 
dans les traces FRA et ses effets sur les algorithmes de classification automatique sont également 
explorés. Et enfin, une simulation par la méthode des éléments finis est utilisée pour développer un 
modèle de simulation haute fréquence visant la reproduction des traces FRA. 

La recherche est basée sur l'utilisation d'un modèle de bobinage de laboratoire. L'une des 
principales caractéristiques du modèle est l'interchangeabilité non destructive de ses sections 
d'enroulement. Cette caractéristique permet la reproductibilité et la répétabilité des mesures de 
réponse en fréquence et la possibilité de produire et d'étudier différents défauts mécaniques et 
électriques en les comparant à la même référence. 

L'analyse des indices numériques a indiqué que l'écart-type comparatif produisait de bons 
résultats pour l'évaluation des déformations sur le modèle d'enroulement. Cette conclusion est basée 
sur le comportement monotone de l'indice, la sensibilité et l'augmentation linéaire avec la sévérité du 
défaut. 
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De plus, l'étude de différents algorithmes d'intelligence artificielle (à savoir l'apprentissage 
automatique à vecteurs de support, les réseaux de neurones à fonction de base radiale et la méthode 
statistique des k plus proches voisins) est favorable et présente une bonne précision lors de la 
classification des défauts d'enroulement et de l'étendue des défauts. 

L'influence de la température dans les traces FRA a été évaluée dans une plage de -40 °C à 
40 °C. Les résultats montrent que si la température n'est pas prise en compte dans l'ensemble de 
données d'apprentissage, l'algorithme considère les mesures saines comme étant des défauts 
mécaniques ou électriques. 

Enfin, l'utilisation de simulations numériques basées sur la méthode des éléments finis a 
reproduit des traces FRA en bon accord avec la référence mesurée. De plus, une fois les défauts 
introduits et les traces évaluées par les algorithmes de classification automatique, les défauts de 
court-circuit présentent une bonne classification, tandis que les déplacements axiaux ne présentent 
une bonne classification qu'à leurs plus hauts degrés. 

Les résultats présentés dans cette recherche contribuent à l'avancement des méthodes 
d'interprétation FRA. Ces réalisations aident à soutenir l'utilisation des méthodes proposées dans les 
algorithmes d'apprentissage automatique et dans la génération de réponse en fréquence 
défectueuse pour la classification.
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CHAPTER I  

GENERAL INTRODUCTION 

 

1.1. INTRODUCTION 

 
Our world has been facing a global challenge: to provide sufficient and reliable energy 

to its people. On the one hand, the energy demand is constantly growing. On the other, energy 

resources are limited, and more and more renewable energies should be used in a perspective 

of sustainable development. In addition, the energy supply for all at an affordable price should 

be ensured. To meet these challenges, the reliable operation of the existing electricity 

infrastructure in conciliation with new and more technological equipment must be sought. 

In this context, power transformers are one of the most crucial equipment in power 

transmission and distribution networks. Any malfunction of this equipment can lead to 

hazardous conditions. Due to their great importance, transformers must be periodically 

evaluated to ensure the reliable operation of the system. Extreme reliability is required because 

failures inevitably lead to high repair costs, long downtimes, and possible risks to life safety. 

According to the CIGRE's guide to the economics of transformer management [1], can reduce 

the risk of catastrophic failures by 50%, early detection of problems can reduce repair costs by 

75% and revenue loss by 60%. 

Mechanical failures, as an example, are mainly related to vibration and winding 

deformations due to high mechanical forces generated by fault currents [2]. These forces can 

be identified as radial and axial forces [5] and can produce significant mechanical damage on 

the windings. Once such deformations occur, the transformer's ability to withstand further 

mechanical forces originating in potential through the fault current is significantly reduced due 

to localized electromagnetic stresses [6]. In addition, dielectric failures can also be originated 

from mechanical defects due to dielectric strength loss in insulating materials [3]. Ultimately, 

major failures must be avoided to maintain the transformer's good system operation conditions. 
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Thus, the industry has been developing efficient and reliable monitoring and diagnostic 

techniques to detect incipient failures. 

The main causes of power transformers' failures are dielectric, electric, mechanical, 

chemical, or thermal origins. According to [4], illustrated in Figure I.1, the failure in substation 

transformers are approximately 38% from dielectric causes, 22% from mechanical causes and 

18% from electrical causes. Accounting for almost 80% of all substation transformer failures, 

dielectric, mechanical and electrical are the most common conditions monitored in 

transformers. 

 
Figure I.1 Failure mode based on 799 failures of substation transformers 

Source: Suassuna de Andrade Ferreira, 2022, adapted from Tenbohlen et al., 2017 [4] 
 

In relation to the failure location in power transformers, the windings have the most 

significant contribution (40%), along with the tap changer (30%) and the bushings (17%). This 

data is based on a survey on transformers' reliability from CIGRE’s working group A2.37 [5]. 

The statistics presented in the mentioned survey are illustrated in Figure I.2. 

Dielectric
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Figure I.2 Failure location based on 675 failures of substation transformers above 100 kV 

Source: Suassuna de Andrade Ferreira, 2022, adapted from CIGRE Technical Brochure 642, 
2015 [5] and Islam, Lee and Hettiwatte [6] 

 

Based on the data presented in these surveys, it is possible to notice that transformer 

integrity depends on multiple factors. Hence the importance of using monitoring and diagnostic 

methods to evaluate different components. 

Frequent methods used for monitoring and diagnostics of fault conditions in power 

transformers are dissolved gas analysis [7], capacitance and power factor measurements [6], 

excitation current measurement [8], partial discharge measurement [9], polarization and 

depolarization current measurement [10], Frequency Response Analysis (FRA) [11-14], among 

others. Each of these methods is used for the analysis of specific conditions. FRA is currently 

well known and used in the electrical industry for condition assessment of transformer 

windings. 

 

1.2. RESEARCH MOTIVATION AND OBJECTIVES 

 
From the first studies [15], FRA has demonstrated its sensitivity for detecting 

mechanical and electrical failure modes [16, 17]. The method is very sensitive to changes in 

the transformer windings [18, 19]. Comparing two frequency response measurements can 

present deviations from changes inside the transformer. For example, frequency response 

measurements are used to detect mechanical defects during transformer transportation; a 
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measurement is taken at the manufacturer, and another is taken at the installation site. The 

comparison of measurements can indicate if mechanical changes have occurred. Therefore, 

FRA must compare two measurements: a reference and an after-event. 

The interpretation of frequency response measurements can lead to identifying the 

deformation type, its magnitude, and its location in the transformer. Even though the FRA 

measurement procedure has been discussed and well standardized at the international level 

in working groups of CIGRE [16], IEC [20], IEEE [21] and Chinese Standards [22], the literature 

review has shown that objective interpretation is still unresolved [17]. In fact, FRA interpretation 

is usually performed with the aid of experts since there is no reliable algorithm for its 

interpretation [23, 24]. 

FRA objective interpretation is a concern that requires more investigation. The present 

research aims to study and improve FRA interpretation by analyzing different influences in FRA 

measurements and developing methods for automatic interpretation of FRA in power 

transformers. To attain this main goal, the following objectives are defined: 

▪ Identify indices suitable for assessing the mechanical deformation severity; 

▪ Investigate machine learning algorithms for automatic faults classification; 

▪ Study the impact of temperature on FRA traces for automatic fault classification; 

▪ Develop a new approach for modelling frequency response from Finite Element 

Method simulation using lumped elements circuit and parameters’ optimization. 

 

1.3. ORIGINALITY OF THE RESEARCH 

 
The main advantage of the proposed approach is the opportunity to investigate a large 

number of failure modes and different failure extents on the same unit, compared to past 

studies that used limited databases and real transformers, which can be problematic to 
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interpret. It, therefore, seems reasonable to affirm that this research paves the way for 

improvement in the diagnostic methods. 

Based on these premises and to the best knowledge of the author, the following 

contributions are original to the field of research: 

▪ The use of a winding model that allows the introduction of faults without physical 

damage to the structure. 

Due to the limited availability of real case transformer studies, researchers have been 

working with the generation of FRA data from laboratory winding models that can be physically 

modified to simulate failures [24-26]. However, the main advantage of the winding model used 

in this research is the possibility of introducing faults such as mechanical deformations and 

electrical faults and returning the model to its healthy state. 

▪ The investigation of FRA measurements under a wide range of temperatures 

(−40 °C to 40 °C). 

The literature has studied the influence of temperature on FRA measurements [27, 28]. 

Still, the use of a climatic chamber allowing the entire winding model to be exposed to 

temperatures as low as -40 °C has not yet been investigated. 

▪ The evaluation of the performance of automatic classifiers in discriminating 

among different faults (axial displacement, radial deformation, disc-space 

variation, and short-circuit) and healthy measurements taken at different 

temperatures. 

Automatic fault classifiers are well used in the literature [29, 30]. However, the impact 

of temperature measurements on the fault's classification has never been explored. 

▪ The new study of numerical indices and machine learning algorithms optimization 

applied to an FRA measurements database. 
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This project studied numerical indices, machine learning algorithms, and the 

optimization of different parameters. The study focused on the advance in fault classification. 

It included: the evaluation of the best numerical index suitable for the FRA database, the use 

of numerical indices individually or in a combination, and the optimization of algorithms 

parameters. The combination of these studies in developing improved algorithms for faults 

classification using FRA traces has not been previously found in the literature. 

▪ The application of the sweep frequency window approach for numerical index 

calculation is used in algorithms for automatic faults classification. 

The sweep frequency window approach presented in [31] is used to obtain a numerical 

index vector to characterize FRA traces and then as input for faults’ classification. This 

approach has not been previously used as input to automatic classification algorithms. 

▪ The novel approach for FEM simulation of transformer’s frequency response 

tailored for generating infinite and unique database for the training of classification 

algorithms with the potential impact on FRA interpretation improvements. 

High-frequency models for FRA in transformers using FEM simulation and RLC lumped 

circuit elements have been already explored in the literature individually [25, 32] and combined 

[33]. Nonetheless, the parameters optimization for capacitance calculations allows the 

simplification of calculations and has not yet been investigated. 

The present research contributes to the electrical industry by supporting decision-

making tools for maintenance, repair, or replacing power transformers. This is timely and 

potentially impacts both academic and industrial levels. Therefore, it seems reasonable to 

affirm that this research paves the way for improvement in the diagnostic methods. 
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1.4. THESIS ORGANIZATION 

 
The structure of the present research work focuses on the accomplishment of the 

objectives detailed earlier. The specific objectives were achieved by the publication of two 

research articles in renowned journals in the electrical engineering field and by a third article 

that is currently under revision before submission. This thesis is organised as follows to present 

the results accomplished and discuss the literature review on the research topic. 

The first chapter presents a general introduction to the power transformer’s monitoring 

and diagnostic subject along with the motivation, the main objectives and the originalities of 

the work. 

In the second chapter, a literature review comprising the background on frequency 

response analysis and frequency response interpretation is present. 

Chapter 3 presents the two first objectives of this research: identify indices suitable for 

assessing the mechanical deformation severity and investigate machine learning algorithms 

for automatic faults classification. These objectives were presented in publication 1 for the IEEE 

Access journal: “Frequency Response Analysis Interpretation using Numerical Indices and 

Machine Learning: A case study based on a Laboratory Winding Model”. 

Chapter 4 presents the third objective of this research: to study the impact of 

temperature on FRA traces for automatic fault classification. This objective was presented in 

publication 2 for the MDPI Energies journal: “A Machine Learning Approach to Identify the 

Influence of Temperature on FRA Measurements”. 

Chapter 5 presents the fourth objective of this research: to develop a new approach 

for modelling frequency response from Finite Element Method simulation using lumped 

elements circuit and parameters’ optimization. This objective is presented in publication 3 to 

be submitted to the MDPI Energies journal: “Reproducing Transformer’s Frequency Response 

from FEM simulation and Parameters Optimization”. 
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Finally, in Chapter 6, the findings and contributions of the research are summarized, 

and the scope for future development of the research is presented. 

 



 

CHAPTER II  

LITERATURE REVIEW 

 
During their lifetime, power transformers can experience atmospheric discharges, 

short-circuits, energizations, and overloads. Those occurrences can cause the transformer's 

thermal, chemical, dielectric, and mechanical failures. The study in [34] identified that these 

failures' main locations are in the transformers' components such as bushings, windings, tank, 

on-load tap-changer, core, oil and insulation. For example, mechanical failures usually occur 

due to movements and vibrations within the transformers and affect the windings and the solid 

insulation of the power transformer. The main cause for winding movements is the mechanical 

forces generated at current-carrying conductors. Any current-carrying conductor in the 

presence of alternating magnetic flux density will be affected by forces. Thus, deformations are 

a result of elevated forces due to overcurrent. Transportation of transformers is also a concern 

for mechanical deformations. Usually, windings deformations during transports occur due to 

loosening conditions that lead to the displacement of windings or insulation damage. 

Due to the failures that can occur in the power transformer, its importance to the electric 

industry, and its high financial cost, power transformers' reliable and efficient operation are 

topics of constant concern. Modern monitoring and diagnostic methods aim to ensure optimal 

power transfer and lifetime of the transformers. Monitoring procedures to detect mechanical 

deformations are Frequency Response Analysis (FRA) or the time domain low-voltage impulse 

(LVI) method. FRA has been proven more efficient [15] and is more widely used today than the 

LVI method. In industry, FRA is one of the most commonly used techniques to detect and 

identify faults in the active part of power transformers [35]. 

The FRA method can detect faults based on the changes caused to internal 

inductances, resistances and capacitances of the transformer equivalent RLC circuit. Since a 

transformer can be considered a complex network of RLC components representing the 

resistances of windings, inductances of coils and capacitance from the insulation layers, a 



10 

variation in the frequency response may indicate a physical change in these parameters. Thus, 

once a fault occurs, deviations will be present in the frequency response of the transformer 

allowing the fault detection and, further, its identification. 

 

2.1. FREQUENCY RESPONSE MEASUREMENTS 

 
The first studies for detecting mechanical deformations with transfer function methods 

date from the 1960s with the LVI method proposed by Lech and Tyminski in Poland [36]. In the 

late 1970s, Dick and Erven at Ontario Hydro (Canada) pioneered the FRA method by injecting 

a frequency sweep sinusoidal signal and directly measuring the frequency response [15]. The 

main advantage of the method proposed by Dick and Erven is that the same voltage is applied 

at all frequencies ensuring less influence from external electromagnetic disturbances. The 

method is also less dependent on the test set-up, leading to simplified interpretation of results 

and better repeatability. In the 1990s, the FRA technique was developed internationally. It was 

presented at international conferences and technical meetings along with the development of 

the first commercially built systems for FRA measurements on-site. 

As Dick and Erven [15] proposed, the FRA obtains a measurement at each frequency 

by injecting a sinusoidal waveform with constant amplitude to one of the terminals of the 

transformer (input point). The frequency response is measured in terms of its amplitude (dB) 

and phase (degrees) at another available terminal (output point). There are four main and 

standardized connections to obtain different responses regarding the transformer windings [16, 

20, 21]. These connection types are divided into two groups: end-to-end measurements and 

inter-winding measurements. Figure II.1 presents the standard FRA connections. 
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(a) (b) 

  
(c) (d) 

Figure II.1 FRA measurement connections (a) end-to-end open-circuit, (b) end-to-end short-
circuit, (c) capacitive inter-winding and (d) inductive inter-winding 

Source: Suassuna de Andrade Ferreira, 2022 
 

The end-to-end measurements apply the input signal (Vin) to one end of the winding 

and read the output signal (Vout) at the other end on the same winding. In the case of end-to-

end open circuit measurement, the other windings in the same phase are left open (Figure 

II.1a). For this connection, the magnetizing inductance is the main parameter to characterize 

the low-frequency region (before the first resonance). For the end-to-end measurement group, 

the other windings can also be shorted for a short-circuit measurement (Figure II.1b). At this 

configuration, the core influence is removed and the leakage inductance characterizes the low-

frequency region. As a result, the first resonance is displaced to higher frequencies. The end-

to-end measurements group is more commonly used in FRA interpretation due to the possibility 

of individual winding analysis [16]. 

The inter-winding measurements apply Vin to one winding and read the Vout at another 

winding on the same phase. The low-frequency region of these measurements is characterized 
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depending on the conditions of the other endings of the windings. If the windings are left open 

(Figure II.1c), the low-frequency region represents the inter-winding capacitances. When both 

windings are grounded (Figure II.1d), the same frequency region is now characterized by the 

windings turn ratio. 

To illustrate the details of the FRA measurement, Figure II.2 shows the representation 

of the electrical circuit used to obtain the frequency response. The impedance measurement 

is represented as a 50 Ω resistance as this value is frequently observed in commercial FRA 

instruments. 

 
Figure II.2 End-to-end open-circuit details 

Source: Suassuna de Andrade Ferreira, 2022 
 

After the measurements are taken, the frequency response can be presented in terms 

of amplitude (HdB) and phase (φ). To calculate the response from the measured voltages, 

equations (II.1) and (II.2) are used, 

HdB=20∙ log
10

(
Vout

Vin
), (II.1) 

φ=φ(Vout)-φ(Vin). (II.2) 

The interpretation of frequency response is then accomplished by comparing current 

and reference measurements. The reference measurement is ideally from the same 

transformer in a previous time (before fault). However, in the absence of previous 

measurements, comparing different phases for a three-phase transformer or between sister 

𝑉𝑖𝑛 𝑉𝑜𝑢𝑡 

Winding 2 

𝑉𝑖𝑛 

𝑉𝑜𝑢𝑡 

Winding 1 
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unit transformers can provide FRA interpretation [16]. In addition, both measurements (current 

and reference) should use the same measurement connections and similar conditions. 

The challenge when utilizing FRA to diagnose the transformer active part lies mainly 

in correctly interpreting deviations from current and reference measurements. Previous studies 

have resulted in a well-standardized FRA procedure; thus, measurements comparison should 

not face problems [16, 20-22]. Nonetheless, a comparison needs to result in the identification 

of the current condition of the transformer. The interpretation should be able to provide a 

decision on whether the transformer can continue its reliable operation, should be repaired, or 

has achieved its end-of-life. Moreover, in the case of a defect, it should be able to point to its 

type, extent, and location. 

 

2.2. FREQUENCY RESPONSE INTERPRETATION METHODS 

 
The currently available FRA interpretation methods are based on subjective visual 

inspection of curves and need experts' decisions to determine the transformer conditions [23, 

24]. Thus, research studies have been focused on investigating FRA interpretation methods to 

overcome experts’ dependency and develop an objective interpretation of trace deviations. The 

main interpretation methods are based on: numerical indices [37, 38], high-frequency 

simulation models [25, 33], artificial intelligence algorithms [29, 39-41], or a combination of 

different methods. Moreover, the traces used in FRA interpretation research are predominantly 

obtained from real case transformers [24, 42], laboratory experiments [43] or simulation studies 

[44-46]. The main interpretation methods are further described in the following topics. 

 

2.2.1. NUMERICAL INDICES 

 
Numerical indices are one of the most common and intuitive methods for quantification 

of variation between two frequency response measurements. There are two main groups for 



14 

indices: indices calculated directly from FRA vectors (amplitude and sometimes phase) and 

indices based on resonance and anti-resonance points [17, 37, 38]. Moreover, indices can 

exhibit different sensitivities regarding amplitude and frequency variations. For example, 

correlation coefficients are not influenced by constant amplitude deviations. Table II.1, presents 

examples of numerical indices with their abbreviation and some references that used them for 

FRA interpretation. 

A good numerical index should present characteristics such as monotonicity, linearity 

and sensitivity [35]. A monotonous index will present a higher value for higher faults extent. 

The linear relation between the deformation degree and the index value is desired. The 

sensitivity should be related to the type of defect under analysis; different indices will be more 

suitable for specific defects. 

Moreover, to be able to well identify faults in transformers’ active part, the interpretation 

should be based on thresholds to determine the limits from no-fault and slight deformation 

index values. One of the most well-known applications of numerical indices using defined index 

limits is the Chinese Standard [20]. The standard calculates a relative factor (𝑅𝑋𝑌) based on 

variance and covariance and sets thresholds for winding deformation assessment. The 

interpretation is based on the values calculated for three frequency ranges: low-frequency (LF) 

from 1 to 100 kHz; medium-frequency (MF) from 100 to 600 kHz; and high-frequency (HF) from 

600 to 1000 kHz. The thresholds proposed by the Chinese Standard [20] are presented in 

Table II.2. 

Nonetheless, these limits are unclear in describing the differences between the 

deformation levels [36]. Namely, a slight deformation identified using the Chinese Standard 

limits does not indicate whether the power transformer needs to be taken out of operation for 

repairs or its reliable operation can continue. 
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Table II.1 Summary of numerical indices used for FRA interpretation [17, 37, 38] 

Indices Definition Abbreviation References 

Cross Correlation Factor CCF [22, 47-49] 

Correlation Coefficient CC [41, 50, 51] 

Euclidean Distance ED [41, 52] 

Complex Distance CD [53, 54] 

Expectation E [48] 

Standard Deviation SD, 𝜎𝑒 [48, 50, 55] 

Standard Deviation of Difference SDD [31] 

Comparative Standard Deviation CSD [53, 56] 

Sum Squared Ratio Error SSRE [41, 52, 57] 

Sum Squared Error SSE [41, 52, 53, 57] 

Root Mean Square Error RMSE [58] 

Integral of Difference ID [59] 

Maximum of Difference MAX [52, 59] 

Standardized Difference Area SDA [19] 

Minimum-maximum ratio MM [53, 60] 

Absolute Sum of Logarithmic Error ASLE [50, 57] 

Mean Amplitude Deviation MAD [48] 

Mean Frequency Deviation MFD [48] 

Weighted Amplitude Function 𝑊𝑎 [19, 59] 

Weighted Frequency Function 𝑊𝑓 [19, 52] 

Index of Amplitude Deviation IAD [19, 61] 

Index of Frequency Deviation IFD [19, 61] 

Lin’s concordance coefficient LCC [24, 62] 

Source: Suassuna de Andrade Ferreira, 2022 
 

Studies such as those presented in [43, 48, 51] have researched the application of 

Chinese Standard for the detection of axial displacement [43, 48] and radial deformation [51] 

on real case transformers [48, 51] or laboratory models [43]. 
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Table II.2 Interpretation criteria used in Chinese Standard [22] 

Relative Factor (𝑹𝑿𝒀) Winding Deformation Degree 

RLF<0.6 Severe Deformation 

0.6≤RLF<1.0 or RMF<0.6 Obvious Deformation 

1.0≤RLF<2.0 or 0.6 ≤RMF<1.0 Slight Deformation 

RLF≥2.0 and RMF≥1.0 and RHF≥0.6 Normal Winding 

Source: The Electric Power Industry Standard of People’s Republic of China, DL/T 911 
2016 [22] 

 

As the Chinese Standard [22] demonstrates, the numerical index calculation frequency 

band is of great importance in determining the faults' classification. Different methods can be 

used to determine such frequency divisions. The simplest is to evaluate the entire frequency 

range. For example, using one frequency band from a few Hz, usually 10 or 20 Hz, up to 1 or 

2 MHz, as described in [30, 50, 51], or from 100 kHz up to 1 MHz, presented in [63, 64]. This 

approach, however, can result in a lack of sensitivity to deviations concentrated in small ranges 

of the frequency response. The division of the frequency range into sub-bands is, accordingly, 

usually explored [20]. 

The literature shows that different frequency sub-bands can be influenced by different 

transformer structures [20]. Thus, the frequency response can be divided into sub-bands 

according to their different structure influences. The first subdivisions for frequency response 

were presented in [19, 65, 66]. These studies defined the frequency sub-bands at low-

frequency (from 10 kHz till 100 kHz), medium-frequency (from 100 kHz till 600 kHz) and high-

frequency (from 600 kHz till 1 MHz). However, researchers have used other limits for the 

frequency divisions that can vary greatly. For example, the low-frequency band can go up to 

10 kHz [53], 20 kHz [67, 68], 50 kHz [69] or 350 kHz [70]. The medium and high-frequency 

bands will also have different limits in consequence. 

Furthermore, other studies have considered four sub-bands for FRA interpretation [71-

74]. This division was also used in the IEC 60076-18:2012 standard [20], such as presented in 

Figure II.3. 
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Figure II.3 Main regions of a frequency response 

Source: Suassuna de Andrade Ferreira, 2022, adapted from IEC  60076-18, 2012 [20] 
 

The lower frequency region (usually below 2 kHz) is mainly influenced by the core 

magnetizing inductance (for end-to-end open circuit measurements), or by the leakage 

inductance (for end-to-end short-circuit measurements). The coupling between windings 

affects the response for medium frequencies (between 2 kHz and 20 kHz). At higher 

frequencies (from 20 kHz to 1 MHz) the measurement is influenced by the winding structure, 

such as winding leakage inductance and windings series and shunt capacitances. For 

frequencies above 1 MHz, the measurement set-up affects the response, so this region shows 

less reproducibility in measurements [17]. Moreover, studies have also used more than four 

frequency sub-bands. For example, in [64], six sub-bands are used; in [41], 10 ranges are 

defined between 20 Hz and 1 MHz. 

As the frequency regions are related to transformer structures (core, windings, leads, 

and others), it seems misleading to establish generally fixed frequency sub-bands. A variable 

selection for frequency sub-bands was proposed by Velasquez in [75, 76]. The proposed 

frequency response division is similar to the one presented in [74], with the low-frequency 
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region divided into two sub-regions (LF1 and LF2). The method is based on the locations of 

poles and zeros in the frequency response. 

Similarly, Tahir and Tenbohlen proposed in [77] an adaptive frequency division based 

on different features present in FRA traces. The method is characterized by the location of 

resonances, anti-resonances, and phase zero-crossings. The entire frequency band is divided 

into four sub-bands according to the different physical components of the transformer. Two 

low-frequency sub-bands are related to the core, where magnetizing inductance and equivalent 

capacitances dominate the response. One medium-frequency sub-band corresponds to the 

mutual inductances between windings and inter-winding capacitances. Moreover, a high-

frequency sub-band coincides with the region dominated by the winding inductance and series 

and ground capacitances. 

An alternative method to frequency sub-band divisions is explored in [31]. The authors 

proposed using a sweep frequency window approach, illustrated in Figure II.4, where X and Y 

are the amplitude of frequency response traces used in the numerical index calculation and 

Xw(i)̅̅ ̅̅ ̅̅ ̅ and Yw(i)̅̅ ̅̅ ̅̅ ̅ are the mean values of the i
th

 window. 

The frequency window (WS) is determined from the number of data points per decade 

(fp/d) in the measured traces using equation (II.3), 

WS=10+6 (
fp/d-200

200
). (II.3) 

The frequency window is then swept over the complete frequency range in predefined 

steps (Wstep). In this method, a vector of index values is obtained. The index values vector 

allows the better characterization of the trace deviations without relying on predefined 

frequency bands. 



19 

 
Figure II.4 Principle of sweep frequency window approach 

Source: Suassuna de Andrade Ferreira, 2022, adapted from Tahir and Tenbohlen, 2019 [31] 
 

2.2.2. HIGH-FREQUENCY SIMULATION MODELS 

 
High-frequency simulation models are used as frequency response interpretation 

methods due to their capability to reproduce FRA traces. In addition, the simulation allows the 

study of FRA measurements in different situations without damaging the power transformer's 

physical conditions, such as mechanical deformations, electrical faults, insulation properties 

changes and others. 

The finite element method (FEM) and the RLC equivalent circuit method are the two 

main approaches to developing high-frequency simulation models. The equivalent RLC circuits 

use lumped elements such as resistances, self and mutual inductances and capacitances 

estimated from analytical calculations or FEM simulations. RLC estimations were used by 

studies such as [18, 26, 65-67]. Alternatively, simulation models can also detect changes to 

lumped circuit elements and correlate them to fault identification [61, 68]. With the improving 

computational capacity, FEM simulations have been well employed for RLC estimations [27, 

69-71]. FEM simulations have advantages over analytical formulas, such as the possibility to 
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extract parameters from complex and anisotropic structures. The more detailed design data is 

introduced in FEM simulations; the more accurate estimations the model will present. However, 

detailed models will also demand higher computational performances. Thus, a compromise 

between accuracy and computational cost should be made when using simulations. 

FEM simulations are explored, for example, in [25, 78]. In the first study [25], FRA 

traces are calculated directly from the FEM model, and axial displacement faults in different 

levels are used to evaluate the simulation results. Later, this study evaluates the numerical 

indices calculated from simulated and measured traces demonstrating that they present good 

agreement. The second study [78] explores the use of FEM simulation in the calculation of 

high-frequency inductances. The investigation has shown that the high-frequency inductance 

calculated is sensitive to detect disc space variation faults and even its extents on transformer 

windings. 

The RLC equivalent circuit method for high-frequency simulation of FRA traces is 

explored in [32, 33, 79]. The authors in [33] investigated the modelling of transformers from 

lumped parameters circuits. This study has used geometrical details and frequency-dependent 

material properties to explore its influence in obtaining a good match between simulated and 

measured responses. The published paper also uses FEM simulations to obtain the 

inductances and resistances of its lumped parameter circuit. Figure II.5 presents the RLC 

lumped parameter circuit used in reference [33]. This circuit model is also widely used in 

research exploring high-frequency transformer models. 

In [79], the circuit parameters for frequency response reproduction are estimated from 

artificial intelligence techniques. The authors use finite element analysis to estimate reference 

values for the circuit parameters for later comparison with the artificial intelligence algorithms 

calculations. The results have shown that the fault type can be identified from circuit parameter 

model changes. For example, self and mutual inductance changes are related to winding or 

core deformations and shorted turns, while series-capacitance changes are associated with 

disk movements and insulation degradation [79]. 
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 𝐶10, 𝐶20 earth capacitance of HV and LV windings, respectively 

 𝐺10, 𝐺20 conductance to earth of HV and LV 

 𝐶12, 𝐺12 capacitance and conductance between HV and LV 

 𝐶𝑆1, 𝐶𝑆2 series capacitance of HV and LV 

 𝐺𝑆1, 𝐺𝑆2 series conductance of HV and LV 

 𝐿1, 𝐿2 inductances of HV and LV 

 𝑅1, 𝑅2 resistances of HV and LV 

 𝑀𝑖,𝑗 mutual inductance between i
th

 and j
th

 winding elements 

Figure II.5 Lumped elements for a two-winding transformer 
Source: Abeywickrama, Serdyuk and Gubanski, 2008. [33] 

 

Alternatively, the authors in [32] have used complex equations based on the 

transformer’s physical dimensions to calculate the circuit parameter for the high-frequency 

model. Further, a study is conducted on faults analysis using numerical indices such as CC, 

ASLE, SD, and SSE (Table II.1). Three fixed sub-bands are used for the calculation of indices: 

100 Hz < Low-Frequency < 2 kHz, 2 kHz < Medium-Frequency < 20 kHz, and High-Frequency 

> 20 kHz. The study's conclusions have remarked that although ASLE presented a good 

performance on the fault analysis, the use of a single index is not suitable for detecting all 

faults. 

Further, the use of circuit models can also provide information by correlating circuit 

parameter changes and fault analysis. This is the case presented in [80, 81]. Both studies have 
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differently varied circuit parameters. The first reference, [80], is based on analytical calculation 

and circuit simulation. A winding model is used to compare deviations from FRA traces and 

determine the correlation of these deviations with the variation in circuit elements, for instance, 

series capacitance, shunt capacitances or self-inductances. The method can also indicate if 

the deviation originated from an increase or a decrease of the circuit parameters reference 

values. The second study, [81], has demonstrated the effects of the non-uniform distribution of 

capacitances, inductances and resistances in the FRA traces. The authors have demonstrated 

that, depending on how the circuit parameter is affected by non-uniformity, the diagnostic 

algorithms can be improved by considering re-weighting its rules based on the non-uniformity. 

Another approach using RLC circuit representation and natural frequency analyses 

was employed by Larin in [82, 83]. The natural frequencies largely depend on the windings' 

electrical and physical parameters, contributing to a more transformer-specific interpretation. 

The report [83] studies the detection and location of winding internal short-circuit based on 

identifying winding natural frequencies. 

Moreover, researchers such as [84, 85] study the sensitivity of equivalent circuit 

parameters in the FRA traces. First, an equivalent circuit model was developed, and its 

parameters were varied according to the mechanical faults that influenced them. In [84], the 

sensitivity of parameters variation is evaluated in relation with the shift of resonance 

frequencies and in [85], a fault analysis was also presented. The latter found that radial 

displacement parameters affected FRA in its entire frequency range while axial displacements 

affected only frequencies above 200 kHz. 

 

 

2.2.3. ARTIFICIAL INTELLIGENCE ALGORITHMS 

 
Machine learning and neural networks are artificial intelligence (AI) algorithms 

frequently used to classify patterns by learning from examples. Given their adaptive 
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characteristic, these classifiers have been widely used for FRA interpretation of fault 

diagnostics in power transformers [29, 56, 86, 87]. 

The AI approach supports the previously mentioned interpretation methods and can 

have different applications. For example, the algorithms can automatically classify FRA traces 

[29, 88] or estimate circuit parameters of high-frequency models [79, 89]. More recently, AI 

algorithms have also been used with image processing methods to compare FRA traces and 

identify shorted turns faults based on image deviations [26]. 

Common AI algorithms used in FRA interpretation are decision tree (DT), radial basis 

function (RBF), k - nearest neighbour (k-NN), and support vector machine (SVM). A decision 

tree is a classification tool presenting its classification in a tree-like graphical form. The 

structure follows a flowchart with a root node and intermediate nodes. Each node is a test, and 

each class is presented in one tree leaf [24]. 

The k-NN is a non-parametric algorithm that uses classification and regression. Based 

on similarity measures, the k-NN algorithm assigns the category's test pattern to the class with 

the majority of nearest neighbours. The k-NN function is only approximated locally, and the 

only parameter of the algorithm is the number of neighbours (k) considered for classification, 

where k is a positive integer. If k=1, the input is assigned to the class of that single nearest 

neighbour. For the best algorithm performance, a normalization of the database is often 

required. A data set with different physical units or different scales can seriously undermine the 

accuracy of the algorithm [90]. 

RBF is a feed-forward algorithm with multilayer structures. The architecture of RBF 

neural networks comprises an input layer, a hidden layer and an output layer. The output node 

is a decision based on a linear combination of the RBF outputs computed by the hidden layer 

neurons. Each RBF neuron stores a prototype information vector and then compares the input 

vector to its prototype. The output of each neuron is a value between zero and 1, a similarity 

measure. If the input is equal to the prototype, then the output of that neuron will be 1. The 
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response tends to zero as the difference between the input and the prototype increases. The 

RBF neuron's response shape is a bell curve [91]. 

The SVM method is a supervised learning model with associated learning algorithms. 

Firstly, developed for solving binary classification problems, SVMs can also be adapted for 

multiclass problem applications. The adaption is performed with the help of one-versus-one or 

one-versus-all heuristic methods. The SVM algorithm allows the classification of linearly 

separable patterns. However, real-world data are frequently not linearly separable, so the SVM 

does a kernel trick to transform the input space into a higher-dimensional space where the data 

is linearly separable. This transformation is made possible using kernel functions [92]. Many 

different functions can be used as kernel functions in SVMs, some of the most common being 

linear, polynomial and Gaussian. 

Support Vector Machine algorithm is used in different studies to detect faults in 

transformers using features such as Index of Frequency Ratio (IFR), Index of Amplitude Ratio 

(IAR) or Vector Fitting (VF) methods as input [30]. This study uses about 20 FRA 

measurements. SVM has also been employed for winding type recognition [40, 46]. Other 

references, such as [93, 94], have also used SVM techniques to interpret frequency responses 

to mechanical faults and short-circuits. 

Different algorithms are compared over their performances using mainly numerical 

indices as input. For example, reference [29] compares over 20 numerical indices based on 

the performance of intelligent classifiers such as Probabilistic Neural Network (PNN), DT, SVM, 

and k-NN. This study is based on using a limited database of 36 instances distributed over five 

classes of faults. Reference [77] uses a Backpropagation (BP) neural network to compare the 

performance of CCF, LCC, SD, CSD, and SE numerical indices. The latter study has a more 

extensive database using at least 139 FRA measurement cases. 

Analyzing the topics addressed in this literature review, it is possible to conclude that 

many studies have been conducted regarding frequency response use and interpretation. 
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Nowadays, the main challenge to the application of AI in FRA interpretation lies in the 

necessary database for algorithm training. Most of the studies reported in the literature are 

based on limited data.
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AND MACHINE LEARNING: A CASE STUDY BASED ON A LABORATORY MODEL 

 

 

Abstract 

 
Frequency response analysis is a powerful tool for mechanical fault diagnostics in 

power transformers. However, interpretation schemes still today depend on expert analyses, 

mainly because of the complex structure of power transformers. One of the fundamental 

shortcomings of experimental investigations is that mechanical deformations cannot be 

managed on real transformers to obtain data for different scenarios because they are too 

destructive. To address this issue in a systematic way, the current research used a specially 

designed laboratory transformer model that allows mechanical defects to be introduced so its 

frequency response can be evaluated under different conditions. The key feature of this model 

is the non-destructive interchangeability of its winding sections, allowing reproducibility and 

repeatability of frequency response measurements. Numerical indices were compared over 

key performance indicators (linearity, sensitivity and monotonicity). The analysis indicated that 

comparative standard deviation offered promising results for evaluation of mechanical 

deformations on the laboratory winding model given its monotonic behaviour, sensitivity and 

linear increase with fault severity. Additionally, support vector machine learning, radial basis 

function neural network and the statistical k-nearest neighbour method were used for fault 

classification with different strategies and configurations. While limited data from different 

transformers are used in the available literature, the approach discussed here considers 371 

measurements from the same transformer model. The test results are supportive and 

demonstrate great accuracy when machine learning is used for winding fault classification.  
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3.1. INTRODUCTION 

 
Power transformers are essential assets of electrical power networks, and monitoring 

their operating condition is crucial for functional and economic reasons. Regular monitoring to 

ensure incipient failure is detected at the earliest stage is vital. Power transformers are 

vulnerable to through faults, which can result in significant mechanical forces on the active part. 

In addition, insulation degradation due to ageing may cause a reduction in clamping pressure, 

increasing the risk of mechanical damage [16, 85]. Mechanical forces beyond the design limits 

of the transformer may cause deformations in the windings. Once such deformations occur, 

the transformer’s ability to withstand further mechanical forces originating in a potential 

overcurrent is greatly reduced due to localized electromagnetic stresses [2]. 

Nowadays, there are many non-intrusive monitoring and diagnostic techniques 

available to detect incipient power transformer failures. These techniques evaluate the effects 

of different faults and can be implemented without requiring transformer disassembly. 

Frequency response analysis (FRA) is one of these methods, and it is currently commonly 

used in the electrical industry for condition assessment of transformer windings. From the very 

first studies [15], FRA has demonstrated its sensitivity for detecting mechanical and electrical 

failure modes [16, 17]. 

FRA compares current and reference frequency response measurements of a power 

transformer. Ideally, the reference measurements are obtained just before transformer 

energization, and subsequent monitoring over the years provides a continuous evaluation of 

the condition of the windings. Whenever reference traces are unavailable, traces from sister 

units (identical transformers) or other phases of the same transformer (in the case of three-

phase transformers) can also be used. Deviations between current and reference 

measurements can indicate electrical or mechanical damage to transformer active part. 

Though FRA measurement procedures have been thoroughly studied at the 

international level in working groups of the IEEE [21], CIGRE [16] and the IEC [20], result 
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interpretation still depends on expert analyses. Some of the quantitative interpretation methods 

proposed so far fall into three groups: numerical indices, white box physical models and 

artificial intelligence algorithms [24]. 

The frequency response of a transformer depends to a large extent on the type of 

transformer and its power rating, voltage rating, phase connections, winding design, etc. This 

means basic and fundamental principles using simple geometrical models, to guide the 

quantitative analyses. 

This paper explores different measurements taken on a laboratory transformer model 

to study FRA interpretation. The model allows different deformations to be introduced and their 

influence on frequency response can then be evaluated. Four different fault modes (the fault 

extent varying) were introduced to the winding model: axial displacement (AD), radial 

deformation (RD), disc space variation (DSV) and short-circuited turns (ST). Numerical indices 

were then computed for quantitative interpretation of the different arrangements. The research 

also considered different frequency bands for application of the numerical indices, evaluating 

the sensitivity of the frequency range for numerical index calculations.  

Machine learning classifiers were also compared over different architectures for an 

improved and objective fault classification. The classifiers use index calculation at target 

frequency bands as input for diagnosis of winding faults. Three main diagnostic categories 

were investigated: detection of fault occurrence; determination of fault type; determination of 

the fault type and extent.  

 

3.2. FREQUENCY RESPONSE ANALYSIS 

 
FRA is a powerful tool for detecting mechanical changes in the active part of a power 

transformer. Since a transformer can be considered a complex network of RLC components 

[95] (resistance of the winding, inductance of the coils and capacitance of insulation layers and 
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to the ground), variation in frequency response may indicate a physical change inside the 

transformer. 

A frequency response is obtained by injecting a sinusoidal waveform at the reference 

point and measuring the amplitude and phase shift at the response point [16]. FRA traces can 

be represented in terms of amplitude (HdB) (dB) and phase shift (φ) (degrees), as shown in 

(III.1) and (III.2), 

HdB=20∙ log
10

(Vm/Vr ), (III.1) 

φ=φ(Vm)-φ(Vr), (III.2) 

where, Vm is the response voltage and Vr is the reference voltage [16]. Amplitude (HdB) is 

widely used for interpretation purposes and numerical indices calculations. 

There are also multiple measurement types depending on where the reference and 

response points are connected. The measurement types can be separated into two main 

groups: end-to-end measurements and interwinding measurements. End-to-end 

measurements are obtained when the signal is applied to one end of the winding and the 

response is measured at the other end of that same winding. Interwinding measurements are 

obtained when the signal is applied to one winding and the response is measured at another. 

The frequency response traces discussed in this paper were produced by an end-to-end open 

circuit measurement configuration and in some cases by an end-to-end short-circuit 

measurement, as described in [21]. 

The challenge when utilizing FRA to diagnose transformer active part is mainly in the 

correct interpretation of deviations from current and reference measurements. Studies 

investigating FRA interpretation use numerical indices [37, 38], white-box modelling [25, 33] 

and artificial intelligence algorithms [29, 39-41] to objectively assess frequency response traces 

obtained from real cases [24, 42], laboratory experiments [43] and simulation studies [44-46]. 

Different approaches for the interpretation of FRA measurements are reported in recent 
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literature on the application of intelligent classifiers. For instance, the combination of numerical 

indices and intelligent classifiers is explored in [29, 30, 86, 96, 97]. References [29, 30], use 

numerical indices as input to neural networks and discuss the use of support vector machine 

(SVM) for fault type recognition in power transformers. Reference [96] presents a method for 

locating shorted turns with FRA interpretation again based on numerical indices and SVM. 

However, the databases on which most of the studies reported in the literature are based are 

limited and the transformers types diverse.  

The components of a transformer (tank, core, winding type, insulation type and so 

forth) also have an impact on its frequency response. Accordingly, the effects of transformer 

structures are explored in the literature [24, 45]. Reference [46] examines the identification of 

winding type by SVM. Transformer insulation plays a major role in frequency response, with 

liquid insulation changing the permittivity of the material, increasing capacitances and, as a 

result, shifting resonances to lower frequencies [98]. Meanwhile the migration of moisture into 

solid insulation has been reported to shift resonances to higher frequencies [28]. 

Nonetheless, the most common method of frequency response interpretation remains 

the visual comparison of reference and faulty traces. Numerical indices are applied to obtain a 

better quantitative interpretation. In the approach proposed in this paper, frequency bands of 

interest (those where measurements deviate) were determined by visual inspection of the 

traces, and numerical indices were evaluated over these frequency bands. The frequency 

bands of interest and the best-performing numerical index were subsequently used as 

machine-learning input to achieve an objective interpretation of fault modes in FRA 

measurements. 

 

3.2.1. FRA INTERPRETATION BASED ON NUMERICAL INDICES 

 
Frequency response interpretation based on numerical indices is used to quantify 

differences between investigated and reference traces. Different indices [17, 37] evaluated 
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over key performance indicators (such as linearity, monotonicity and sensitivity [99]) are 

suggested in the literature. 

This research used some of the most promising numerical indices to evaluate 

frequency response measurements [24]. A description of these indices is presented in Table 

III.1. 

Table III.1 Summary of numerical indices used in this research 

Index Description Equation 

CCF The cross-correlation factor quantifies the linear dependence 
between two data sets. Its value is closer to 1 if there is large 
positive correlation between the data sets and closer to zero 
in case of a weak correlation. 

(III.3) 

LCC Lin’s concordance coefficient measures the agreement 
between two variables. A value near 1 indicates a strong 
concordance, a value close to zero denotes a weak 
concordance, and a value near -1 denotes strong 
discordance. 

(III.4) 

CSD Comparative standard deviation is zero in case of a complete 
match of traces, and there is no upper limit value. For 
amplitude deviations, this index has lower sensitivity [24, 53]. 

(III.5) 

SSE The sum squared error calculates the square of the distance 
between two traces. A value close to zero means a good 
match of traces, and there is no upper limit value. The index 
has shown low sensitivity for amplitude deviations [24], 
though its sensitivity is improved when amplitude deviations 
occur around resonance points [38]. 

(III.6) 

SSRE The sum squared ratio error uses the squared ratio error 
between two traces. A value of zero indicates a good match 
of data, and there is no upper limit value. Like other squared 
sums, this index   presents less linear behaviour [24]. 

(III.7) 

Source: Suassuna de Andrade Ferreira, 2021 
 

The numerical indices described in Table 1 and used in this paper are calculated in 

equations (III.3) to (III.7), where, X and Y are the magnitude vectors of reference and 

investigated frequency responses respectively, X(i) and Y(i) are the i
th

 element of these 

vectors and N is the number of data points. 
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CCF=
∑ (X(i)-X̅)(Y(i)-Y̅)N

i=1

√∑ (X(i)-X̅)
2N

i=1  ∑ (Y(i)-Y̅)
2N

i=1

, (III.3) 

LCC=
2

N
∑ (X(i)-X̅)(Y(i)-Y̅)N

i=1

(Y̅-X̅)
2
+

1

N
∑ (X(i)-X̅)

2N
i=1 +

1

N
∑ (Y(i)-Y̅)

2N
i=1

, (III.4) 

CSD=√∑ [(X(i)-X̅) -(Y(i)-Y̅)]
2N

I=1

N-1
, (III.5) 

SSE=
∑ (Y(i)-X(i))

2N
i=1

N
, (III.6) 

SSRE=
∑ (

Y(i)

X(i)
-1)

2
N
i=1

N
, (III.7) 

where, X̅=1/N ∑ X(i)N
i=1  and Y̅=1/N ∑ Y(i)N

i=1 . 

Not only must the numerical index that will be used to evaluate the frequency response 

traces be selected, but the frequency band to which this index is applied must be determined 

as well, and this can be challenging. Different methods can be used, the simplest being to 

evaluate the entire frequency range in the same way, as described in [64, 100]. This approach, 

however, can result in a lack of sensitivity to deviations in a small range of the frequency 

response. Division of the frequency range into sub-ranges is, accordingly, usually explored [20, 

22]. To achieve an independent frequency range subdivision, the study described in [99] 

suggests a frequency window that sweeps the total frequency range, evaluating some of the 

traces at each window step. 

 

3.2.2. FRA INTERPRETATION BASED ON MACHINE LEARNING 

 
Machine learning and neural networks are intelligence algorithms frequently used to 

classify patterns by learning from examples. Given their adaptive characteristic, these 

classifiers have been widely used for fault diagnostics in power transformers [29, 30, 101]. 
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Two approaches are used for network learning by example: unsupervised and 

supervised learning. With unsupervised learning, there is no need to supervise the network 

and provide target outputs to match inputs. With supervised learning, the network is provided 

with a target output for each input vector injected. Based on the computed output error 

(difference between the target output and the estimated output), the network adjusts its 

synaptic weights using heuristic algorithms at each iteration. 

This paper compares several well-known and widely used machine learning classifiers: 

radial basis function (RBF) neural network, support vector machine (SVM) and the statistical 

k-nearest neighbour (k-NN). These models have become very popular in recent years because 

of their ability to solve problems in classification, regression and other applications in different 

areas. 

 

A) RADIAL BASIS FUNCTION 

RBFs are feed-forward multilayer structures. The output node is a decision based on 

a linear combination of the RBF outputs computed by the hidden layer neurons. Each RBF 

neuron stores a prototype information vector and then compares the input vector to its 

prototype. The output of each neuron is a value between zero and 1, which is a similarity 

measure. If the input is equal to the prototype, then the output of that neuron will be 1. The 

response tends to zero as the difference between the input and the prototype increases. The 

shape of the RBF neuron’s response is a bell curve, as illustrated in the network architecture 

diagram in Figure III.1. 
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Figure III.1 Radial basis function neural network architecture 
Source: Suassuna de Andrade Ferreira, 2021 adapted from McCormick, 2013 [91] 

 

B) SUPPORT VECTOR MACHINE 

The SVM is a supervised learning model with associated learning algorithms. Even 

though SVMs were first applied to binary class problems, they can also be applied to multiclass 

problems by using one-versus-one and one-versus-all heuristic methods to split and transpose 

the multiclass into a binary classification problem. The SVM model is considered a 

generalization of linear classifiers when classifying a set of linearly separable patterns (xi) from 

two classes: C1 and C2. This is achieved by positioning an appropriate hyperplane as a 

decision boundary satisfying the equation g(x)=wtx +b=0, where w is the weight vector and b 

is the bias or threshold. All pattern data xi with g(xi)>0 are assigned to C1 and those with 

g(xi)<0 are assigned to C2. However, SVMs choose the linear separator with the largest 

margin, centered between two hyperplanes described by equations (III.8) and (III.9): 

h1(xi)=wtxi+b ≥1, for xi ∈ C1 (III.8) 

h2(xi)=wtxi+b ≤-1, for xi ∈ C2 (III.9) 

The distance between the hyperplanes h1 and h2 is the margin, and all points that lie 

on h1 or h2 are called support vectors. To take into account the non-separable data xi, a slack 
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variable ξ
i
 is incorporated to give more relaxation at the constraints, yielding a compact form 

of the previous equations as follow: 

y
i
(wtxi+b) ≥1-ξ

i
, for i=1, 2, …N (III.10) 

with y
i
=1 if xi ∈ C1 and y

i
=-1 if xi ∈ C2.  

The margin to be maximized is then equal to 1/‖w‖, and the primal formulation of the 

SVM task is to find the optimal weights and bias that will minimize the cost function defined in 

(III.11)  

φ(w,b,ξ)=
1

2
wtw+ρ ∑ ξ

i
N
i=1 , (III.11) 

while satisfying the constraints in (III.10), with ξ
i
≥0 for i=1, 2, …N. The parameter ρ, referred to 

as the regularization parameter, controls the penalty of non-separable points. 

Using the method of Lagrange multipliers and formulating the optimization problem 

from a dual problem perspective, the objective function (III.12) to be maximized is obtained 

[102]. 

Q(α) = ∑ 𝛼𝑖
𝑁
𝑖=1 -

1

2
∑ ∑ y

i
y

j
αiαjxi

Txj
N
j=1

N
i=1 . (III.12) 

The equation (III.12) is subjected to the constraints ∑ y
i
αi=0N

i=1  and 0≤αi≤ρ for all i, 

where αi is a set of Lagrange multipliers. 

The SVM algorithms use a set of mathematical functions that are defined as kernel 

functions. In SVM models, kernel functions are used to transform the non-linear space into a 

higher dimensional linear space, changing the objective function as follows: 

Q(α) = ∑ αi
N
i=1 -

1

2
∑ ∑ y

i
y

j
αiαjkernel(xi,xj)

N
j=1

N
i=1 .     (III.13) 
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The software used to train the SVM model is based on the iterative single data 

algorithm (ISDA) solver [103]. The cost ρ applied to the misclassification in training data is 

defined as 1. The regularization parameter for smoothing is fixed at 1/N, where N is the number 

of observations. Each class is then centered by its mean value and scaled by its standard 

deviation. Before evaluation of the kernel(xj,xk), where xjand xk are the training datasets, an 

appropriate factor is selected automatically by the software to scale the data and 0.1 is added 

as kernel offset. 

For this research, three popular kernel functions were considered: linear, Gaussian 

and polynomial. A one-versus-one heuristic method (or coding design) and a one-versus-all 

method were tested for SVM classification algorithms. The kernel functions were investigated 

and compared using default SVM methods. The functions explored in this paper are shown in 

equations (III.14) to (III.16). The linear kernel function is defined as: 

G(xj,xk)=xj
'xk, (III.14) 

the polynomial kernel function with order p=3, is defined as: 

G(xj,xk)=(1-x
j

'
xk)

p
, (III.15) 

the Gaussian kernel function is defined as: 

G(xj,xk)=e

(−
‖xj-xk‖

2

σ𝑒
2

)

, 
(III.16) 

where the standard deviation (σ𝑒) is set to 1. 

 

C)  K-NEAREST NEIGHBOUR 

In machine learning, k-NN is a non-parametric algorithm used for classification and 

regression. Based on similarity measures, the k-NN algorithm assigns the test pattern in the 

category to the class which has the majority of nearest neighbours. Though k-NN is considered 

the simplest algorithm, in practice the learning vector quantization (LVQ) algorithm seems more 
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appropriate and simpler. LVQ is based on a reduced number of prototypes that can be 

estimated using the k-means algorithm. LVQ classification is based on the similarity measure 

of the test pattern and the prototypes representing each category. 

The k-NN function is only approximated locally, and the only parameter of the algorithm 

is the number of neighbours (k) considered for classification, where k is a positive integer. If 

k=1, the input is assigned to the class of that single nearest neighbour. For the best algorithm 

performance, a normalization of the database is often required. A data set with different 

physical units or different scales can seriously undermine the accuracy of the algorithm [90]. 

 

3.3. LABORATORY WINDING MODEL AND REFERENCE MEASUREMENTS 

 
Measurements were taken from 1 kHz to 1 MHz on a laboratory winding model with 

removable sections using a commercially available FRA instrument. The model was designed 

and manufactured to enable short-circuits and different mechanical deformations [43]. 

The laboratory winding model used for this study is of uniform structure, that is, same 

conductor throughout the winding and an equal number of turns per winding section. The model 

has solid, non-grated insulation and was designed specifically for FRA testing: that is, there 

are no power or voltage ratings for the model. 

Figure III.2 shows the model and its connection schematic. The transformer model is 

composed of two windings, the outer coil (winding 1) with 448 turns divided into 16 sections 

(28 turns per section) and the inner coil (winding 2) divided into three concentric and fixed 

layers with 76 turns each, a total of 228 turns in this winding. 
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(a) (b) 

 

(c) 

Figure III.2 Model for laboratory tests: (a) winding photo, (b) dimensions and (c) connections 
schematic 

Source: Suassuna de Andrade Ferreira, 2021 
 

The inner diameter of winding 1 is 300 mm, its radial dimension is 8.5 mm and its height 

is 511.3 mm. Winding 2 has an inner diameter of 259 mm, a radial dimension of 9 mm and a 

total height of 530 mm. The outer winding of the transformer model has 16 sections. These 

sections facilitate defect introduction at different locations. 

All FRA measurements discussed in this paper were taken with an air core and 

concentrically arranged coils, as shown in Figure III.2. The reference measurements (healthy 
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winding) for windings 1 and 2 are presented in Figure III.3. The curves in Figure III.3 serve as 

reference for comparison with fault modes. 

 

(a) 

 

(b) 

Figure III.3 FRA reference measurements at (a) winding 1 and (b) winding 2 
Source: Suassuna de Andrade Ferreira, 2021 
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As Figure III.3 shows, the first anti-resonance for the open circuit measurement 

appears at a frequency around 25 kHz for both windings. A magnetic core, not present in this 

laboratory model, would create a high-magnetizing inductance and a first anti-resonance 

frequency below 1 kHz. The short-circuit measurement matches the open circuit measurement 

at over 150 kHz, in both windings. Since the faults were introduced on winding 1, the open-

circuit measurement taken from winding 1 was used in this research to compare faulty and 

healthy states. 

 

3.4. FAULT ANALYSES 

 
For this research, four different fault modes were introduced in winding 1: three 

mechanical deformations and one electrical fault. Six levels of each fault were tested to verify 

the evolution of the fault in the frequency response. Figure III.4 is a sketch representation of 

the fault modes. 

A) AXIAL DISPLACEMENT 

Axial displacement (AD) faults were created by adding spacers at the bottom of winding 

1, resulting in vertical displacement between winding 1 and winding 2. The AD fault started 

with 6 mm spacer (AD 1) and increased the spacers in steps of approximately 5.4 mm up to 

34 mm (AD 6). Figure III.5a shows the frequency response for reference and the AD fault steps. 

 

B) RADIAL DEFORNAMTION 

Radial deformation (RD) faults were created by replacing healthy sections of winding 

1 by deformed ones. The model has sixteen identical healthy sections. Six radially deformed 

sections were used to replace healthy sections and introduce radial deformation to the model. 

The RD fault started by replacing one healthy section with a deformed one, and then replaced 

one more for each fault step in the positions indicated in Figure III.4c., such that RD 1 has one 
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deformed section and RD 6 has six. Figure III.5b shows the frequency response for reference 

and RD faults. 

 

(a)    (b)    (c) 

 

       (d)      (e) 

Figure III.4 Winding model representation of fault modes: (a) healthy state; (b) axial 
displacement; (c) radial deformation; (d) disc space variation; and (e) shorted turns 

Source: Suassuna de Andrade Ferreira, 2021 
 

C) DISC SPACE VARIATION 

Disc space variation (DSV) faults were created like the AD faults, but the spacers were 

added between sections at three different positions, as shown in Figure III.4d. The first DSV 

fault level (DSV 1) has 6 mm spacer between sections 2 and 3. DSV 2 has 11.4 mm spacer 

between the same sections. The next DSV fault steps were created by adding first 6 mm and 
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then 11.4 mm spacers between sections 8 and 9. The last two steps were created by adding 6 

mm (DSV 5) and then 11.4 mm (DSV 6) spacers between sections 14 and 15. Spacers were 

always added without removing those for the previous levels, increasing the fault extent at each 

step. Figure III.5c shows the frequency response for reference and DSV faults.  

 

D) SHORT-CIRCUITED TURNS 

The final fault, the shorted turns (ST) fault, is an electrical fault created by generating 

a short-circuit between turns of winding 1. The ST fault started with a short-circuit of section 2 

of winding 1 (ST 1), for a total of 28 turns shorted. For ST 2 the turns of sections 2 and 3 were 

shorted, for a total of 56 turns shorted. Shorted turns continued to be added to winding 1 until 

sections 2, 3, 8, 9, 14 and 15 (ST 6) were all shorted, for a total of 168 turns shorted. At each 

level, the shorted sections were added without correcting those of the previous levels, so the 

impact of shorted turns all along winding 1 could be observed. Figure III.5d shows the 

frequency response for reference and the six ST fault levels. 

Figure III.5 shows frequency responses for the different faults analyzed in this study. 

As the figure demonstrates, the faults have different impacts on frequency response. The first 

resonance at 25 kHz was not affected by the mechanical deformations, but the shorted turns 

had a substantial effect in this region. This is mainly because the lower frequency region is 

dominated by the main inductance of the transformer and the ST fault reduces this inductance 

significantly. Reducing coil inductance results in frequency response displacement towards 

higher frequencies, as clearly shown in Fig. 6.e. The next anti-resonance point along the 

frequency response curve, at around 54 kHz, is less affected by the faults. In fact, this point is 

not even much affected by the ST fault, though the entire frequency range (1 kHz to 1 MHz) is 

greatly affected by this electrical fault. 
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(a) 

 

(b) 
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(c) 

 

(d) 

Figure III.5 FRA measurements for the different fault modes: (a) axial displacement; (b) radial 
deformation; (c) disc space variation; and (d) shorted turns 

Source: Suassuna de Andrade Ferreira, 2021 
 

The last frequency region of interest is 400 kHz to 700 kHz, where a resonance at 450 

kHz and an anti-resonance at 500 kHz are present (these resonance frequencies are observed 

in the healthy winding). This particular frequency range (400 kHz to 700 kHz) was affected by 

all faults (mechanical and electrical), as shown in Figure III.6. 
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(a) 

 

(b) 
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(c) 

 

(d) 
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(e) 

Figure III.6 Frequency response at a frequency range affected in fault mode: from 400 kHz to 
700 kHz for (a) axial displacement, (b) radial deformation, (c) disc space variation and (d) 

shorted turns; and from 20 kHz to 50 kHz for (e) shorted turns 
Source: Suassuna de Andrade Ferreira, 2021 

 

Each of the faults affected the frequency range from 400 kHz to 700 kHz differently. 

As a result, this frequency was used to calculate indices for quantitative evaluation of the faults. 

However, unlike the mechanical faults, the ST fault did not present a clear deviation pattern at 

this frequency band, as shown in Figure III.6. The frequency range from 20 kHz to 50 kHz was 

thus used to evaluate ST faults, since the deviation pattern is clearer in this region. 

The curves in Figure III.7 show the numerical indices calculated from equations (III.3) 

to (III.7) for the different levels of fault in the frequency range from 400 kHz to 700 kHz for the 

mechanical faults and the range from 20 kHz to 50 kHz for the ST fault. Note that the indices 

CCF and LCC are evaluated as 𝐶𝐶𝐹∗ = 1 − 𝐶𝐶𝐹 and 𝐿𝐶𝐶∗ = 1 − 𝐿𝐶𝐶 to simplify comparison 

with other indices. Also, to facilitate indices comparison, a normalization was performed, each 

index value being divided by the maximum value of its group to obtain a rescale between zero 

and 1. 



49 

 

(a) 

 

(b) 
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(c) 

 

(d) 

Figure III.7 Numerical index analyses for fault modes (a) axial displacement; (b) radial 
deformation; (c) disc space variation; and (d) shorted turns 

Source: Suassuna de Andrade Ferreira, 2021 
 

All the indices evaluated presented monotonic behaviour for the different faults; that is, 

for higher levels of the fault, the indices presented their highest value. In addition, the indices 

all appeared to be linear, though some indices in general are not linear: for example, when the 

indices include squared calculations. The sensitivity of the indices was not consistent, 
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especially at the lowest fault level, which most indices were unable to detect. The CSD index, 

however, showed good sensitivity, even at the lowest fault level, for all faults, with a value of at 

least 18% when comparing the first deformation step with the last step up in all cases. 

Furthermore, the CSD index showed the best overall results for this analysis given its 

monotonic, linearity and sensitivity behaviour. 

Figure III.8 shows an analysis of the frequency ranges used for the index calculations. 

Frequency ranges from the first resonance (20 kHz to 50 kHz), the first anti-resonance (50 kHz 

to 100 kHz) and the deviations in fault analysis (400 kHz to 700 kHz) are compared to the 

Chinese standard [22] frequency band divisions: 1 kHz to 100 kHz; 100 kHz to 600 kHz; and 

600 kHz to 1 MHz. 

To simplify this last comparison, only the AD and the ST faults were evaluated, the 

other mechanical faults demonstrating results similar to the AD fault. In addition, only the CSD 

index was used for this comparison, since it offered the best overall performance for fault 

evaluation in this laboratory winding model. The CSD index was not normalized for this 

comparison. 

 

 

(a) 
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(b) 

Figure III.8 Numerical indices and frequency range evaluation for (a) axial displacement and 
(b) shorted turns faults 

Source: Suassuna de Andrade Ferreira, 2021 
 

Figure III.8a shows that the monotonic behaviour of the CSD index disappeared in 

most frequency ranges and linearity was observed only from 400 kHz to 700 kHz. This 

indicates that the frequency range analyzed has a substantial impact on index results and that 

the frequency bands suggested in [22] are not suitable for the winding model studied. In Figure 

III.8b, on the other hand, monotonic behaviour appears in the frequency bands suggested by 

[22] but there is less linearity, mainly due to this fault’s characteristics, once again confirming 

the need for care in determining the frequency bands to be used for index calculation.  

 

3.5. RECOGNITION PERFORMANCE AND DISCUSSION 

 
Three machine learning classifiers were investigated in an effort to obtain a more 

objective interpretation for fault diagnostics in a winding model: radial basis function (RBF), 

support vector machine (SVM) and k-nearest neighbour (k-NN). 
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The measurements shown in Figure III.5 were replicated under very similar conditions, 

providing a large database of measurements. After disassembling and reassembling sections 

of winding 1, small deviations were noted in the winding frequency response, giving slight 

differences in index values. A total of 371 measurements (with and without faults) were taken. 

For the proposed classifiers, 80% of the measurements were used for training, leaving 20% for 

testing and validation. 

The input vectors were composed of CSD index values in the three main frequency 

bands of interest (20 kHz to 50 kHz; 50 kHz to 100 kHz; and 400 kHz to 700 kHz). 

Three types of fault identification were investigated. In the first scenario, the intelligent 

classifiers were trained and tested to issue a binary decision on the presence or absence of a 

fault regardless of fault type or nature. Since the learning was qualified as supervised, all fault 

data were assigned to class C1 and data without fault were assigned to class C2 (binary 

analysis). 

Determination of fault type was introduced in the second scenario. The intelligence 

algorithms were asked to identify fault type (5 classes): no-fault detected, AD, RD, DSV or ST. 

In the third and last scenario, the classifiers were requested to identify fault type (as 

above) along with fault extent (1 to 6). This calls for discrimination between 25 classes, 

considerably reducing the amount of data per class and possibly negatively affecting statistical 

convergence of the network. 

The architecture of the suggested RBF neural network comprises an input layer, a 

hidden layer and an output layer. The neurons in the hidden layer contain Gaussian activation 

functions whose outputs are inversely proportional to distance from the centre of the neuron. 

The neurons in the second layer contain a linear activation function (purelin) for categorization 

purposes. Both layers have biases. The smoothing parameter (spread) of radial basis functions 

was fixed at 1. 
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Figure III.9 shows the results for the machine learning classifiers in all the suggested 

scenarios. The optimization problem in RBF neural network structures is to find the optimal 

number of hidden layer neurons and their corresponding spread σk and centroids μ
k
. To find 

the best value for these parameters, several architectures were considered, trained and tested 

using 80% and 20% of the measurements, respectively, as described above. For each 

architecture, the number of neurons in the hidden layer was increased from eight to 100 neuron 

cells in increments of two. The impact of spread was also investigated, varying σk from 0.6 to 

1 in increments of 0.1. In normal distributions, variation of the standard deviation impacts the 

spread of the distribution curve; higher standard deviations spread out the distribution, while 

lower ones mean a less spread distribution and a more pronounced peak. 

 

(a) 
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(b) 

 

(c) 

Figure III.9 Machine learning architecture performances: (a) radial basis function neural 
network; (b) support-vector machine; and (c) statistical k-nearest neighbour 

Source: Suassuna de Andrade Ferreira, 2021 
 

As Figure III.9a shows, the RBF neural network demonstrated high accuracy (above 

98%) in the binary analysis (determining presence or absence of fault) even when using only 

8 neurons in the hidden layer. For this analysis, the spread value of σk = 0.7 showed the best 

performance, though results were very close for all spread values verified. The RBF network’s 

performance in determining fault type was good, more than 90% accurate when at least 40 
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neurons were used and more than 80% accurate when at least 32 neurons were used. For this 

analysis, the best performance was obtained with the spread value σk = 0.6. When the RBF 

neural network was asked to determine fault type and extent, accuracy only exceeded 80% 

with at least 52 neurons; for 90% accuracy or more, it took at least 70 neurons—considered 

disproportionate given the size of the database. To overcome this problem, the amount of data 

available to train the network would have to be increased. For fault type and extent analysis, 

the best performance was obtained with spread value σk = 0.6. 

As Figure III.9b shows, all SVM kernel functions performed well (accuracy > 85%) in 

the three analyses. The figure also indicates that the performance of the Gaussian and 

polynomial functions was very close. In fact, these functions are, overall, the best kernel 

function choice for analysis of the suggested data set, achieving 98% accuracy for fault type 

and extent detection. Meanwhile, SVM using Gaussian or polynomial kernel functions obtained 

above 99% accuracy in determining presence or absence of fault. Comparison of the one-

versus-one and one-versus-all heuristic methods for SVM algorithms did not show significant 

variation in their results. To simplify the results, the one-versus-all heuristic method was 

selected for the graphic presentation. 

For the statistical model k-NN, the impact of the number of neighbours was evaluated, 

that is, k = 3, 5 and 7. The performance of this model was also above 94% for the three 

classification models studied. These results are shown in Figure III.9c. 

The research described in this paper is a proof of concept study. The main advantage 

of the approach taken was the opportunity to investigate a large number of failure modes and 

different failure extents on the same unit, as compared to past studies that used limited 

databases and real transformers, which can be problematic to interpret. A three-phase 

transformer model that is closer to the real model is being developed so this research can 

continue in the near future. With this approach and the new model, it should be possible to 

obtain results that can be more closely generalized to real-case transformers. 
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3.6. CONCLUSION 

 
This paper reports on frequency response interpretation using numerical indices and 

machine learning applications. Used for the study was a specially designed laboratory 

transformer model that allows mechanical defects to be introduced so its frequency response 

under different circumstances can be evaluated. This model has removable sections and is 

designed and manufactured to enable short-circuits and deformations (axial and/or radial), 

allowing reproducibility and repeatability of frequency response measurements. Numerical 

indices were used to evaluate deviations derived from axial displacements, radial 

deformations, disc space variations and short-circuited turns integrated into the outer winding. 

The results of the index evaluations showed that while all the indices were able to 

identify the highest levels of deformations in the frequency range of interest (400 kHz to 700 

kHz), best overall results were obtained in this study with the CSD, given its monotonic 

behaviour, linear increase with fault severity and sensitivity even to the smallest deformations. 

Results for use of machine learning classifiers for fault diagnostics were promising. 

The RBF, SVM and k-NN networks performed well classifying faults using the CSD index and 

targeted frequency bands as input. An automatic- interpretation for fault extent detection in 

addition to fault classification would be a major asset in power transformer condition monitoring. 

This remains one of the challenges of our research activities.  



 

CHAPTER IV  

A MACHINE-LEARNING APPROACH TO IDENTIFY THE INFLUENCE OF 

TEMPERATURE ON FRA MEASUREMENTS 

 

 

 

 

 

 

 

Article published in Energies, September 2021 

doi: 10.3390/en14185718 



 

A MACHINE-LEARNING APPROACH TO IDENTIFY THE INFLUENCE OF 

TEMPERATURE ON FRA MEASUREMENTS 

 

 

Abstract 

 
Frequency response analysis (FRA) is a powerful and widely used tool for condition 

assessment in power transformers. However, interpretation schemes are still challenging. 

Studies show that FRA data can be influenced by parameters other than winding deformation, 

including temperature. In this study, a machine-learning approach with temperature as an input 

attribute was used to objectively identify faults in FRA traces. To the best knowledge of the 

authors, this has not been reported in the literature. A single-phase transformer model was 

specifically designed and fabricated for use as a test object for the study. The model is unique 

in that it allows the non-destructive interchange of healthy and distorted winding sections and, 

hence, reproducible and repeatable FRA measurements. FRA measurements taken at 

temperatures ranging from −40 °C to 40 °C were used first to describe the impact of 

temperature on FRA traces and then to test the ability of the machine learning algorithms to 

discriminate between fault conditions and temperature variation. The results show that when 

temperature is not considered in the training dataset, the algorithm may misclassify healthy 

measurements, taken at different temperatures, as mechanical or electrical faults. However, 

once the influence of temperature was considered in the training set, the performance of the 

classifier as studied was restored. The results indicate the feasibility of using the proposed 

approach to prevent misclassification based on temperature changes.  
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4.1. INTRODUCTION 

 
Power transformer monitoring is crucial to prevent unplanned service interruptions and 

maintain electric power system stability. Frequency response analysis (FRA) is a well-known 

method for condition monitoring in power transformers that can identify changes in a 

transformer’s active part. From early studies of the technique in the late 1970s [15] to the 

present, FRA has demonstrated an ability to detect mechanical and electrical faults in power 

transformers. 

FRA is a non-intrusive monitoring and diagnostic technique that can be implemented 

without requiring transformer disassembly. As recommended by the principal FRA standards 

[20, 21], a small sinusoidal voltage waveform is applied over a large frequency band (from a 

few Hz up to a couple of MHz) to one of the terminals of the transformer (input point), and the 

response is measured in terms of its amplitude (dB) and phase (degrees) at another available 

terminal (output point). 

The current and reference FRA traces are compared to interpret the FRA 

measurements, identify changes in the transformer’s active part and relate these changes to 

faults. Ideally, reference measurements are taken just before energization, and subsequent 

FRA measurements can then show the evolution of the mechanical condition of the transformer 

over the years. When a reference trace is not available, comparisons between phases in a 

three-phase transformer or between identical transformers (sister units) can allow the 

identification of mechanical deformations [16]. 

In recent studies of FRA interpretation, there has been an increase in the use of 

machine learning algorithms to help in developing objective interpretations and to reduce 

dependency on expert analyses [40, 77, 86]. The main challenge now is building a sufficient 

database to train and test these algorithms. Although more and more FRA testing has been 

conducted worldwide, data for machine-learning training is still scarce [24]. 
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Another key point in objective FRA interpretation is the method’s sensitivity to small 

changes in the active parts of the power transformers. Alterations in winding geometry, for 

example, directly influence winding inductance and capacitance and are therefore reflected in 

FRA traces as frequency shifts and/or amplitude variations. FRA traces are also susceptible to 

other factors, such as core magnetization, insulation type, and aging, moisture, and 

temperature [27, 28, 98, 104]. Since the interpretation algorithms can be affected by these 

conditions, they must be considered in the training sets of the machine learning algorithms. 

This study used a laboratory model to build the database necessary to train and test 

machine learning algorithms. The model allows fault modes to be introduced and FRA 

measurements to be replicated to generate a large database. A support vector machine (SVM) 

method with demonstrably good performance in fault identification [105] was tested. The SVM 

algorithm’s ability to distinguish fault measurements from healthy measurements at different 

temperatures was evaluated. The main goal was to determine the influence of temperature 

variation on the SVM algorithm used for the automatic classification of FRA measurements. 

The comparative standard deviation (CSD) index was used to quantify deviations between 

healthy and faulty FRA traces. Frequencies and amplitudes of the main resonance and anti-

resonance points were also obtained to characterize each FRA measurement. The CSD and 

the resonance points served as input to the SVM algorithm, both individually and combined. 

When on-site FRA measurements are taken, temperature can lead to 

misinterpretation. This study presents a systematic investigation of the influence of 

temperature on FRA measurement results. A series of experiments were performed on a 

laboratory model under controlled temperature conditions. The contributions of this study are 

as follows: 

Investigation of FRA measurements in a laboratory winding model under a wide range 

of temperatures (−40 °C to 40 °C); 
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Comparative analysis of machine learning algorithm performance with a large 

database of fault modes, considering the effects of temperature on automatic classification. 

Recommendations that will minimize the influence of temperature variation on 

automated FRA traces interpretation. 

The research was not intended to evaluate the numerical index used to quantify 

deviations between traces or the performance of the classification algorithms. The CSD index 

and the SVM were selected because they have been widely used in previous studies 

concerning FRA interpretation [24, 53, 86, 105]. Other numerical indices and/or classification 

algorithms should offer similar conclusions. 

 

4.2. MATERIALS AND METHODS 

 
The study had three parts: (1) FRA measurements were performed on a laboratory 

winding model; (2) the numerical CSD index was calculated to quantify deviations between 

reference measurements, and frequencies and amplitudes of resonance and anti-resonance 

points were determined; and (3) an SVM algorithm was used to automatically classify the 

measurements. 

 

4.2.1. LABORATORY SETUP 

 
Measurements were taken on a laboratory transformer model specifically designed for 

FRA testing, the model having no specifications for power or voltage ratings. The model has a 

uniform conductor structure (same conductor throughout the windings and an equal number of 

turns per winding section), and solid, non-graded insulation. The model has two windings that 

are arranged concentrically. The outer winding (winding 1) has 16 separable sections, each 

with 28 turns, for a total of 448 turns. The outer diameter of winding 1 measures 317 mm, its 
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inner diameter measures 300 mm, and it is 511.3 mm high. The inner winding (winding 2) 

consists of three fixed layers with 76 turns per layer, for a total of 228 turns. The outer diameter 

of winding 2 measures 277 mm, its inner diameter measures 259 mm, and it is 530 mm high. 

Figure IV.1 shows the laboratory winding model and its connection schematic. 

  

(a) (b) 

Figure IV.1 Laboratory winding model used for FRA tests: (a) photo and (b) connection 
schematic 

Source: Suassuna de Andrade Ferreira, 2021 
 

A commercial instrument was used to measure FRA traces in the laboratory winding 

model. For this study, the minimum number of data points per decade was 200, as specified in 

the IEC standard 60076-18 [20]. Measurements were taken from 1 kHz up to 1 MHz. Two 

databases of measurements were used for the study: a database with four fault modes and a 

database with measurements taken at a variety of temperatures. 

 

A) FAULT DATABASE 

The fault database was created by introducing four different faults in the laboratory 

winding model, as well as taking healthy state measurements to serve as reference 

measurements. The faults include one electrical fault, shorted turns (ST), and three mechanical 
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deformations: axial displacement (AD), radial deformation (RD), and disc space variation 

(DSV). Figure IV.2 illustrates the faults and the healthy state of the laboratory winding model. 

The AD fault was created by inserting spacers at the bottom of winding 1 to displace it 

relative to winding 2, resulting in a loss of magnetic coupling between the windings. The fault 

was incremented in six steps, AD 1 to AD 6. For the first step (AD 1), 6-mm spacers were 

inserted under winding 1. Spacers were then added in steps of 5.4 mm, to a maximum of 34.4 

mm of displacement (AD 6). Figure IV.2b illustrates the winding model as winding 1 is displaced 

vertically upwards. 

The RD fault was generated by replacing healthy sections of the winding with deformed 

sections. Figure IV.3 shows examples of both healthy and deformed sections used for the 

measurements. This fault was also incremented in six steps, RD 1 to RD 6. At RD 1, only one 

deformed section was introduced, to replace section 2 (top to bottom). The sections highlighted 

in Figure IV.2c were replaced one by one in each subsequent step with a deformed section 

until six sections were deformed (RD 6). 

The DSV fault was created by adding spacers in three different positions between the 

sections of winding 1, as shown in Figure IV.2d. For DSV 1, a 6-mm spacer was inserted 

between Sections 2 and 3, and for DSV 2, a 5.4-mm spacer was inserted between these same 

sections, for a total displacement of 11.4 mm. Next, first a 6-mm spacer (DSV 3) and then a 

5.4-mm spacer (DSV-4) were added between Sections 8 and 9, and finally, DSV 5 and DSV 6 

were created by adding 6-mm and then 5.4-mm spacers between Sections 14 and 15. In 

incrementing the DSV fault, the new spacers were added as described without removing the 

spacers already added for the preceding steps. 
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(a)                                             (b)                                            (c) 

 

(d)                                            (e) 

Figure IV.2 Laboratory winding model: (a) healthy state, (b) axial displacement, (c) radial 
deformation, (d) disc space variation and (e) shorted turns 

Source: Suassuna de Andrade Ferreira, 2021 
 

The shorted turns (ST) fault was created by short-circuiting sections of winding 1. For 

ST 1, the turns of Section 2 were shorted, for a total of 28 shorted turns. For ST 2, the turns of 

Section 3 were also shorted, for a total of 56 shorted turns, and so forth, with ST 6 having 

Sections 2, 3, 8, 9, 14, and 15 shorted, for a total of 168 shorted turns. In incrementing the ST 

fault, the shorted turns were added without correcting those shorted for the preceding step. 

Figure IV.2e shows the locations of the shorted turns. 
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(a) (b) (c) 

Figure IV.3 Winding 1 sections: (a) healthy section: (b) and (c) radially deformed sections 
Source: Suassuna de Andrade Ferreira, 2021 

 

All measurements in the database were taken at 20 °C. A total of 343 FRA traces were 

used. Details of the FRA traces in the database are given in reference [105]. 

 

A) TEMPERATURE DATABASE 

The second database created in this study was a temperature database. The FRA 

measurements were taken with the laboratory winding model placed inside a climatic chamber 

that can simulate temperatures ranging from −40 °C to 30 °C. For testing at 40 °C, portable 

heaters were added inside the chamber. The chamber was first heated to 40 °C using the 

portable heaters and the temperature was then decreased in steps of 10 °C, down to −40 °C. 

This was done to prevent condensation from forming on the winding model. Once the room 

temperature was stable (not varying more than ±1 °C), the FRA trace was obtained. At least 

four measurements were taken at each temperature to ensure a sufficient database of 

measurements. A total of 42 measurements were included in the temperature database. 

 

4.2.2. NUMERICAL INDEX CALCULATION 

 
The numerical CSD index was used to quantify deviations between the reference 

measurement at 20 °C and measurements for other temperatures and faults. CSD values 

range from zero (perfect match) to infinity, increasing as the deviations between traces 
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increase. The index works well for frequency deviations, but its sensitivity is not as good for 

amplitude deviations [24, 53]. In a comparison with other numerical indices, the CSD was 

deemed to offer good performance in evaluating deviations in FRA traces, given its 

monotonicity, linearity, and sensitivity [24, 105]. 

The following equation is used to calculate the CSD:  

CSD =√∑ [(X(i)-X̅) -(Y(i)-Y̅)]
2N

I=1

N-1
, (IV.1) 

X̅=1/N ∑ X(i)N
i=1  and Y̅=1/N ∑ Y(i)N

i=1 ,  

where 𝑋 and 𝑌 are, respectively, the reference and investigated amplitude vectors of measured 

frequency responses; 𝑋(𝑖) and 𝑌(𝑖) are the 𝑖𝑡ℎ element of these vectors; and 𝑁 is the number 

of data points in vectors X and Y at the frequency window under evaluation. 

It is important to note that the frequency range of the index calculation has a significant 

impact on the calculated value. Many different methods are thus used to select the frequency 

band for the index calculation. One of the simplest approaches is to evaluate the entire 

frequency spectrum, as described in [64, 100]. However, if the frequency range is too wide, 

deviations between traces might be suppressed or may overlap, resulting in a lack of sensitivity 

in the numerical index evaluation. The frequencies may then be divided into sub-bands, as 

explained in [20, 22]. To overcome the problem of frequency band division, this study used a 

sweep frequency window approach, a method based on the study described in [106]. A 

frequency window (WS) is determined from the number of data points per decade (𝑓𝑝/𝑑) in the 

FRA traces, using Equation (IV.2). Then, the frequency window is swept over the complete 

frequency range (1 kHz to 1 MHz) in steps of WS/4 to obtain a vector of CSD values: 

WS=10+6 (
fp/d-200

200
). (IV.2) 
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4.2.3. SUPPORT VECTOR MACHINE LEARNING 

 
A support vector machine (SVM) is a supervised learning model with associated 

learning algorithms. SVMs were first developed for solving binary classification problems. They 

can, however, be adapted for multiclass problem applications with the help of one-versus-one 

or one-versus-all heuristic methods. These heuristic methods split and transpose a multiclass 

problem into a binary classification problem. The SVM algorithm allows the classification of 

linearly separable patterns (𝑥𝑖) from two classes: 𝐶1 and 𝐶2. The discrimination between 

classes is achieved by positioning a hyperplane as a decision boundary. SVMs choose the 

maximum margin linear separator centered between the hyperplanes ℎ1 and ℎ2, described in 

Equations (IV.3) and (IV.4): 

h1(xi)=wtxi+b ≥1, for xi ∈ C1, (IV.3) 

h2(xi)=wtxi+b ≤-1, for xi ∈ C2, (IV.4) 

where 𝑤 is the weight vector and 𝑏 is the bias or threshold. The support vectors, which give 

the name to the method, are all the points lying on ℎ1 or ℎ2. The main task of SVM algorithms 

is to find the optimal weights and biases that minimize the cost function [102]. 

However, real-world data are frequently not linearly separable, so the SVM does a 

kernel trick to transform the input space into a higher-dimensional space where the data is 

linearly separable. This transformation is made possible by the use of kernel functions [92]. 

Many different functions can be used as kernel functions in SVMs, some of the most common 

being linear, polynomial and Gaussian.  

For the database for this research, the polynomial kernel function was found to perform 

well and was used for classification. A polynomial function with order 𝑝 was used, as defined 

in Equation (IV.5). 
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G(xj,xk)=(1-x
j

'
xk)

p
. (IV.5) 

A 10-fold cross-validation method can be used to train and test SVM algorithms to 

prevent overfitting in the data used for model validation. In this method, the data set is divided 

into 10 parts. One part is then left out of the training and is used instead as the test set, and 

the classification is performed 10 times, with a different part used each time as the test set. 

The average deviation of the repeated classifications is then returned as the classification error. 

To optimize the study results, grid search optimization [107, 108] was used to 

determine the best SVM parameters and hence improve algorithm accuracy. The polynomial 

kernel of order p = 2 was found to be the best fit for the dataset classification, together with a 

one-versus-one heuristic method. 

The described SVM algorithm was used to automatically classify the data and obtain 

an objective interpretation of trace deviation. The machine learning algorithm was implemented 

using Weka, an open-source software developed at the University of Waikato in New Zealand 

[107]. 

Three classification scenarios were produced. For the first, the algorithm was trained 

and tested as described above, using the fault database. For the second, the same already 

trained algorithm was tested using the temperature database. For the third classification 

scenario, the SVM algorithm was trained and tested using a combined database that included 

faults and temperature measurements. 

Three inputs were considered in the SVM classification. First, the CSD values 

calculated for the frequency windows were used. Then, the frequencies and amplitudes of 

resonance and anti-resonance points were also used as classification input. Lastly, the 

combination of these two inputs was used to produce the classification scenarios. 
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Frequencies and amplitudes of resonance and anti-resonance points were detected 

by a maxima and minima search of the frequency response traces. Five main resonances and 

anti-resonances for each measurement were identified using an automatic search.  

Figure IV.4 shows a flowchart of the methodology. It is important to note the colors of 

the arrows in the chart: each classification scenario is presented in a different color. 

 

Figure IV.4 Flowchart for classification methodology 
Source: Suassuna de Andrade Ferreira, 2021 

 

4.3. TEMPERATURE INFLUENCE IN FREQUENCY RESPONSE 

 
Figure IV.5 shows the FRA measurements taken at temperatures from −40 °C to 40 

°C, in increments of 10 °C. As the figure shows, although deviations are more perceptible at 

the first anti-resonance and resonance points for the complete frequency range, even higher 

frequencies also present slight frequency shifts. Zooming in on the first anti-resonance 

frequency region allows better visualization of the deviations influenced by temperature 

changes. As the temperature increases, the resonance points shift to lower frequencies. The 
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zoomed-in portion of Figure IV.5b also shows that resonance amplitudes are damped as the 

temperature increases. 

 

(a) 

 

(b) 

Figure IV.5 FRA measurements in winding 1 at different temperatures: (a) complete 
frequency range; and (b) zoomed-in portion at the first anti-resonance point 

Source: Suassuna de Andrade Ferreira, 2021 
 

The deviations in the FRA traces, such as those seen in Figure IV.5, are definitely from 

alterations in transformer elements, as demonstrated in previous FRA studies [15, 21, 24]. 
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Changes to winding inductances, series and shunt capacitances, resistances and insulation 

conductance are the main causes of deviations. Temperature can influence FRA traces by 

modifying material parameters, such as magnetic permeability, resistivity, electrical permittivity, 

etc. [33, 109, 110].. Changes to geometry due to temperature changes (thermal expansion of 

conductors, for example) might also be present and affect self and mutual inductances, as well 

as capacitances between turns. However, in the temperature range considered in this study 

(−40 °C to 40 °C), copper dilation can be assumed to be negligible [111]. and, hence, changes 

to geometry were not considered as possibly affecting the FRA traces.  

Coil inductances can be affected by changes in magnetic permeability due to 

temperature variation. However, the studies in [28] show only small inductance variations (less 

than 1.1%) under similar conditions for a temperature shift of 60 °C. In addition, there is no 

magnetic core in the tested model. Hence, the impact of inductance variation on the FRA traces 

due to temperature change can be considered insignificant.  

The complex model for high-frequency studies of a transformer winding can be 

overviewed as a series impedance (𝑍(𝜔)) and a dielectric shunt capacitance (𝑌(𝜔)). These 

elements are presented as: 

Z(ω)= R(ω)+jωL(ω), (IV.6) 

Y(ω)= G(ω)+jωC(ω), (IV.7) 

where 𝜔 is the angular frequency, 𝑅 and 𝐿 are the equivalent resistance and equivalent 

inductance of the conductors, respectively, and 𝐺 and 𝐶 are the equivalent conductance and 

equivalent capacitance of the insulation system, respectively. 

The model under study presents dielectric materials, such as pressboard, paper, and 

air. The response of these materials in the presence of alternating fields can be described by 

a complex permittivity frequency dependent presented in Equation (IV.8): 
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ε̂(ω) = ε'(ω) - jε''(ω), (IV.8) 

where 𝜀′ and 𝜀′′ are the real and imaginary parts of the dielectric permittivity, respectively. The 

admittance can then be re-written, in terms of the dielectric response [27]:, as Equation (IV.9): 

Y = ωε''C + jωε'C. (IV.9) 

The dielectric response is a function of both frequency and temperature. The 

dependency of the permittivity to temperature can be described by its relation to the medium 

conductivity (𝜎), which is highly temperature (𝑇)-dependent. The imaginary part of the dielectric 

response related to the conductivity is then presented by: 

ε''(ω) = 
σ(T)

ω
 , (IV.10) 

and the temperature dependence of the conductivity can be described by the Arrhenius 

equation, as in Equation (IV.11) [112]: 

σ(T)= σ0e
(
-Ea

kBT⁄ )
, (IV.11) 

where 𝜎0 is the pre-exponential factor, 𝐸𝑎 is the activation energy, and 𝑘𝐵 is the Boltzmann’s 

constant. Finally, the increase in the complex permittivity of the insulation, due to the increase 

in temperature, has an impact on the conductance loss, and this loss can be identified by the 

damping effect present in the resonances in the FRA traces, as illustrated in Figure IV.5b. 

Furthermore, the shift of resonances to lower frequencies, as the temperature 

increases, can be associated with an increase in the capacitances of the model [112].. The 

capacitance changes can be calculated from the first resonance point (Figure IV.5b). Local 

resonances and anti-resonances are characterized by the interaction between inductive and 

capacitive reactances [95]. Every resonance or anti-resonance considered independently can 

be interpreted through Equation (IV.12): 
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fres=
1

2π √LiCi

, (IV.12) 

where 𝑓𝑟𝑒𝑠 is the resonance frequency, and 𝐿𝑖 and 𝐶𝑖 are the inductance and capacitance 

corresponding to the resonance point under consideration. 

It is well established that winding inductances are not significantly affected by 

temperature variation [27, 28].; the main hypothesis is that temperature primarily influences the 

resonance frequency points due to moisture migration/dynamics and electrical permittivity 

changes. Based on this hypothesis, capacitance variation with temperature can be estimated 

using Equation (IV.12), with the inductance value estimated from Equation (IV.13). This 

equation is derived from the FRA transfer function in (IV.14) with a 50 Ω measurement 

impedance for the measuring instrument  [16]: 

Li=
50 sin (-φ)

10
HdB 20⁄

 2πf
 , (IV.13) 

HdB=20 log
10

(
Vout

Vin
), (IV.14) 

where 𝑉𝑖𝑛 is the input voltage applied at the input point, 𝑉𝑜𝑢𝑡 is the output voltage measured at 

the response terminal, and 𝜑 is the phase difference between input and output voltages [21]. 

The inductance value is then calculated at the linear descendent part of the FRA trace 

leading to the first anti-resonance. In this region (around 4 kHz), the inductances are very close 

to each other, demonstrating that the inductance is not significantly influenced by temperature. 

The average value is 28 mH. Capacitance values are calculated using a rearranged Equation 

(IV.12), solving for 𝐶𝑖, and using the first anti-resonance frequencies at each temperature point. 

The results are shown in Figure IV.6, along with the polynomial fitted curve for the data points 

of the capacitance calculation. 
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Figure IV.6 Capacitance variation with temperature change 
Source: Suassuna de Andrade Ferreira, 2021 

 

As shown in Figure IV.6, distributed capacitance increases as the temperature 

increases. This is mainly due to the electrical permittivity change in the test environment. Since 

the model has air insulation, any change in the testing chamber temperature directly affects 

the temperature of the insulation, which in turn displaces the resonant frequencies. 

 

4.4. NUMERICAL INDEX RESULTS 

 
The CSD index was used to quantify deviations according to temperature change. The 

index was calculated over the complete frequency range, from 1 kHz to 1 MHz, in frequency 

windows calculated from (2). Figure IV.7 illustrates CSD values for the different temperatures. 

To avoid overloading the figure, only the two extreme temperatures (40 °C and −40 °C), plus 

the curve at reference temperature (20 °C), are included in the figure. The CSD index indicated 

higher values around the first anti-resonance and resonance points, and lower but significant 

values at higher frequencies (above 200 kHz), as can be seen in Figure IV.7. 
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CSD values were similarly calculated for the different fault modes (axial displacement, 

radial deformation, disc space variation, and shorted turns) for further comparisons and 

classification algorithm implementation. Figure IV.8 provides a sample (only one step of each 

fault) of the results and the calculated CSD vectors. 

As Figure 8 shows, the different faults affected the frequency response at different 

frequency ranges. A comparison of Figure IV.7 and Figure IV.8 shows that the shorted turns 

fault had an impact similar to that of temperature variation on the first anti-resonance, with 

smaller CSD values. Temperature variation caused significant deviations at higher frequencies 

(above 250 kHz), as was the case with the different fault modes. As this comparison indicates, 

an automatic algorithm might have difficulty distinguishing simple temperature variation in FRA 

measurements from a fault mode. 

. 

Figure IV.7 CSD values, calculated for FRA measurements at 40 °C, 20 °C and −40 °C 
Source: Suassuna de Andrade Ferreira, 2021 



77 

 

Figure IV.8 CSD values calculated for FRA measurements in different fault modes at 20 °C 
Source: Suassuna de Andrade Ferreira, 2021 

 

4.5. CLASSIFICATION ALGORITHM RESULTS AND DISCUSSIONS 

 
The fault database was used for classification scenario 1. A CSD vector was calculated 

and used as input for the classification algorithm. The resonance and anti-resonance points of 

the traces were also considered. The algorithm analyzed each of the 343 instances and 

classified them into 5 classes: no-fault, axial displacement (AD), radial deformation (RD), disc 

space variation (DSV), or shorted turns (ST). Figure IV.9 shows the confusion matrices 

obtained for these classifications. 

The general performance of this classification was 93% when only CSD values were 

used as input. The performance increased to 99.7% when resonance and anti-resonances 

were considered as input. In all the classification scenarios, 10-fold cross-validation was used 

to train the algorithm. The confusion matrix shows the percentage of instances classified in 

each class, along with the total number of instances corresponding to this percentage. 
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(a) 

 

(b) 

 

(c) 

Figure IV.9 Confusion matrices for fault database classification (classification scenario 1) 
using the following as input: (a) CSD vector values, (b) resonance and anti-resonance points 

(frequency and amplitude) and (c) combined input 
Source: Suassuna de Andrade Ferreira, 2021 
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The temperature database was then used to test the classification algorithm 

(classification scenario 2), with the CSD vector and a combination of CSD vector values and 

resonance and anti-resonance points as input. Since classification with only the resonance 

points did not differ from the combination of inputs, this classification was omitted from 

thenceforward. The algorithm was expected to classify the data without having previously been 

trained for temperatures other than 20 °C. Figure IV.10 shows the confusion matrices obtained 

for this new test. The general performance of the SVM method dropped to 71% when the CSD 

vector was used. However, the performance of the classifier using the resonance and anti-

resonance points dropped to 40%. These confusion matrices were also divided into four 

additional matrix lines, according to the temperature of the measurements classified. 

The confusion matrices shown in Figure IV.10 corroborate the hypothesis that the 

algorithm is not always capable of distinguishing faults from temperature variation. As the 

matrices divided by temperature show, significant problems occurred when the temperature 

dropped below −10 °C, that is, a shift of −30 °C from the reference temperature (20 °C). The 

measurements from −40 °C to −20 °C were misclassified as axial displacement, disc space 

variation, or shorted turns faults, depending on the input used for classification. 

To overcome the misclassification problem, the SVM algorithm needs to be trained 

with FRA measurements at different temperatures, to learn as many different patterns as 

possible. In classification scenario 3, both the fault database and the temperature database 

are considered when training the SVM algorithm. For this classification scenario, the training 

and testing datasets included 70% and 30% of the complete dataset, respectively; that is, 70% 

of the data was used to train the classification algorithm, with the remaining 30% left for testing 

and validation. Afterward, the datasets were stratified to ensure the ratio of temperature and 

fault data was maintained from the initial complete dataset into the divided training and testing 

sets. 



80 

 

(a) 

 

(b) 

Figure IV.10 Confusion matrices using temperature database to test the SVM classification 
algorithm (classification scenario 2) with the following as input: (a) CSD vector values and 

(b) combined input with CSD vector and resonances and anti-resonances 
Source: Suassuna de Andrade Ferreira, 2021 

 

The SVM’s general performance, using the combined databases (fault and 

temperature databases) and the CSD vector as input, was once again 93.9%. Its performance 

returned to 99.1% when resonances and anti-resonances were used in combination with the 

CSD vector. This indicates that once temperature is considered in the training dataset, the 

classification algorithm performs as well as when only faults are used in the classification. This 

was true for all inputs considered, confirming the importance of a large database of 

measurements that consider different temperatures in the training dataset. 
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In this study, measurements at different temperatures were possible because the 

laboratory winding model allowed a number of possibilities for FRA measurements. With real 

transformers, measuring a wide range of temperatures may not be feasible. One possible 

solution to this problem is to improve automated interpretation by using computational 

simulation environments to help generate a database of frequency responses that includes 

different fault and temperature conditions. Further research into this possibility should be 

considered. 

 

4.6. CONCLUSIONS 

 
This paper addresses the interpretation of FRA measurements at different 

temperatures using machine-learning applications. A laboratory winding model specially 

designed for FRA measurements was used as the testing equipment. The model allows the 

introduction of mechanical and electrical faults and, hence, frequency response under different 

conditions can be assessed. Tests were performed in a climatic chamber, allowing the 

temperature to vary from −40 °C to 40 °C. The influence of the temperature on an SVM 

algorithm classification was reported. 

As already reported in the literature, temperature affected the measurements. Among 

other things, variations in capacitance values were noted, probably due to moisture dynamics 

related to changes in the insulation temperature. The results also showed that when 

temperature is not considered in the training set of the machine learning algorithm, the 

classification can be compromised. In fact, at least 30% of the tested measurements were 

misclassified on the first attempt, with the error of classification as high as 60%, depending on 

the input data for the classification algorithm. The misclassification occurred predominantly in 

a group with temperature shifts of more than 30 °C. 

Temperature measurements need to be included in the training set to overcome the 

misclassification problem and restore SVM performance. The SVM classifications were 
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performed using the following as classifier input: (a) CSD index values; (b) trace resonance 

and anti-resonance frequencies and amplitudes; and (c) a combination of (a) and (b). The CSD 

was calculated over a frequency window that swept the entire frequency range to obtain a 

vector of CSD index values. 

Confusion matrices were used to get a picture of the SVM performance. They show 

that the algorithm misclassifies different temperature measurements as an axial displacement, 

disc space variation or short-circuited turns faults, corroborating the need to include different 

measurement conditions in the training datasets of machine learning algorithms. The 

improvement in the database when measurements that consider other factors influencing FRA 

traces are included needs to be acknowledged. This is one of the contributions of this research. 
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REPRODUCING TRANSFORMER'S FREQUENCY RESPONSE FROM FEM SIMULATION 

AND PARAMETERS OPTIMIZATION 

 

 

Abstract 

 
Frequency Response Analysis (FRA) is being employed worldwide as one of the main 

methods for condition assessment in transformers due to its capability to detect changes inside 

transformers. Nonetheless, the objective interpretation of FRA measurements is still a 

challenge for the industry. This is mainly attributable to the lack of complete data from the same 

or similar units. A large database of FRA measurements can contribute to improving automatic 

classification algorithms and lead to a more objective interpretation. Due to their destructive 

nature, mechanical deformations cannot be performed on real transformers to collect data from 

different scenarios. The use of simulation and laboratory transformers models is necessary. 

This research proposes a new method using Finite Element Method simulation and lumped 

element circuit to obtain FRA traces from a laboratory model at healthy and faulty states, along 

with an optimization method to improve capacitive parameters from estimated values. The 

results show that measured and simulated FRA traces are in good agreement. Furthermore, 

the faulty FRA traces were analyzed using automatic classification algorithms, and the results 

have shown good classification for short-circuit faults, while axial displacements were only well 

classified at their greatest extents. This supports the use of the proposed method in the 

generation of faulty frequency response for automatic classification algorithms. The proposed 

approach is therefore tailored for generating a larger and unique database with industrial 

importance and academic significance.  
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5.1. INTRODUCTION 

 
Frequency Response Analysis (FRA) is a well-known monitoring and diagnostic 

method used in the industry to detect faults in power transformers [85, 113, 114]. his technique 

is based on interpreting power transformers as an electric circuit comprising inductive, 

capacitive, and resistive parameters. When a fault occurs inside the transformer, these 

parameters are differently influenced. For example, short-circuited turns can affect self and 

mutual inductances, while winding movements can principally affect series capacitances [79]. 

A comparison between reference measurement (before fault or healthy measurement) and 

actual measurement (faulty measurement) presents frequency response deviations because 

of circuit parameters change. These deviations can therefore allow fault identification. 

Nonetheless, FRA interpretation is not straightforward. This is because the parameters 

in frequency response depend on many variables in the transformer design characteristics, 

such as power and voltage ratios, insulation type, windings type and connections. In this 

regard, many researchers have been focusing on developing objective interpretation 

schematics to identify fault type, extent, and location [49, 86, 115, 116]. The main categories 

of interpretation methods are numerical indices, simulation models and automatic classification 

algorithms [24]. 

The use of numerical indices helps quantify the difference between reference and 

actual measurement. This technique has been applied using numerical index limits to 

differentiate healthy and faulty transformers [22, 51, 86] and as input to automatic classification 

algorithms [29, 49]. 

High-frequency simulation models are used to reproduce the frequency response of 

the power transformer. These models allow the generation of FRA traces at different fault 

conditions without damage to the physical transformer. The simulations use the Finite Element 

Method (FEM) [25, 78] and the RLC equivalent circuit method [33, 117] individually or 

combined [79] to recreate the traces. In addition, the transformer’s design data, such as 
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geometrical dimensions and material properties, are required to obtain the RLC circuit 

parameters for FEM simulation [33, 109].  

The current literature on simulation models explores methods to replicate FRA traces 

and observe the frequency response once the faults are introduced. New information can be 

acquired by correlating circuit elements changes, or the geometry changes, in previous and 

after fault simulations [80]. Moreover, most recent research has also compared the capabilities 

of simulation models to attain numerical indices values to the ones calculated from measured 

traces [25]. However, the application of numerical indices from simulation models into 

automatic classification algorithms is yet to be explored. 

Automatic classification algorithms are implemented using numerical indices [29] and, 

more recently, image processing methods [26] as input for the algorithms. These algorithms 

are trained and tested to classify faults from frequency responses automatically. Consequently, 

classification algorithms require an extensive database of fault cases to learn from and be able 

to classify unseen instances. FRA method has expanded its use worldwide as a main 

diagnostic method, and even though it has been standardised by different international groups 

[20, 21], the data available to develop and improve automatic classification algorithms are still 

scarce [24]. 

This research has developed a new method for simulating frequency response in 

transformers using the finite element method (FEM) and lumped circuit elements to contribute 

to this matter. The approach is based on calculating, estimating, and optimising lumped circuit 

parameters. The main contributions of this study are: 

▪ A new approach for FEM simulation of frequency response in transformers; 

▪ Lumped elements circuit parameters optimisation; 

▪ A novel approach tailored for generating an infinite and unique database for 

training classification algorithms with potential impact on FRA interpretation 

improvements. 
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5.2. MATERIALS AND METHODS 

 
The methodology employed for the frequency response simulation is based on a 

laboratory winding model specially designed for FRA measurements. The simulation is first 

performed using Comsol Multiphysics® software, and later the capacitance parameters are 

optimized using MATLAB® functions and Comsol Multiphysics®. 

 

5.2.1. LABORATORY WINDING-MODEL 

 
The transformer model consists of two coils, an outer winding (winding 1) and an inner 

winding (winding 2). A picture and the electrical connections schematics for the winding model 

are presented in Figure V.1. The model is specially designed for FRA measurements. Thus, 

no power or voltage ratings are attributed to it. The insulation present in the winding is uniform, 

solid, and non-graded. Winding 1 has 300 mm of internal diameter and is composed of 448 

turns distributed in 16 sections of 28 turns each. The sections in winding 1 are disposed in top 

of the other with pressboard paper spacers of 6.14 mm between them. The total height of 

winding 1 is 515 mm. Winding 2 has 251 mm of internal diameter with 228 turns distributed in 

three layers of 76 turns each. The total height of winding 2 is 530 mm. 

The 16 sections of winding 1 are designed to be interchanged and therefore allow the 

introduction of faults in the winding model. For example, short-circuits can be introduced by 

connecting the terminals of any section. Axial displacements can be created by displacing the 

entire winding 1, while radial deformation can be performed by exchanging the winding sections 

for deformed ones, preserving the model’s integrity [49]. 
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(a) (b) 

Figure V.1 Winding- model used for simulation and measurement purposes: (a) model’s 
picture and (b) connections schematic 

Source: Suassuna de Andrade Ferreira, 2022 
 

5.2.2. FINITE ELEMENT METHOD SIMULATION 

 
The FEM simulation is performed in three steps. First, a geometric model is developed 

based on the laboratory winding-model dimensions. Then, the windings are defined using the 

magnetic fields and electrostatic physics available in Comsol Multiphysics®. These physics are 

used to associate the geometric sections to the correspondent number of turns and excitation 

of the coils, as well as the equations that define the study. Finally, an equivalent electric circuit 

obtains the winding’s frequency response. 

Figure V.2 presents the 2D axis-symmetric and a cut-view of the 3D form. A 2D axis-

symmetric geometry can be used to represent the model, and this simplification saves 

computational effort while the final frequency response is not affected. 

The FEM simulation considers the skin and proximity effects. Any increase in the 

frequency is reflected in the current density in the conductors due to these effects. As shown 

in Figure 3, at 60 Hz, the current density is primarily uniform in the conductor. As the frequency 

increases, the current density increases near the edges of the conductors. 
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(a) (b) 

 

(c) 

Figure V.2 Geometric model created for simulation of the frequency response (a) 2D 
axisymmetric geometry, (b) rotational form of 2D axisymmetric model and (c) detail of 

conductors and insulation from windings 1 and 2 
Source: Suassuna de Andrade Ferreira, 2022 

 

The magnetic field and electrostatic physics in Comsol Multiphysics® use Ohm’s law 

to calculate the lumped element parameters. These parameters are then introduced in the 

electrical circuit physic to calculate the frequency response, similar to the measurement setup 

presented in Figure V.4. A voltage signal of 10 V over a sweep of frequencies is applied to the 

electric circuit through the input terminal (𝑉𝑖𝑛), and the measured voltage is obtained at the 

output terminal (𝑉𝑜𝑢𝑡). The open circuit measurement was preferred due to its extensive 

applicability in FRA interpretation methods. While winding 1 is under measurement, winding 2 

is kept open, according to the FRA measurements standards [20]. 
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(a) (b) 

  

(c) (d) 

Figure V.3 Current density in the conductors’ section area at (a) 60 Hz, (b) 10 kHz and 
(c) 1 MHz, (d) zoomed portion at 1 MHz 

Source: Suassuna de Andrade Ferreira, 2022 
 

 

 

Figure V.4 FRA measurement schematic for winding 1 open circuit measurement 
Source: Suassuna de Andrade Ferreira, 2022 
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5.2.3. OPTIMIZATION OF CIRCUIT PARAMETERS 

 
An optimisation method is used to attain the best fit between measured and simulated 

curves. The optimisation is performed using MATLAB® function fminsearch. Fminsearch uses 

the Nelder-Mead simplex algorithm, described in  [118]. Initially, the algorithm makes a simplex 

evaluation around the initial estimated values (𝑥0), adding 5% to each of the initial 

estimations (𝑥0(𝑖)) at a time. Following, the algorithm modifies the simplex repeatedly until the 

method finds the minimum of the desired function. For this research, the mean square error is 

used as the function to be minimised, and the capacitance values (𝐶𝑠1, 𝐶𝑠2 and 𝐶12) are the 

variables (𝑥). The optimisation adjusts the capacitance values at each interaction. It 

recalculates the simulated frequency response and the mean square error between measured 

and new simulated curves until the error is minimal. The optimization ends once |𝑓(𝑥(𝑖)) −

𝑓(𝑥(𝑖 + 1))| < 10−4, which means the error function has reached a local minima. 

 

5.2.4. EVALUATION OF SIMULATION MODEL 

 
Different faults are introduced to evaluate the simulation model created, and 

comparisons between simulated and measured frequency responses are performed. Two 

extents of axial displacement fault and two of short-circuit fault are added. These two fault 

types are sufficiently different and diversified to exploit the capabilities of the simulated model. 

As seen in the literature and the simulation process, axial displacements influence series and 

interwinding capacitances. Meanwhile, short-circuit fault influences winding inductances and 

resistances [85, 119]. The simulation of radial displacements could not be carried out using the 

2D axisymmetric model. A 3D model would be required. 

The axial displacement fault is created by inserting spacers at the bottom of winding 1 

to displace it relative to winding 2, resulting in a loss of magnetic coupling between the 

windings. The short-circuit fault is created by shorting sections of winding 1. At first, winding 1 
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has the turns of section 2 (from top to bottom) shorted, with a total of 28 shorted turns; later, 

sections 2 and 3 are short, with 56 shorted turns. 

Since the further objective of simulation frequency response results in the development 

of a database for training automatic classification algorithms, and the primary input used for 

these algorithms are numerical indices, the analysis of the deviations using the CSD numerical 

index is also done. The CSD index is widely used for its good performance in evaluating 

deviations in FRA traces, given its monotonicity, linearity, and sensitivity [29, 56, 77]. The CSD 

index is calculated from equation (V.1), 

CSD =√∑ [(X(i)-X̅) -(Y(i)-Y̅)]
2N

I=1

N-1
, (V.1) 

X̅=1/N ∑ X(i)N
i=1  and Y̅=1/N ∑ Y(i)N

i=1 ,  

where 𝑋 and 𝑌 are the references and current frequency response vectors, 𝑋(𝑖) and 𝑌(𝑖) are 

the 𝑖𝑡ℎ elements of these vectors, and 𝑁 is the number of data points in vectors X and Y at the 

frequency band under evaluation. 

The frequency band used for CSD calculation is selected to avoid the dependency of 

the transformer’s structures in FRA traces. The sweep window method proposed in [31] is then 

applied. The method uses a frequency window (WS) determined from the number of data points 

per decade (𝑓𝑝/𝑑) in the trace, using equation (V.2). The window is then swept over the 

complete frequency range in pre-determined steps. The index is calculated for each window, 

and a vector of CSD values is obtained. 

WS = 10 + 6 (
𝑓𝑝/𝑑−200

200
). (V.2) 
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5.3. SIMULATED FREQUENCY RESPONSE OF WINDING MODEL 

 
The 16-sections lumped element circuit shown in Figure V.5 is used to obtain the 

frequency response trace for the winding model from the FEM simulation. Due to the winding 

model specifications, a 16 sections circuit is used comprising series inductances and 

resistances from winding 1 (𝐿1 and 𝑅1, respectively) and winding 2 (𝐿2, 𝑅2, respectively), along 

with series capacitances (𝐶1and 𝐶2), inter-winding capacitances (𝐶12) and ground capacitances 

(𝐶𝑔1 and 𝐶𝑔2). 

The parameters of the circuit model are differently calculated. The inductances and 

series resistances are calculated directly from its geometry parameters and physics equations 

in FEM simulation. The series capacitances can be estimated by different methods, such as 

geometrical parameters and insulation materials [33, 109]. Since the individual winding 

measurements were available for this study, the series capacitances for each winding are 

estimated from individual winding frequency response measurements. A preliminary simulation 

with only one winding at a time is produced to obtain the series capacitance. This simulation 

provides the individual windings inductance values. The capacitances are then estimated using 

equation (V.3), and the resonance frequency values obtained from the individual winding 

measurements presented in Figure V.6a. 

fres=
1

2π √LiCi

, (V.3) 

where fres is the resonance frequency, Li and Ci are the inductance and capacitance 

respectively. 

 



94 

 

Figure V.5 Lumped element circuit used to obtain the simulated frequency response for the 
winding-model 

Source: Suassuna de Andrade Ferreira, 2022 
 

Meanwhile, the inter-winding capacitance is estimated from the capacitive inter-

winding FRA measurement presented in Figure V.6b and using equation (V.4). This equation 

is obtained from the transfer function of the measurement presented in equation (V.5) and uses 

a 50 Ω measurement impedance for the measuring instrument. The connections for a 

capacitive interwinding measurement are observed in Figure V.7. 

C12=
50 sin (φ)

10
CIWdB 20⁄

 2πf
 , (V.4) 

CIWdB=20 log
10

(
Vout

Vin
), (V.5) 

Later, all these capacitances are optimized to obtain a better fit between simulated and 

measured FRA traces. Thus, the simulation method can also be applied when sufficient 

information about the insulation of the transformer windings is unavailable. The estimated 
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capacitance values, presented in Table V.1, are then introduced into the electric circuit to 

calculate the model's frequency response. The ground capacitances are small and negligible 

for this winding model since there is no ground structure near the windings. The measurements 

are taken inside a Faraday cage with larger dimensions than the winding height. Thus, to 

complete the electrical circuit presented in Figure V.5, the ground capacitances are considered 

as 𝐶𝑔1 = 𝐶𝑔2 = 1𝑥10−16 F. 

The initial frequency response obtained from the electrical circuit using the estimated 

parameters from Table V.1 is shown in Figure V.8. As it can be observed, the curves have 

similar trends, and the main resonances and anti-resonances are present in the simulated 

frequency response. However, the absolute error between the curves increases, especially at 

the resonance points. The mean square error for the curves presented in Figure V.8 is 23.20. 

This indicates that although the simulation and circuit models represent well the frequency 

response of the laboratory winding model, the estimated capacitances can still be adjusted to 

reach a better fit. Thus, the need to optimize the capacitance values. 

The optimization is then performed. After about thirty interactions, the fminsearch 

obtained the new mean square error of 3.23. The final frequency response of the simulation 

after parameters optimization is presented in Figure V.9. The new optimized capacitance 

values obtained for the laboratory winding model are presented in Table V.2. In Figure V.9, it 

can be observed that the main resonances are still present. The error between curves has 

considerably lowered. 
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(a) 

 

(b) 

Figure V.6 Frequency response measurements (a) individual winding measurements and (b) 
capacitive interwinding measurement 

Source: Suassuna de Andrade Ferreira, 2022 
 

𝑓 = 214.9 kHz 

𝑓 = 25.7 kHz 
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Figure V.7 FRA measurement schematic for interwinding capacitive measurement 
Source: Suassuna de Andrade Ferreira, 2022 

 
Table V.1 Initial values for capacitance parameters in frequency response simulation 

Winding 1 Winding 2 Inter-winding 

𝐶𝑠1 = 2.00x10−11 F 𝐶𝑠2 = 6.98x10−9  F 𝐶12 = 5.30x10−10 F 

Source: Suassuna de Andrade Ferreira, 2022 
 

 

Figure V.8 Frequency response from winding model measurement and simulation using initial 
estimated values 

Source: Suassuna de Andrade Ferreira, 2022 
 

Table V.2 Optimized values for capacitance parameters in frequency response simulation 

Winding 1 Winding 2 Inter-winding 

𝐶𝑠1 = 1.52x10−11 F 𝐶𝑠2 = 7.54x10−9 F 𝐶12 = 5.29x10−10 F 

Source: Suassuna de Andrade Ferreira, 2022 
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Figure V.9 Frequency response from winding model measurement and simulation using 
optimized capacitance values 

Source: Suassuna de Andrade Ferreira, 2022 
 

5.4. WINDING-MODEL FAULT ANALYSIS AND CLASSIFICATION PERFORMANCE 

 
After the fault’s introduction in the winding model, the frequency response obtained 

from simulation and the CSD index vectors are present in Figure V.10. 

In Figure V.10a, it is possible to observe that the simulation has very slight deviations 

for the first axial displacement level. However, once the displacement increases, it is possible 

to better recognize the deviations due to the fault. In addition, the CSD values could identify 

slight deviations even for the lower displacement level, significantly above 400 kHz. The 

absence of deviations in the simulation's lower axial displacement (AD1) can occur due to the 

reduced sensibility of the simulation model to capacitance changes. Since the capacitances 

are the main parameters influenced in this fault, the low displacement levels associated with 

low capacitive changes might not be well represented in the simulation model. 

Meanwhile, the first and second fault levels can be distinguished from the reference 

simulation for the short-circuit fault. As shown in the CSD values presented in Figure V.10b. 



99 

Considering that the short-circuit fault has more impact on the capacitive and resistive circuit 

parameters, it can be noticed that these are also the most sensible parameters of the simulation 

model developed. 

Furthermore, observing the frequency responses presented in Figure V.10, it is 

noticeable that the first resonance point (around 50 kHz) remains unaltered for any fault 

applied. This conclusion has previously been noticed in the different measurements performed 

for the same laboratory winding model [49], and this study shows that the simulation also 

reproduced the pattern. From the FEM simulation, it is possible to observe that this is the 

frequency of high energy density in the frequency range considered for any of the faults 

simulated. 

The energy density can also be used to calculate the inductance of the model and 

further be applied in identifying faults, as presented in [78]. The simulation method can also 

apply new approaches for diagnostic by inductance changes. Preliminarily, the energy density 

of the model can be observed, and its variation due to the different faults can be identified, as 

shown in Figure V.11. 

Finally, to evaluate the faulty simulation’s ability to be used in automatic classification 

algorithms, the model support vector machine algorithm developed in [56] is tested using the 

five FRA traces presented in Figure V.10 from reference and faulty traces. For this analysis, 

the classification algorithm is trained using an extensive database, including axial 

displacements, short-circuits and other faults at different extents. The reference and the four 

faulty traces obtained from the simulation model developed in this research are used as a 

testing dataset. The algorithm used can detect and identify the different faults with a 

performance accuracy of 93,9%. The results for the classification of the simulated traces are 

presented in Table V.3. 
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(a) 

 

(b) 

Figure V.10 Winding model frequency response simulated for: (a) axial displacement and 
(b) short-circuit faults 

Source: Suassuna de Andrade Ferreira, 2022 
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(a) (b) 

 

(c) 

Figure V.11 Energy density distribution (J/m3) for winding model simulation at 50 kHz for: 
(a) reference (no-fault), (b) axial displacement (AD2) and (c) short-circuit (SC1) faults 

Source: Suassuna de Andrade Ferreira, 2022 
 

From Table V.3, it is possible to observe that the reference and short-circuits fault are 

well classified in the algorithm. At the same time, the axial displacement was not always well 

classified, especially for the lower level of displacement. As already seen in Figure V.10, this 

fault level did not present enough deviations to be identified by the classification algorithm. 
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Moreover, this article presents an analysis opposite to what would ideally be usual 

regarding the databases used for training and testing the classification algorithms. This is due 

to a still limited amount of data from the simulations. Despite the capability of the simulation 

method, it is still necessary to expand the simulations to obtain other faults and extents and 

other transformers' design data. The research presented in this study is a proof-of-concept. 

Table V.3 Automatic classification using support vector machine algorithm [56] and FRA 
traces obtained from simulation 

Actual class Classified as 

No-Fault No-Fault 

Axial Displacement 1 No-Fault 

Axial Displacement 2 Axial Displacement 

Short-Circuit 1 Short-Circuit 

Short-Circuit 2 Short-Circuit 

Source: Suassuna de Andrade Ferreira, 2022 
 

5.5. CONCLUSIONS 

 
This paper reports a new method for frequency response simulation with optimization 

of capacitance parameters to fit measurement and simulation traces. The method's main 

objective is to access transformers' frequency response to develop and improve FRA 

interpretation techniques. 

The proposed simulation method uses FEM to obtain inductive and resistive 

transformer parameters and the Nelder-Mead simplex algorithm to optimize estimated values 

for the capacitive parameters. Later, the parameters are integrated into lumped electrical circuit 

elements, and the circuit's transfer function is calculated to obtain the model's frequency 

response. The results indicate good agreements between the measured and simulated traces. 

The evaluation of faulty simulated traces has demonstrated that while the method can 

reproduce short-circuit faults that classification algorithms can detect, the axial displacement 

faults are only well represented by the simulation method at the highest levels of displacement. 
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Due to its destructive nature, faulty measurements cannot be performed in real 

transformers. Using a laboratory model combined with simulation methods appears to be an 

interesting approach to contribute to the development of automatic and objective FRA 

interpretation algorithms. The proposed approach opens the door for obtaining infinite fault 

measurements on a single unit and generating a larger database of frequency responses. The 

method can further improve automatic fault classification algorithms by improving training 

databases.



 

CHAPTER VI  

CONCLUSION 

 

6.1. SUMMARY AND MAJOR FINDINGS 

 
This research reports on frequency response interpretation using numerical indices, 

machine learning algorithms and FEM simulations. The FRA measurements and simulations 

are performed based on a laboratory transformer model. This model was specially designed 

so FRA measurements, under different circumstances, can be evaluated. It has removable 

sections and is designed and manufactured to enable short-circuits and mechanical 

deformations (axial or radial), allowing reproducibility and repeatability of frequency response 

measurements. 

The main results obtained in the research are: 

▪ The determination of good indices for evaluation of mechanical deformation 

severity showed that while all the indices were able to identify the highest levels 

of deformations in the frequency range of interest (400 kHz to 700 kHz), the best 

overall results of this study were obtained with the CSD, given its monotonic 

behaviour, linear increase with fault severity and sensitivity, even to the smallest 

deformations. 

▪ The study of machine learning classifiers for fault diagnostics was very promising. 

The RBF, SVM and k-NN networks performed well when classifying faults using 

the CSD index and targeted frequency bands as input. SVM using polynomial 

(p=3) kernel function and k-NN with five neighbours have presented the best 

performance for the parameters optimization analysis. 

▪ The study of the impact of temperature in automatic fault classification has shown 

that when the temperature parameter is not considered in the training set of the 
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machine learning algorithm, the classification can be compromised. At least 30% 

of the tested measurements were misclassified on the first attempt. The 

misclassification occurred predominantly in a group with temperature shifts of 

more than 30 °C from the reference temperature (20 °C). 

▪ Finally, the proposed simulation method uses FEM to obtain inductive and 

resistive transformer parameters and the Nelder-Mead simplex algorithm to 

optimize estimated values for the capacitive parameters. These parameters are 

integrated into lumped electrical circuit elements, and the circuit's transfer function 

is calculated to obtain the model's frequency response. Results show a good 

match between measured and simulated FRA traces. Moreover, the short-circuit 

and axial displacements were introduced in the simulated model and analyzed 

using automatic classification algorithms. The classification algorithm presented 

good performance for short-circuit classification, while axial displacement was 

well classified at its greatest extents. 

 

6.2. RESEARCH CONTRIBUTIONS 

 
The following papers were produced under the course of development of the PhD 

research. The papers summarize the main results obtained in the research. 

Three journal papers: 

1. Regelii S. de A. Ferreira, Patrick Picher, Hassan Ezzaidi, Issouf Fofana, 

“Frequency Response Analysis Interpretation using Numerical Indices and Machine Learning: 

A Case Study based on a Laboratory Model” IEEE Access Volume 9, p. 67051-67063, April 

2021. 
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2. Regelii S. de A. Ferreira, Patrick Picher, Hassan Ezzaidi, Issouf Fofana, “A 

Machine-Learning Approach to Identify the Influence of Temperature on FRA Measurements” 

Energies 2021, Volume 14, p. 5718, September 2021. 

3. Regelii S. de A. Ferreira, Patrick Picher, Issouf Fofana, Hassan Ezzaidi, 

Christophe Volat, Fethi Meghnefi and Vahid Behjat, “Reproducing Transformer's Frequency 

Response from FEM Simulation and Parameters Optimization”, this paper is under final review 

by the authors before submission. 

And four conference papers: 

1. R. M. Youssouf, R. S. A. Ferreira, F. Meghnefi, H. Ezzaidi, P. Picher and I. Fofana, 

“Frequency Response of Transformer Winding: A Case Study based on a Laboratory Model”, 

2018 CEIDP (Conference on Electrical Insulation and Dielectric Phenomena), October 21-24, 

2018, Cancun, Mexico. 

2. R. S. A. Ferreira, H. Simard, P. Picher, V. Behjat, I. Fofana et H. Ezzaidi, “Case 

study for assessing the integrity of a service-aged transformer repair using Frequency 

Response Analysis (FRA)”, 2019 Congress CIGRÉ Canada, September 16-19, 2019, Montreal 

Canada.  

3. Regelii S. A. Ferreira, Hassan Ezzaidi, Issouf Fofana, Patrick Picher, 

“Transformers Fault Identification by Frequency Response Analysis using Intelligent 

Classifiers”, 2021 ISH (22nd International Symposium on High Voltage Engineering), 

November 21-25, 2021, Xi'an, China. 

4. R. S. A. Ferreira, A. Sengupta, P. Picher, I. Fofana and H. Ezzaidi, “Influence of 

Transformer Structures on the Frequency Response Analysis: A Laboratory Case Study”, 2021 

CEIDP (Conference on Electrical Insulation and Dielectric Phenomena), December 12-15, 

2021, Vancouver, Canada. 
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6.3. FUTURE OF THE RESEARCH AND RECOMMENDATIONS 

 
For the continuity of this research topic and to address further aspects of FRA 

interpretation, some topics of attention are suggested: 

▪ The development of a three-phase transformer model that is closer to a real 

transformer (including tank and core aspects) should enable a variety of 

possibilities to be added to this research, such as the impact of winding 

connections and the study of core faults in FRA measurements; 

▪ The study of faults localization in the windings; 

▪ The advance in FEM modelling to allow better reproduction of the model’s 

capacitive parameters and improve the results of faults affecting these variables; 

▪ The evolution of simulation methods to include other types of faults and 

temperature variations; 

▪ The development of a large number of simulations results to support of the training 

of classification algorithms based on simulated FRA traces, which include but are 

not limited to different faults with different fault severities and at several different 

locations along the transformer windings; 

▪ The study of the methods to generate mathematically calculated displacements 

to reproduce temperature variation in transformer’s insulation media, so the 

temperature displacements can be determined ahead and introduced in training 

datasets of automatic classification algorithms; 

▪ The study of real-case transformers can improve the algorithms proposed in this 

research and direct the results to more generalized conclusions. 

 



 

REFERENCES 

 

[1] CIGRE WG A2.20, "Guide on economics of transformer management," Brochure 248, 2004. 

[2] J. F. Araujo, E. G. Costa, F. L. M. Andrade, A. D. Germano, and T. V. Ferreira, "Methodology 
to Evaluate the Electromechanical Effects of Electromagnetic Forces on Conductive 
Materials in Transformer Windings Using the Von Mises and Fatigue Criteria," IEEE Trans 
Power Delivery, vol. 31, no. 5, pp. 2206-2214, 2016, doi: 10.1109/TPWRD.2016.2579165. 

[3] CIGRE Working Group A2.18, "Life management techniques for power transformer," 
Brochure 227, 2003. 

[4] S. Tenbohlen et al., "Resutls of a Standardized Survey about the Reliability of Power 
Transformers," presented at the 20th International Symposium on High Voltage Engineering, 
Buenos Aires, Argentina, August 27 - September 01, 2017. 

[5] CIGRE Technical Brochure 642, "Transformer Reliability Survey," 2015. 

[6] M. M. Islam, G. Lee, and S. N. Hettiwatte, "A review of condition monitoring techniques and 
diagnostic tests for lifetime estimation of power transformers," Electr Eng, Article in Press pp. 
1-25, 2017, doi: 10.1007/s00202-017-0532-4. 

[7] M. Duval, "A review of faults detectable by gas-in-oil analysis in transformers," IEEE Electr 
Insul Mag, vol. 18, no. 3, pp. 8-17, 2002, doi: 10.1109/MEI.2002.1014963. 

[8]  H. Malik, A. Azeem, and R. K. Jarial, "Application research based on modern-technology for 
transformer Health Index estimation," in International Multi-Conference on Systems, Sygnals 
& Devices, 20-23 March 2012 2012, pp. 1-7, doi: 10.1109/SSD.2012.6198012.  

[9] G. V. R. Xavier, H. S. Silva, E. G. d. Costa, A. J. R. Serres, N. B. Carvalho, and A. S. R. 
Oliveira, "Detection, Classification and Location of Sources of Partial Discharges Using the 
Radiometric Method: Trends, Challenges and Open Issues," IEEE Access, vol. 9, pp. 
110787-110810, 2021, doi: 10.1109/ACCESS.2021.3102888. 

[10] I. Fofana, H. Hemmatjou, and F. Meghnefi, "Effect of thermal transient on the polarization 
and depolarization current measurements," IEEE Trans Dielectr Electr Insul, vol. 18, no. 2, 
pp. 513-520, 2011, doi: 10.1109/TDEI.2011.5739457. 

[11] M. Florkowski and J. Furgał, "Modelling of winding failures identification using the frequency 
response analysis (FRA) method," Electr Power Syst Res, vol. 79, no. 7, pp. 1069-1075, 
2009, doi: 10.1016/j.epsr.2009.01.009. 

[12]  S. M. Islam, "Detection of shorted turns and winding movements in large power transformers 
using frequency response analysis," in IEEE Power Engineering Society Winter Meeting, 23-
27 Jan. 2000, vol. 3, pp. 2233-2238, doi: 10.1109/PESW.2000.847703.  

[13] K. Ragavan and L. Satish, "Localization of changes in a model winding based on terminal 
measurements: Experimental study," IEEE Trans Power Delivery, vol. 22, no. 3, pp. 1557-
1565, 2007, doi: 10.1109/TPWRD.2006.886789. 

[14] L. Satish and S. K. Sahoo, "Locating faults in a transformer winding: An experimental study," 
Electr Power Syst Res, vol. 79, no. 1, pp. 89-97, 2009, doi: 10.1016/j.epsr.2008.05.020. 

[15] E. P. Dick and C. C. Erven, "Transformer diagnostic testing by frequency response analysis," 
IEEE Trans. Power Appar. Syst., vol. PAS-97, no. 6, pp. 2144-2153, 1978, doi: 
10.1109/TPAS.1978.354718. 

[16] CIGRE Technical Brochure 342, "Mechanical-Condition Assessment of Transformer 
Windings Using Frequency Response Analysis (FRA)," 2008. 

[17] P. Picher, S. Tenbohlen, M. F. Lachman, A. Scardazzi, and P. Patel, "Current state of 
transformer FRA interpretation," Proceeding of the 4th International Colloquium "Transformer 
Research and Asset Management", 2017. 



109 

[18] E. Rahimpour, J. Christian, K. Feser, and H. Mohseni, "Transfer function method to diagnose 
axial displacement and radial deformation of transformer windings," IEEE Trans Power 
Delivery, vol. 18, no. 2, pp. 493-505, 2003, doi: 10.1109/TPWRD.2003.809692. 

[19] E. Rahimpour, M. Jabbari, and S. Tenbohlen, "Mathematical Comparison Methods to Assess 
Transfer Functions of Transformers to Detect Different Types of Mechanical Faults," IEEE 
Trans Power Delivery, vol. 25, no. 4, pp. 2544-2555, 2010, doi: 
10.1109/TPWRD.2010.2054840. 

[20] IEC 60076-18, "Measurement of frequency response," 2012. 

[21] IEEE Std C57.149-2012, "IEEE Guide for the Application and Interpretation of Frequency 
Response Analysis for Oil-Immersed Transformers," 2013, doi: 
10.1109/IEEESTD.2013.6475950. 

[22] The Electric Power Industry Standard of People’s Republic of China, "Frequency Response 
Analysis on Winding Deformation of Power Transformers," DL/T 911-2016. 

[23] D. A. K. Pham, T. M. T. Pham, H. Borsi, and E. Gockenbach, "A new diagnostic method to 
support standard frequency response analysis assessments for diagnostics of transformer 
winding mechanical failures," IEEE Electr Insul Mag, vol. 30, no. 2, pp. 34-41, 2014, doi: 
10.1109/MEI.2014.6749571. 

[24] CIGRE Technical Brochure 812, "Advances in the interpretation of transformer Frequency 
Response Analysis (FRA)," 2020. 

[25] S. Tenbohlen, M. Tahir, E. Rahimpour, B. Poulin, and S. Miyazaki, "A new approach for high 
frequency modelling of disk windings," CIGRE, A2-214, 2018. 

[26] A. Moradzadeh, H. Moayyed, B. Mohammadi-Ivatloo, G. B. Gharehpetian, and A. P. Aguiar, 
"Turn-to-Turn Short Circuit Fault Localization in Transformer Winding via Image Processing 
and Deep Learning Method," IEEE Transactions on Industrial Informatics, pp. 1-1, 2021, doi: 
10.1109/TII.2021.3105932. 

[27] A. A. Reykherdt and V. Davydov, "Case studies of factors influencing frequency response 
analysis measurements and power transformer diagnostics," (in ), IEEE Electr Insul Mag, vol. 
27, no. 1, pp. 22-30, 2011, Art no. 5699444, doi: 10.1109/MEI.2011.5699444. 

[28] M. Bagheri, B. T. Phung, and T. Blackburn, "Influence of temperature and moisture content 
on frequency response analysis of transformer winding," IEEE Trans Dielectr Electr Insul, 
vol. 21, no. 3, pp. 1393-1404, 2014, doi: 10.1109/TDEI.2014.6832288. 

[29] M. Bigdeli, P. Siano, and H. H. Alhelou, "Intelligent Classifiers in Distinguishing Transformer 
Faults Using Frequency Response Analysis," IEEE Access, vol. 9, pp. 13981-13991, 2021, 
doi: 10.1109/ACCESS.2021.3052144. 

[30] M. Bigdeli, M. Vakilian, and E. Rahimpour, "Transformer winding faults classification based 
on transfer function analysis by support vector machine," IET Electr Power Appl, vol. 6, no. 
5, pp. 268-276, 2012, doi: 10.1049/iet-epa.2011.0232. 

[31]  M. Tahir and S. Tenbohlen, "Novel calculation method for power transformer winding fault 
detection using Frequency Response Analysis," in 5th International Colloquium "Transformer 
Research and Asset Management", 2019.  

[32] S. M. Al-Ameri et al., "Understanding the Influence of Power Transformer Faults on the 
Frequency Response Signature using Simulation Analysis and Statistical Indicators," IEEE 
Access, pp. 1-1, 2021, doi: 10.1109/ACCESS.2021.3076984. 

[33] N. Abeywickrama, Y. V. Serdyuk, and S. M. Gubanski, "High-frequency modeling of power 
transformers for use in frequency response analysis (FRA)," IEEE Trans Power Delivery, vol. 
23, no. 4, pp. 2042-2049, 2008, doi: 10.1109/TPWRD.2008.917896. 

[34] A. Franzen and S. Karlsson, "Failure Modes and Effects Analysis of Transformers," Royal 
Institue of Technology - School of Electrical Engineering, Stockholm, Sweden, 2007.  



110 

[35] W. H. Tang and Q. H. Wu, Condition Monitoring and Assessment of Power Transformers 
Using Computational Intelligence. Springer, 2011, p. 202. 

[36] W. Lech and L. Tyminski, "Detecting Transformer Winding Damage - The Low Voltage 
Impulse Method," Electrical Review, vol. 18, 1966. 

[37] M. H. Samimi, S. Tenbohlen, A. A. S. Akmal, and H. Mohseni, "Evaluation of numerical 
indices for the assessment of transformer frequency response," IET Generation, 
Transmission and Distribution, vol. 11, no. 1, pp. 218-227, 2017, doi: 10.1049/iet-
gtd.2016.0879. 

[38] M. H. Samimi and S. Tenbohlen, "FRA interpretation using numerical indices: State-of-the-
art," Int J Electr Power Energy Syst, Review vol. 89, pp. 115-125, 2017, doi: 
10.1016/j.ijepes.2017.01.014. 

[39] S. w. Fei and X. b. Zhang, "Fault diagnosis of power transformer based on support vector 
machine with genetic algorithm," Expert Systems with Applications, vol. 36, no. 8, pp. 11352-
11357, 2009, doi: 10.1016/j.eswa.2009.03.022. 

[40] X. Mao, Z. Wang, P. Crossley, P. Jarman, A. Fieldsend-Roxborough, and G. Wilson, 
"Transformer winding type recognition based on FRA data and a support vector machine 
model," High Voltage, vol. 5, no. 6, pp. 704-715, 2020, doi: 10.1049/hve.2019.0294. 

[41] A. J. Ghanizadeh and G. B. Gharehpetian, "ANN and cross-correlation based features for 
discrimination between electrical and mechanical defects and their localization in transformer 
winding," IEEE Trans Dielectr Electr Insul, vol. 21, no. 5, pp. 2374-2382, 2014, doi: 
10.1109/TDEI.2014.004364. 

[42] R. S. A. Ferreira, H. Simard, P. Picher, V. Behjat, I. Fofana, and H. Ezzaidi, "Case study for 
assessing the integrity of a service-aged transformer repair using Frequency Response 
Analysis (FRA)," presented at the 2019 CIGRE Canada Conference, Montréal, Québec, 
2019. 

[43]  R. Youssouf, R. Ferreira, F. Meghnefi, H. Ezzaidi, I. Fofana, and P. Picher, "Frequency 
Response of Transformer Winding: A Case Study based on a Laboratory Model," in 2018 
IEEE Conference on Electrical Insulation and Dielectric Phenomena (CEIDP), 2018: IEEE, 
pp. 271-274.  

[44] Z. Wang, J. Li, and D. M. Sofian, "Interpretation of Transformer FRA Responses - Part I: 
Influence of Winding Structure," IEEE Trans Power Delivery, vol. 24, no. 2, pp. 703-710, 
2009, doi: 10.1109/TPWRD.2009.2014485. 

[45] D. M. Sofian, Z. Wang, and J. Li, "Interpretation of Transformer FRA Responses - Part II: 
Influence of Transformer Structure," IEEE Trans Power Delivery, vol. 25, no. 4, pp. 2582-
2589, 2010, doi: 10.1109/TPWRD.2010.2050342. 

[46]  X. Mao, Z. Wang, P. Jarman, and A. Fieldsend-Roxborough, "Winding Type Recognition 
through Supervised Machine Learning using Frequency Response Analysis (FRA) Data," in 
ICEMPE 2019 - 2nd International Conference on Electrical Materials and Power Equipment, 
Proceedings, 2019, pp. 588-591, doi: 10.1109/ICEMPE.2019.8727354.  

[47] S. M. Saleh, S. H. El-Hoshy, and O. E. Gouda, "Proposed diagnostic methodology using the 
cross-correlation coefficient factor technique for power transformer fault identification," IET 
Electr Power Appl, vol. 11, no. 3, pp. 412-422, 2017, doi: 10.1049/iet-epa.2016.0545. 

[48] R. Wimmer, S. Tenbohlen, M. Heindl, A. Kraetge, M. Krüger, and J. Christian, "Development 
of algorithms to assess the FRA," presented at the 15th International Symposium on High 
Voltage Engineering, Ljubljana, Slovenia, 2007. 

[49] R. S. D. A. Ferreira, P. Picher, H. Ezzaidi, and I. Fofana, "Frequency Response Analysis 
Interpretation Using Numerical Indices and Machine Learning: A Case Study Based on a 
Laboratory Model," IEEE Access, vol. 9, pp. 67051-67063, 2021, doi: 
10.1109/ACCESS.2021.3076154. 



111 

[50] P. M. Nirgude, D. Ashokraju, A. D. Rajkumar, and B. P. Singh, "Application of numerical 
evaluation techniques for interpreting frequency response measurements in power 
transformers," IET Sci. Meas. Technol., vol. 2, no. 5, pp. 275-285, 2008, doi: 10.1049/iet-
smt:20070072. 

[51] J. C. G. Arispe and E. E. Mombello, "Detection of Failures Within Transformers by FRA Using 
Multiresolution Decomposition," IEEE Trans Power Delivery, vol. 29, no. 3, pp. 1127-1137, 
2014, doi: 10.1109/TPWRD.2014.2306674. 

[52] K. Pourhossein, G. B. Gharehpetian, E. Rahimpour, and B. N. Araabi, "A probabilistic feature 
to determine type and extent of winding mechanical defects in power transformers," Electr 
Power Syst Res, vol. 82, no. 1, pp. 1-10, 2011, doi: 10.1016/j.epsr.2011.08.010. 

[53] K. P. Badgujar, M. Maoyafikuddin, and S. V. Kulkarni, "Alternative statistical techniques for 
aiding SFRA diagnostics in transformers," IET Generation, Transmission & Distribution, vol. 
6, no. 3, pp. 189-198, 2012, doi: 10.1049/iet-gtd.2011.0268. 

[54] M. H. Samimi, S. Tenbohlen, A. A. Shayegani Akmal, and H. Mohseni, "Improving the 
numerical indices proposed for the FRA interpretation by including the phase response," Int 
J Electr Power Energy Syst, vol. 83, pp. 585-593, 2016, doi: 10.1016/j.ijepes.2016.04.044. 

[55]  M. Bagheri, B. T. Phung, T. Blackburn, and A. Naderian, "Influence of temperature on 
frequency response analysis of transformer winding," in 31st Electrical Insulation 
Conference, EIC, Ottawa, Canada, 2013, pp. 40-44, doi: 10.1109/EIC.2013.6554198.  

[56] R. Suassuna de Andrade Ferreira, P. Picher, H. Ezzaidi, and I. Fofana, "A Machine-Learning 
Approach to Identify the Influence of Temperature on FRA Measurements," Energies, vol. 
14, no. 18, p. 5718, 2021. 

[57] J. W. Kim, B. K. Park, S. C. Jeong, S. W. Kim, and P. G. Park, "Fault diagnosis of a power 
transformer using an improved frequency-response analysis," IEEE Trans Power Delivery, 
vol. 20, no. 1, pp. 169-178, 2005, doi: 10.1109/TPWRD.2004.835428. 

[58] M. Heindl, S. Tenbohlen, A. Kraetge, M. Krüger, and J. Velásquez, "Algorithmic determination 
of pole-zero representations of power transformers’ transfer functions for interpretation of 
FRA data," presented at the 16th International Symposium on High Voltage Engineering, 
Cape Town, South Africa, 2009. 

[59] E. Rahimpour and D. Gorzin, "A new method for comparing the transfer function of 
transformers in order to detect the location and amount of winding faults," Electr Eng, vol. 88, 
no. 5, pp. 411-416, 2006, doi: 10.1007/s00202-005-0294-2. 

[60] R. S. A. Ferreira, H. Ezzaidi, I. Fofana, and P. Picher, "Transformers Fault Identification by 
Frequency Response Analysis using Intelligent Classifiers," presented at the 22nd 
Symposium on High Voltage Engineering (ISH 2021), Xi’an, China, 21-25 November 2021, 
2021. 

[61] P. Karimifard, G. B. Gharehpetian, and S. Tenbohlen, "Determination of axial displacement 
extent based on transformer winding transfer function estimation using vector-fitting method," 
Eur Trans Electr Power, vol. 18, no. 4, pp. 423-436, 2008, doi: 10.1002/etep.194. 

[62] M. Tahir, S. Tenbohlen, and M. Samimi, "Evaluation Of Numerical Indices For Objective 
Interpretation Of Frequency Response To Detect Mechanical Faults In Power Transformers," 
21st International Symposium on High Voltage Engineering, 2019. 

[63] M. H. Samimi, S. Tenbohlen, A. A. S. Akmal, and H. Mohseni, "Effect of Different Connection 
Schemes, Terminating Resistors and Measurement Impedances on the Sensitivity of the 
FRA Method," IEEE Trans Power Delivery, vol. 32, no. 4, pp. 1713-1720, 2017, doi: 
10.1109/TPWRD.2016.2572160. 

[64] M. H. Samimi, A. A. Shayegani Akmal, H. Mohseni, and S. Tenbohlen, "Detection of 
transformer mechanical deformations by comparing different FRA connections," International 
Journal of Electrical Power & Energy Systems, vol. 86, pp. 53-60, 2017 2017, doi: 
https://doi.org/10.1016/j.ijepes.2016.09.007. 

https://doi.org/10.1016/j.ijepes.2016.09.007


112 

[65] S. A. Ryder, "Diagnosing transformer faults using frequency response analysis," IEEE Electr 
Insul Mag, vol. 19, no. 2, pp. 16-22, 2003, doi: 10.1109/MEI.2003.1192032. 

[66] The Electric Power Industry Standard of People’s Republic of China, "Frequency Response 
Analysis on Winding Deformation of Power Transformers," DL/T 911-2004. 

[67] W. C. Sant’Ana et al., "A survey on statistical indexes applied on frequency response analysis 
of electric machinery and a trend based approach for more reliable results," Electr Power 
Syst Res, vol. 137, pp. 26-33, 2016/08/01/ 2016, doi: 
https://doi.org/10.1016/j.epsr.2016.03.044. 

[68]  G. M. Kennedy, A. J. McGrail, and J. A. Lapworth, "Using Cross-Correlation Coefficients to 
Analyze Transformer Sweep Frequency Response Analysis (SFRA) Traces," in 2007 IEEE 
Power Engineering Society Conference and Exposition in Africa - PowerAfrica, 16-20 July 
2007 2007, pp. 1-6, doi: 10.1109/PESAFR.2007.4498059.  

[69] J.-W. Kim, B. Park, S. C. Jeong, S. W. Kim, and P. Park, "Fault diagnosis of a power 
transformer using an improved frequency-response analysis," IEEE Trans Power Delivery, 
vol. 20, no. 1, pp. 169-178, 2005. 

[70] T. Y. Ji, W. H. Tang, and Q. H. Wu, "Detection of power transformer winding deformation and 
variation of measurement connections using a hybrid winding model," Electr Power Syst Res, 
vol. 87, pp. 39-46, 2012/06/01/ 2012, doi: https://doi.org/10.1016/j.epsr.2012.01.007. 

[71]  W. H. Tang, A. Shintemirov, and Q. H. Wu, "Detection of minor winding deformation fault in 
high frequency range for power transformer," in IEEE PES General Meeting, 25-29 July 2010 
2010, pp. 1-6, doi: 10.1109/PES.2010.5589573.  

[72] V. Behjat and M. Mahvi, "Statistical approach for interpretation of power transformers 
frequency response analysis results," IET Sci. Meas. Technol., vol. 9, no. 3, pp. 367-375, 
2015, doi: 10.1049/iet-smt.2014.0097. 

[73] S. Miyazaki, M. Tahir, and S. Tenbohlen, "Detection and quantitative diagnosis of axial 
displacement of transformer winding by frequency response analysis," IET Generation, 
Transmission & Distribution, vol. 13, no. 15, pp. 3493-3500, 2019, doi: 10.1049/iet-
gtd.2018.6032. 

[74] D. M. Sofian, "Transformer FRA Interpretation for Detection of Winding Movement," Ph.D., 
University of Manchester, England, 2007.  

[75] J. Velasquez, D. Kolb, M. A. Sanz-Bobi, and W. Koltunowicz, "Identification of transformer-
specific frequency sub-bands as basis for a reliable and automatic assessment of FRA 
results," presented at the Conference on Condition Monitoring and Diagnosis (CMD), Tokyo, 
Japan, 6-11 September, 2010. 

[76] J. Velasquez, "Intelligent monitoring and diagnosis of power transformers in the context of an 
asset management model," Ph.D., Department of electrical engineering, Polytechnic 
University of Catalonia, 2011.  

[77] M. Tahir and S. Tenbohlen, "Transformer Winding Condition Assessment Using Feedforward 
Artificial Neural Network and Frequency Response Measurements," Energies, vol. 14, no. 
11, p. 3227, 2021, doi: 10.3390/en14113227. 

[78] P. Mukherjee and S. K. Panda, "Diagnosing disk-space variation in transformer windings 
using high-frequency inductance measurement," IEEE Trans Power Delivery, 2022, doi: 
10.1109/TPWRD.2022.3148598. 

[79] A. Abu-Siada, M. I. Mosaad, D. Kim, and M. F. El-Naggar, "Estimating Power Transformer 
High Frequency Model Parameters Using Frequency Response Analysis," IEEE Trans Power 
Delivery, Article vol. 35, no. 3, pp. 1267-1277, 2020, Art no. 8818329, doi: 
10.1109/TPWRD.2019.2938020. 

[80] S. K. Sahoo and L. Satish, "Discriminating changes introduced in the model for the winding 
of a transformer based on measurements," Electr Power Syst Res, vol. 77, no. 7, pp. 851-
858, 2007, doi: 10.1016/j.epsr.2006.07.007. 

https://doi.org/10.1016/j.epsr.2016.03.044
https://doi.org/10.1016/j.epsr.2012.01.007


113 

[81] K. H. Ibrahim, N. R. Korany, and S. M. Saleh, "Effects of power transformer high-frequency 
equivalent circuit parameters non-uniformity on fault diagnosis using SFRA test," Ain Shams 
Engineering Journal, vol. 13, no. 4, p. 101674, 2022/06/01/ 2022, doi: 
https://doi.org/10.1016/j.asej.2021.101674. 

[82] V. Larin, "Internal short-circuits faults localization in transformer windings using FRA and 
natural frequencies deviation patterns," CIGRE SC A2 Colloquium, Cracow, Poland, 2017. 

[83] V. Larin, D. Matveev, and A. Y. Volkov, "Application of natural frequencies deviations patterns 
and high-frequency white-box transformer models for FRA interpretation," CIGRE paper A2-
209, 2018. 

[84]  S. Miyazaki, Y. Mizutani, T. Okamoto, Y. Wada, and C. Hayashida, "Abnormality diagnosis 
of transformer winding by frequency response analysis (FRA) using circuit model," in 
Proceedings of 2012 IEEE International Conference on Condition Monitoring and Diagnosis, 
CMD 2012, 2012, pp. 273-276, doi: 10.1109/CMD.2012.6416429.  

[85] A. Abu-Siada, N. Hashemnia, S. Islam, and M. Masoum, "Understanding power transformer 
frequency response analysis signatures," IEEE Electr Insul Mag, vol. 29, no. 3, pp. 48-56, 
2013, doi: 10.1109/MEI.2013.6507414. 

[86] M. Bigdeli, D. Azizian, and G. B. Gharehpetian, "Detection of probability of occurrence, type 
and severity of faults in transformer using frequency response analysis based numerical 
indices," Measurement: Journal of the International Measurement Confederation, Article vol. 
168, 2021, Art no. 108322, doi: 10.1016/j.measurement.2020.108322. 

[87] B. A. Thango, A. F. Nnachi, G. A. Dlamini, and P. N. Bokoro, "A Novel Approach to Assess 
Power Transformer Winding Conditions Using Regression Analysis and Frequency 
Response Measurements," Energies, vol. 15, no. 7, p. 2335, 2022.  

[88] A. De and N. Chatterjee, "Impulse fault diagnosis in power transformers using self-organising 
map and learning vector quantisation," IEE Proceedings: Generation, Transmission and 
Distribution, Conference Paper vol. 148, no. 5, pp. 397-405, 2001, doi: 10.1049/ip-
gtd:20010462. 

[89]  G. M. V. Zambrano, A. C. Ferreira, and L. P. Calôba, "Power transformer equivalent circuit 
identification by artificial neural network using frequency response analysis," in IEEE Power 
Engineering Society General Meeting, PES, Montreal, Canada, 2006.  

[90] S. M. Piryonesi and T. E. El-Diraby, "Role of Data Analytics in Infrastructure Asset 
Management: Overcoming Data Size and Quality Problems," Journal of Transportation 
Engineering, Part B: Pavements, vol. 146, no. 2, p. 04020022, 2020, doi: 
doi:10.1061/JPEODX.0000175. 

[91] C. McCormick. "RADIAL BASIS FUNCTION NETWORK (RBFN) TUTORIAL." 
https://chrisjmccormick.wordpress.com/2013/08/15/radial-basis-function-network-rbfn-
tutorial/ (accessed 10 May, 2022). 

[92] L. Hamel, Knowledge Discovery with Support Vector Machines (Wiley Series on Methods 
and Applications in Data Mining). Hoboken, New Jersey, USA: John Wiley & Sons, Inc., 2009. 

[93] Z. Zhao, C. Yao, C. Tang, C. Li, F. Yan, and S. Islam, "Diagnosing Transformer Winding 
Deformation Faults Based on the Analysis of Binary Image Obtained from FRA Signature," 
IEEE Access, Article vol. 7, pp. 40463-40474, 2019, Art no. 8674767, doi: 
10.1109/ACCESS.2019.2907648. 

[94] H. Tarimoradi and G. B. Gharehpetian, "Novel Calculation Method of Indices to Improve 
Classification of Transformer Winding Fault Type, Location, and Extent," IEEE Transactions 
on Industrial Informatics, vol. 13, no. 4, pp. 1531-1540, 2017, doi: 10.1109/TII.2017.2651954. 

[95] M. F. Lachman, V. Fomichev, V. Rashkovsky, and A. Shaikh, "Frequency response analysis 
of transformers: visualizing physics behind the trace," Proceedings of the Seventy-Eighth 
Annual International Conference of Doble Clients, Sec. T-14, 2011. 

https://doi.org/10.1016/j.asej.2021.101674
https://chrisjmccormick.wordpress.com/2013/08/15/radial-basis-function-network-rbfn-tutorial/
https://chrisjmccormick.wordpress.com/2013/08/15/radial-basis-function-network-rbfn-tutorial/


114 

[96]  A. Moradzadeh and K. Pourhossein, "Application of Support Vector Machines to Locate 
Minor Short Circuits in Transformer Windings," in 2019 54th International Universities Power 
Engineering Conference (UPEC), 3-6 Sept. 2019 2019, pp. 1-6, doi: 
10.1109/UPEC.2019.8893542.  

[97] V. Nurmanova, M. Bagheri, A. Zollanvari, K. Aliakhmet, Y. Akhmetov, and G. B. 
Gharehpetian, "A New Transformer FRA Measurement Technique to Reach Smart 
Interpretation for Inter-Disk Faults," IEEE Trans Power Delivery, Article vol. 34, no. 4, pp. 
1508-1519, 2019, Art no. 8682123, doi: 10.1109/TPWRD.2019.2909144. 

[98]  P. Picher, C. Rajotte, and C. Tardif, "Experience with frequency response analysis (FRA) for 
the mechanical condition assessment of transformer windings," in 31st Electrical Insulation 
Conference, EIC, Ottawa, Canada, 2013, pp. 220-224, doi: 10.1109/EIC.2013.6554237.  

[99] M. Tahir, S. Tenbholen, and S. Miyazaki, "Analysis of Statistical Methods for Assessment of 
Power Transformer Frequency Response Measurements," IEEE Trans Power Delivery, vol. 
36, no. 2, pp. 618-626, 2021, doi: 10.1109/TPWRD.2020.2987205. 

[100] S. Tenbohlen, S. Coenen, M. Djamali, A. Müller, H. M. Samimi, and M. Siegel, "Diagnostic 
Measurements for Power Transformers," Energies, vol. 9, no. 5, 2016, doi: 
10.3390/en9050347. 

[101] J. Liu, Z. Zhao, C. Tang, C. Yao, C. Li, and S. Islam, "Classifying Transformer Winding 
Deformation Fault Types and Degrees Using FRA Based on Support Vector Machine," IEEE 
Access, vol. 7, pp. 112494-112504, 2019, doi: 10.1109/ACCESS.2019.2932497. 

[102] S. S. Haykin, Neural Networks: A Comprehensive Foundation. Prentice Hall, 1999. 

[103] V. Kecman, T.-M. Huang, and M. Vogt, "Iterative Single Data Algorithm for Training Kernel 
Machines from Huge Data Sets: Theory and Performance," in Support Vector Machines: 
Theory and Applications, L. Wang Ed. Berlin, Heidelberg: Springer Berlin Heidelberg, 2005, 
pp. 255-274. 

[104] M. H. Samimi, S. Tenbohlen, A. A. S. Akmal, and H. Mohseni, "Dismissing Uncertainties in 
the FRA Interpretation," IEEE Trans Power Delivery, vol. 33, no. 4, pp. 2041-2043, 2018, doi: 
10.1109/TPWRD.2016.2618601. 

[105] R. S. d. A. Ferreira, P. Picher, H. Ezzaidi, and I. Fofana, "Frequency Response Analysis 
Interpretation using Numerical Indices and Machine Learning: A Case Study based on a 
Laboratory Model," IEEE Access, pp. 1-1, 2021, doi: 10.1109/ACCESS.2021.3076154. 

[106] M. Tahir and S. Tenbohlen, "Novel calculation method for power transformer winding fault 
detection using Frequency Response Analysis," presented at the 5th International 
Colloquium "Transformer Research and Asset Management", 2019. 

[107] "Weka: Machine Learning Software." https://www.cs.waikato.ac.nz/ml/weka/ (accessed 15th 
July, 2021). 

[108] S. Bernhard, P. John, and H. Thomas, "An Efficient Method for Gradient-Based Adaptation 
of Hyperparameters in SVM Models," in Advances in Neural Information Processing Systems 
19: Proceedings of the 2006 Conference: MIT Press, 2007, pp. 673-680. 

[109] E. Bjerkan, "High frequency modeling of power transformers," Trondheim, 2005.  

[110] T. Tsutaoka, M. Ueshima, T. Tokunaga, T. Nakamura, and K. Hatakeyama, "Frequency 
dispersion and temperature variation of complex permeability of Ni‐Zn ferrite composite 
materials," J Appl Phys, vol. 78, no. 6, pp. 3983-3991, 1995, doi: 10.1063/1.359919. 

[111] I.-K. Suh, H. Ohta, and Y. Waseda, "High-temperature thermal expansion of six metallic 
elements measured by dilatation method and X-ray diffraction," Journal of Materials Science, 
vol. 23, no. 2, pp. 757-760, 1988/02/01 1988, doi: 10.1007/BF01174717. 

[112] N. Abeywickrama, "Effect of dielectric and magnetic material characteristics on frequency 
response of power transformers," Ph.D., Charmers University of Technology, 2007.  

https://www.cs.waikato.ac.nz/ml/weka/


115 

[113] Y. Liu et al., "A study of the sweep frequency impedance method and its application in the 
detection of internal winding short circuit faults in power transformers," IEEE Trans Dielectr 
Electr Insul, vol. 22, no. 4, pp. 2046-2056, 2015, doi: 10.1109/TDEI.2015.004977. 

[114] S. Alsuhaibani, Y. Khan, A. Beroual, and N. H. Malik, "A Review of Frequency Response 
Analysis Methods for Power Transformer Diagnostics," Energies, vol. 9, no. 11, p. 879, 2016.  

[115] R. Khalili Senobari, J. Sadeh, and H. Borsi, "Frequency response analysis (FRA) of 
transformers as a tool for fault detection and location: A review," Electr Power Syst Res, 
Review vol. 155, pp. 172-183, 2018, doi: 10.1016/j.epsr.2017.10.014. 

[116] K. V. S. Narasimha Swamy and U. Savadamuthu, "Sweep frequency response based 
statistical approach for locating faults in transformer windings using sliding window 
technique," Electr Power Syst Res, vol. 194, p. 107061, 2021/05/01/ 2021, doi: 
https://doi.org/10.1016/j.epsr.2021.107061. 

[117]  P. Saji, A. Muhammed, and V. V, "Estimating The Effect of Axial Displacement on Equivalent 
Circuit Parameters of Transformer Winding Using Finite Element Method," in 2021 IEEE 5th 
International Conference on Condition Assessment Techniques in Electrical Systems 
(CATCON), 3-5 Dec. 2021 2021, pp. 311-316, doi: 10.1109/CATCON52335.2021.9670500.  

[118] J. C. Lagarias, J. A. Reeds, M. H. Wright, and P. E. Wright, "Convergence Properties of the 
Nelder--Mead Simplex Method in Low Dimensions," SIAM Journal on Optimization, vol. 9, 
no. 1, pp. 112-147, 1998, doi: 10.1137/s1052623496303470. 

[119]  S. Miyazaki, Y. Mizutani, H. Suzuki, and M. Ichikawa, "Abnormality Diagnosis of Transformer 
Winding by Frequency Response Analysis (FRA) Using Circuit Model," in IEEE International 
Conference on Condition Monitoring and Diagnosis (CMD), Bali, Indonesia, 23-27 September 
2012, pp. 964-967. 

 

 

https://doi.org/10.1016/j.epsr.2021.107061

	ABSTRACT
	RÉSUMÉ
	TABLE OF CONTENTS
	LIST OF TABLES
	LIST OF FIGURES
	LIST OF ABBREVIATIONS AND ACRONYMS
	ACKNOWLEDGEMENTS
	CHAPTER I  General Introduction
	1.1. Introduction
	1.2. Research Motivation and Objectives
	1.3. Originality of the Research
	1.4. Thesis Organization

	CHAPTER II  Literature Review
	2.1. Frequency Response Measurements
	2.2. Frequency Response Interpretation Methods
	2.2.1. Numerical Indices
	2.2.2. High-Frequency Simulation Models
	2.2.3. Artificial Intelligence Algorithms

	CHAPTER III  Frequency Response Analysis Interpretation using Numerical Indices and Machine Learning: A Case Study Based on a Laboratory Winding Model
	3.1. Introduction
	3.2. Frequency Response Analysis
	3.2.1. FRA Interpretation Based on Numerical indices
	3.2.2. FRA Interpretation Based on Machine Learning
	3.3. Laboratory Winding Model and reference Measurements
	3.4. Fault Analyses
	3.5. Recognition Performance and Discussion
	3.6. Conclusion

	CHAPTER IV  A Machine-Learning Approach to Identify the Influence of Temperature on FRA Measurements
	4.1. Introduction
	4.2. Materials and Methods
	4.2.1. Laboratory Setup
	4.2.2. Numerical Index Calculation
	4.2.3. Support Vector Machine Learning
	4.3. Temperature Influence in Frequency Response
	4.4. Numerical Index Results
	4.5. Classification Algorithm Results and Discussions
	4.6. Conclusions

	CHAPTER V  REPRODUCING TRANSFORMER'S FREQUENCY RESPONSE FROM FEM SIMULATION AND PARAMETERS OPTIMIZATION
	5.1. Introduction
	5.2. Materials and Methods
	5.2.1. Laboratory winding-model
	5.2.2. Finite Element Method simulation
	5.2.3. Optimization of circuit parameters
	5.2.4. Evaluation of simulation model
	5.3. Simulated frequency response of winding model
	5.4. Winding-model fault analysis and classification performance
	5.5. Conclusions

	CHAPTER VI  CONCLUSION
	6.1. Summary and Major Findings
	6.2. Research Contributions
	6.3. Future of the Research and Recommendations

	REFERENCES

