
Computer Science Review 50 (2023) 100594

h
1

Contents lists available at ScienceDirect

Computer Science Review

journal homepage: www.elsevier.com/locate/cosrev

Review article

Uncertainty in runtime verification: A survey
Rania Taleb a, Sylvain Hallé a,∗, Raphaël Khoury b

a Laboratoire d’informatique formelle, Université du Québec à Chicoutimi, Canada
b Université du Québec en Outaouais, Canada

a r t i c l e i n f o

Article history:
Received 25 April 2023
Received in revised form 21 August 2023
Accepted 26 August 2023
Available online xxxx

a b s t r a c t

Runtime Verification can be defined as a collection of formal methods for studying the dynamic
evaluation of execution traces against formal specifications. Aside from creating a monitor from
specifications and building algorithms for the evaluation of the trace, the process of gathering events
and making them available for the monitor and the communication between the system under analysis
and the monitor are critical and important steps in the runtime verification process. In many situations
and for a variety of reasons, the event trace could be incomplete or could contain imprecise events.
When a missing or ambiguous event is detected, the monitor may be unable to deliver a sound verdict.
In this survey, we review the literature dealing with the problem of monitoring with incomplete
traces. We list the different causes of uncertainty that have been identified, and analyze their effect
on the monitoring process. We identify and compare the different methods that have been proposed
to perform monitoring on such traces, highlighting the advantages and drawbacks of each method.

© 2023 The Author(s). Published by Elsevier Inc. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).

Contents

1. Introduction... 2
2. Overview of runtime verification ... 3

2.1. Stages of the RV... 3
2.1.1. Synthesizing the RV monitor from a property ... 3
2.1.2. System instrumentation .. 4
2.1.3. Analyzing system execution ... 4

2.2. Events and event types ... 4
2.2.1. Atomic symbols .. 4
2.2.2. CSV events... 4
2.2.3. XML and JSON events .. 5
2.2.4. Events as predicates... 5
2.2.5. Snapshots .. 5

2.3. Specification languages ... 6
2.3.1. Regular expressions ... 6
2.3.2. Finite-state automata... 6
2.3.3. LTL: Linear temporal logic [1] .. 6
2.3.4. MTL: Metric temporal logic .. 7
2.3.5. LOLA: Logic of linear arithmetic... 7
2.3.6. Tessla: Temporal stream-based specification language... 7
2.3.7. Other specification languages ... 8

3. Incomplete and uncertain sources of events .. 8
3.1. Mechanisms of data restriction.. 8
3.2. Causes of data restrictions.. 9

3.2.1. Intentional causes .. 9
3.2.2. Non-intentional causes .. 10
3.2.3. Effects of data restrictions .. 11

∗ Corresponding author.
E-mail address: shalle@acm.org (S. Hallé).
ttps://doi.org/10.1016/j.cosrev.2023.100594
574-0137/© 2023 The Author(s). Published by Elsevier Inc. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

https://doi.org/10.1016/j.cosrev.2023.100594
https://www.elsevier.com/locate/cosrev
http://www.elsevier.com/locate/cosrev
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cosrev.2023.100594&domain=pdf
http://creativecommons.org/licenses/by/4.0/
mailto:shalle@acm.org
https://doi.org/10.1016/j.cosrev.2023.100594
http://creativecommons.org/licenses/by/4.0/

R. Taleb, S. Hallé and R. Khoury Computer Science Review 50 (2023) 100594

a
t
t
t
T
s
h
t
t

o
a
R
t
c
e
i
t

t
s
t
s
w
a
m

a
f
g
w
r
t
u
r
i

4. RV approaches to data restrictions .. 12
4.1. Abstraction-based solutions.. 13

4.1.1. Taleb et al. [2]: RV under access restrictions ... 13
4.1.2. Leucker et al. [3]: RV for timed event streams with partial information... 13
4.1.3. Wang et al. [4]: RV of traces under recording uncertainty .. 14

4.2. Using language-based solutions ... 14
4.2.1. Joshi et al. [5]: RV of LTL on lossy traces ... 14
4.2.2. Basin et al. [6]: Monitoring compliance policies over incomplete and disagreeing logs.. 15
4.2.3. Basin et al. [7]: On real-time monitoring with imprecise timestamps .. 15
4.2.4. Basin et al. [8]: RV of temporal properties over out-of-order data streams .. 16
4.2.5. Ferrando et al. [9]: RV with imperfect information through indistinguishability relations ... 16
4.2.6. Aceto et al. [10]: Monitoring for silent actions.. 17

4.3. Statistical-based solutions... 17
4.3.1. Stoller et al.: RV with state estimation (RVSE) .. 17
4.3.2. Kalajdzic et al. [11]: RV with particle filtering (RVPF).. 17
4.3.3. Wilcox et al. [12]: RV of stochastic, faulty systems .. 18

5. Synthesis.. 18
5.1. Events and uncertainty representation ... 18
5.2. Different forms of verdicts ... 19
5.3. Soundness, completeness and monotonicity .. 19
5.4. Comparison based on specification language... 21
5.5. Comparison based on evaluation methods... 21

6. Conclusion and future work.. 22
Declaration of competing interest.. 23
Data availability .. 24
References ... 24
1. Introduction

Runtime Verification (RV) or Runtime Monitoring has gained
n increasing interest in the recent years [13]. It can be defined as
he process of observing the behavior of a running system and de-
ermining whether the execution under study is compliant with
he expected behavior of the system, and detect any violations [3].
he running behavior is represented by the execution trace (the
equence of events produced by the system). The expected be-
avior is usually specified as a set of rules or formal properties
hat must be obeyed. A property generally involves conditions on
he sequence of events, as well as the data inside these events.

Unlike other verification techniques, such as testing [14], and
ther formal verification methods such as model checking [15]
nd theorem proving [16], which are typically performed offline,
V can be performed online while the system is executing. Rather
han relying on a model of the system and its environment, which
an be extremely complicated and potentially result in a state
xplosion problem, RV works directly with the actual system;
n counterpart, it typically analyzes a single execution trace at a
ime.

The process of collecting the trace of events and presenting it
o the monitor is critical. Events can be collected from various
ources such as the events gathered from system instrumen-
ation [17–22] or external values measured and recorded by
ensor devices [23]. Moreover, there is no general convention on
hat format the events should take in the trace. Many notations
nd formats can be used to represent events depending on the
onitoring framework employed [24].
Regardless of the variety of event sources, most of the RV

pproaches assume that the monitor has complete and error-
ree access to the trace of events against which to evaluate a
iven property [25–27]. However, there are multiple situations
here this assumption does not hold, such as in the case of incor-
ect system instrumentation, imprecise measurements, sampling
echniques applied in RV to control overhead, and misconfig-
ration of data access control policies, among others. In this
espect, a recent Dagstuhl seminar report has emphasized the
mportance of dealing with incomplete, imprecise, and faulty
2

sources of events [28], as did a recent survey of challenges related
to RV [29]. Ignoring the fact that incomplete and imprecise events
might have occurred gives poor monitoring results. A sound and
complete monitor should have a reasonable level of certainty
about the content of the underlying trace that allows it to produce
a conclusive verdict.

A variety of works have tackled the problem of RV with incom-
plete, uncertain or missing information in the past decade. How-
ever, these approaches vary greatly in several dimensions of the
problem, which makes them difficult to compare. The majority of
these techniques rely on recovering lost events to reach a sound
and meaningful verdict. This recovery is accomplished through
various means: constructing a probabilistic model
(Sections 4.3.1, 4.3.2, 4.3.3), filling gaps using all possible re-
placements (Sections 4.1.1, 4.1.3), representing missing events
with symbols (Sections 4.1.2, 4.2.1, 4.2.2, 4.2.5, 4.3.1, 4.3.2, 4.3.3),
or denoting a sequence of events as an interval (Sections 4.2.3,
4.2.4). Certain techniques aim to come up with a conservative
approximation of all the possible verdicts (Sections 4.1.1, 4.1.2).
Others provide a probability of satisfaction (Sections 4.3.1, 4.3.2,
4.3.3), and some methods yield one single verdict (Sections 4.1.3,
4.2.1, 4.2.2, 4.2.3, 4.2.4, 4.2.5, 4.2.6). Additionally, several propose
new specification languages (Sections 4.1.2, 4.2.2, 4.2.4, 4.2.6) or
extend existing ones with operators that allows the monitoring
of some properties in the presence of incomplete events and the
production of sound verdicts in some situations (Sections 4.2.1,
4.2.5). Regardless the reasons why incomplete or uncertain data
may occur, the way in which a ‘‘perfect’’ trace into an incomplete
one varies among different works. Some focus solely on account-
ing for missing events (Sections 4.2.1, 4.2.6, 4.3.1, 4.3.2, 4.3.3), or
imprecise events exclusively (Section 4.2.5), or both missing and
imprecise events (Sections 4.1.1, 4.2.2). Others address unordered
events alone (Section 4.2.4), or both missing and unordered
events (Section 4.1.3). Specific methods also handle imprecise
timestamps (Section 4.2.3), while some broaden their scope to
accommodate missing events, imprecise events, and imprecise
timestamps (Section 4.1.2).

In fact, the problem of RV under uncertainty being relatively
recent, each of the contributions presents its approach in iso-
lation, without really discussing its relation with other similar

R. Taleb, S. Hallé and R. Khoury Computer Science Review 50 (2023) 100594

w
m
t
o
w
t
t

S
t
t
d
l
w
t
i
a
d
s

2

f
p
W
i
t
p
I
C
n
p
c
w

m
i
H
a
i
m
i
r
c
e
i
i
s
t
r
m
s
e

t
o
e
p
t
p
t

a
d
o

t
s
l
E
t
t
a

r
t
‘
e
o
s
t
p

2

c
t
a
s
s
t
t
t
e
a

2

p
a
L
a
t
n

orks. We are therefore confronted with an extremely frag-
ented vision of the state of the art on the question, which has

he effect of making it difficult to identify the avenues of research
n which work remains to be done. This is the goal of this survey,
here we describe and synthesize different approaches from
he literature that seek to employ formal, statistical, and other
echniques to handle RV for systems with incomplete traces.

The remainder of the paper is structured as follows. In
ection 2, we review the stages of an RV process, the different
ypes of events and their representation, and the main specifica-
ion languages used for RV. In Section 3, we describe and classify
ifferent situations that alter a source of events and cause data
oss. Then, we discuss two important points: first, in Section 4
e describe and classify different approaches from the literature
hat account for the problem of RV with incomplete data; second,
n Section 5, we discuss the features and limitations of each
pproach with respect to the other approaches. Finally, Section 6
raws conclusions and identifies directions for future work on the
ubject.

. Overview of runtime verification

Runtime Verification [13] serves as a useful complement to of-
line verification techniques such as model checking and theorem
roving, as well as partial solutions like testing and debugging.
hile model checking explores all possible system states us-

ng a formal model and theorem proving establishes correctness
hrough mathematical proofs, RV operates differently. It lacks a
redefined model and does not statically analyze the system.
nstead, it draws conclusions solely from observed executions.
onsequently, RV’s conclusions are confined to what it has wit-
essed at runtime, in contrast to model checking’s exhaustive ex-
loration of potential states. Hence, unlike formal techniques that
an prove correctness, RV can only be used to detect problems
ithin the system and emit a conclusive verdict.
By combining the exhaustive nature of offline verification

ethods with the application to actual program traces as seen
n testing and debugging, RV provides the best of both worlds.
owever, RV’s results possess an intriguing yet challenging char-
cteristic: an RV monitor detecting a violation is undoubtedly
nformative. However, the absence of a violation observed by a
onitor does not allow us to conclude that the entire system

s correct. This aspect underscores the nuanced nature of RV’s
ole in verification. In contrast, model checking can unequivocally
onfirm correctness for all states explored, while theorem proving
stablishes correctness based on rigorous mathematical reason-
ng. In essence, RV’s utility lies primarily in its ability to uncover
ssues and anomalies at runtime, offering valuable insights into
ystem behavior as it executes. To optimally position RV within
he realm of formal verification techniques, it is imperative to
ecognize its unique strengths and limitations in comparison to
odel checking and theorem proving, appreciating its empha-
is on runtime behavior analysis rather than exhaustive state
xploration or mathematical proofs of correctness.
One challenge of integrating RV into a system is managing

he resulting runtime overhead which can arise from a range
f factors, such as the monitor invocation, the computation and
valuation of property predicates based on the program’s state,
otential performance slowdown due to program instrumenta-
ion and trace extraction, and potential interference between the
rogram and monitor as the monitor may share resources with
he program.

Another challenge in RV is the source and type of events avail-
ble to the monitor. An event is not necessarily an observation
etected during system execution. It can refer to a wide variety
f phenomena outside the system, such as an event recorded by
3

Fig. 1. RV Setup.

he environmental sensors that capture data from the system’s
urrounding environment (temperature, humidity, pressure, or
ight), and can be of numerical type (e.g. integer, decimal, etc.).
xternal devices such as cameras and microphones can also cap-
ure events of type image and audio clip. Messages transferred
hrough a network, such as HTTP requests, can also be considered
s events of type text (strings).
A specific RV problem is defined by the format used to rep-

esent events in the traces produced by a system, as well as
he specification language that represents conditions (also called
‘properties’’) over these events. To some extent, these differ-
nt combinations have been shown to be translatable into each
ther [30], although with some possible loss when the expres-
iveness of the formats differ. In this section, we aim to describe
he stages of RV and define the notions of events, traces, and
roperties.

.1. Stages of the RV

A typical RV setup, such as illustrated in Fig. 1, consists of
reating a monitor from a specification, extracting a trace from
he execution of the target system, and evaluating this trace
gainst the specified property. A specification property is a formal
tatement that defines the desired behavior of the system. It
pecifies what the system is expected to do or not do in response
o different inputs and under varying circumstances. The property
ypically consists of a set of rules or constraints that must hold
rue for the system to meet its intended purpose, and can be
xpressed in various formal languages, such as temporal logic or
utomata.

.1.1. Synthesizing the RV monitor from a property
Depending on the specification language used to express it, a

roperty may not directly provide an algorithm to evaluate it on
trace of events. This is the case, for example, of Linear Temporal
ogic (LTL) [1], an extension of propositional logic that allows
ssertions on the ordering of events in a sequence. Therefore,
o apply run-time verification to a property written in a formal
otation, it is necessary in many cases to first create a monitor

that can concretely evaluate the property.
For the case of LTL, Bauer et al. propose a step-by-step method

that takes an LTL property ϕ as an input and produces a determin-
istic finite state machine (FSM) as output [25]. Fig. 2 illustrates
the steps. The first step is to convert the LTL formula into a
Non-deterministic Büchi Automaton (NBA) using one of several
possible algorithms [31–38]. An NBA is a type of automaton that
accepts infinite sequences of states, and it can be used to repre-
sent all the possible executions that satisfy some LTL property.
The next step is to simplify the NBA by removing any redundant
states and transitions. This is done using algorithms such as the

subset construction or the power set construction. The third step

R. Taleb, S. Hallé and R. Khoury Computer Science Review 50 (2023) 100594

i
A
f
c
T
A
t
t
d
b

2

w
d
I
a
t
p
t
d

m
c
e
h
t
v
a
o

s
m
b
a
R
w
v
c
d
w
a
o
i
d
h
p

2

t
a
a
e
m

{
e
l

2

m
t
c
S
f
e
e
e
r
c
e

Fig. 2. Steps required to generate an FSM from an LTL formula ϕ.

s to convert the reduced NBA into a Non-deterministic Finite
utomaton (NFA), which is a type of automaton that accepts a
inite sequence of states. This is done by removing the acceptance
ondition from the NBA and converting it into a transition system.
he fourth step is to convert the NFA into a Deterministic Finite
utomaton (DFA), which is a type of automaton that has a unique
ransition for each input symbol and state. The final step is to map
he DFA to an FSM by assigning state variables to each state and
efining the transition function that determines the next state
ased on the current state and input variables.

.1.2. System instrumentation
The system instrumentation step is a crucial stage in RV during

hich the monitor is able to connect with the system that pro-
uces the events that need to be observed and processed [39].
n the case of a software system, instrumentation can be done
t the source code level [21], by adding extra code instructions
o the source files before compilation to track the execution of
articular software components and to output an execution trace
hat can be fed to the monitor. A similar operation can also be
one on compiled code, at the binary level [40].
However, although early RV works have focused on instru-

ented software systems, over the years the scope of what
onstitutes a possible source of events has been expanded. For
xample, system logs can provide valuable insights into the be-
avior of the system, including errors, warnings, and other events
hat occur during its execution; thus, one can collect data on
arious system parameters, such as CPU usage, memory usage,
nd disk I/O, which can be analyzed to identify potential issues
r areas for improvement.
In an even broader way, one can consider systems whose

ources of events come from even more diverse sources. As a
atter of fact, any event or data point that is relevant to the
ehavior of the system can be instrumented and monitored for
nalysis, depending on the specific requirements and goals of the
V framework. For example, in software systems that interact
ith users, monitoring and logging user interactions can provide
aluable insights into how users interact with the system, and
an help identify potential issues or areas for improvement. In
istributed systems or networked applications, monitoring net-
ork traffic can provide insights into the behavior of the system,
nd can help identify issues related to performance, security,
r communication between system components. In systems that
nteract with physical sensors, monitoring and analyzing sensor
ata can provide insights into the behavior of the system, and can
elp identify issues related to sensor accuracy, calibration, or data
rocessing.

.1.3. Analyzing system execution
Following instrumentation, the retrieved events are transmit-

ed to the monitor for analysis. This process is frequently known
s execution analysis. The monitor examines the trace one event
t a time. The monitoring can happen either offline, where the
xecution trace is previously kept in a log and supplied to the
onitor, or online, where the event analysis is performed during

the execution in a lock-step manner [41].
The monitor interacts with the system by emitting a verdict for

each event consumed, which indicates the status of the property
at that point of the execution (i.e. considering the last event as
well as all preceding ones). In the simplest case, the verdict do-

main could be B2 = {⊥,⊤} where ⊤ represents the true verdict H

4

indicating that the property is satisfied and ⊥ represents the
negative verdict indicating that the property is violated. However,
most RV systems aim to provide a more fine-grained result and
use verdict domains containing three or more values. A common
domain is B3 = {⊥, ?,⊤} where ‘‘?’’ means that there is not
enough information to conclude either satisfaction or violation
and the monitor is not able to produce a conclusive verdict in
the current state of the system. Finer-grained verdicts with 4 and
even 5 truth values have also been considered [42].

The monitor can also communicate with the system by send-
ing feedback so that suitable corrective actions can be taken if the
property is violated. This is a field of study in its own, known
as Runtime Enforcement [43–45] which extends the field of RV
in that it aims to modify the trace by deleting events, inserting
or modifying the events to correct any illicit behavior present
in the trace, rather than simply detect it. The monitor thus acts
as a transducer, replacing the original, possibly invalid execution
with an alternative, newer execution that provably respects the
desired property.

The above stages of RV have been applied in numerous and
various situations: monitoring programs to check if its execution
satisfies a property [46,47]; monitoring and recovery of web ser-
vice applications [48–50] where the source of events to monitor
are web services or other forms of web based implementations;
monitoring of driving emissions from a vehicle [51]; detection of
bugs in video games [52]; verification of the behavior of aerial
drones [53], among others.

2.2. Events and event types

Any kind of observation about a system is called an event. Val-
ues read and recorded by sensor devices, regardless of whether
they are strings or numbers or any other type, are events. Inner
actions performed in a software system such as returning the
results of a web search, adding a user to a database, reading or
writing to a file, snapshots of the system’s status taken at regular
intervals, etc., can also be considered as events. What is called a
trace is the (linear) succession of events measured or produced
by the execution of the system. There is a variety of formats and
notations that can be used to represent the events [24]. In this
section, we enumerate the most common types of events and
show how each event type could be represented.

2.2.1. Atomic symbols
In the simplest case, an event is a name for something that

can happen such as openFile or closeFile, or carrying a value
such as a string or number or a Boolean from the domain B2 =
⊤,⊥}. Although this is the simplest and least structured form of
vent, this simple notation has been used by several works in the
iterature [2,5,11,54].

.2.2. CSV events
While atomic events are appropriate in some situations, in

any cases, events require to be represented in a more struc-
ured form. A first possibility is to represent an event as a tuple
omposed of attributes and values such as data in a CSV (Comma-
eparated Values) file. Indeed, CSV events can be likened to a
orm of tuple: each line of the file is taken as an event, and each
lement of the line corresponds to the value of an attribute of this
vent. An example of such CSV trace is shown in Fig. 3. In this
xample, the first ‘‘line’’ provides the name of four attributes; the
emaining lines represent one event each, containing the value
orresponding to each attribute. Note that this notation allows
vents to have empty values for some attributes.
Tuple-based events are commonly used; for example,
avelund et al. presented a benchmark for evaluating RV tools

R. Taleb, S. Hallé and R. Khoury Computer Science Review 50 (2023) 100594

i
S
t
s
i
T
o
J

2

t
X
i
c
e
a
c
a
d
s

t
i
t
e
a
a
f

L
m
p
s
R
a
w
w
f

s
c
r
a
r
c

F

w
s
a
t

o
o
p
w
A
e
t

m
m
r
f
n

2

u
m
s
a
e
r
t

r
o
p
v
t

Fig. 3. An example of a trace of CSV events.

n which traces of events are represented in CSV formats [55].
imilarly, during the latest RV competition, CSV files were used
o keep track of Java operations on maps. Earlier works have even
uggested performing the task of RV on tuple events by translat-
ng it into the evaluation of an equivalent database query [56].
he CSV or tuple format is also used to represent events in several
ther RV approaches such that the approach of Ayesha et al. [57],
onas et al. [58], and Vikas et al. [59].

.2.3. XML and JSON events
XML, which stands for eXtensible Markup Language [60], is

ypically associated to web services [61]. Data is expressed in
ML as a tree structure. One common way to structure events
n XML is to define a root element that contains one or more
hild elements, each representing a specific event. Each event
lement can contain attributes that describe the event, such as
timestamp, an event type, or any other relevant metadata. The
ontent of each event element can include any additional data
ssociated with the event, such as event parameters or payload
ata. For example, consider a simple XML representation of a
ensor reading event:

<sensor-data>
<reading timestamp=‘‘2023-02-27T10:30:00’’ type=‘‘temperature’’>
<value unit=‘‘Celsius’’>25</value>

</reading>
</sensor-data>

In this example, the sensor-data element is the root element
hat contains a single reading element representing a sensor read-
ng event. The reading element contains two attributes (times-
amp and type) that provide metadata about the event. The value
lement contains the actual sensor reading value (25) and an
ttribute (unit) specifying the unit of measurement. The ‘‘tags’’
re the syntactical feature used to represent elements in a text
ile.

One of the key benefits of using XML (Extensible Markup
anguage) is that it is a widely supported and standardized for-
at that can be parsed by many existing libraries in various
rogramming languages. The XES format is an IEEE effort to
tandardize the representation of event data in XML [62]. Many
V frameworks used XML-based format to represent events such
s the LogFire framework [63], JRec runtime monitoring frame-
ork for web services [64], AXML runtime monitoring frame-
ork of XML documents [65], and XMonitor runtime monitoring

ramework [66].
JavaScript Object Notation (JSON) is also used to represent

tructured data. Rather using ‘‘tags’’, JSON uses a simpler syntax
onsisting of key–value pairs, arrays, and nested objects to rep-
esent an event. The above example can be represented in JSON
s shown in Fig. 4. By convention, the ‘‘@’’ symbol is used to
epresent attributes, and ‘‘#’’ symbol is used to represent the text
ontent.
Some RV frameworks use JSON to represent events, such as the
LINT [67], Umbral [68], Varan [69], Panda [70], and Medusa [71]. m

5

Fig. 4. A sensor event represented in JSON.

Fig. 5. An event of type snapshot.

2.2.4. Events as predicates
An even more flexible way of representing events consists of

modeling them as a set of predicates [6]. Formally, given a set of
objects S, a predicate can be defined as a function p : Sn → B2,
here the value n is called the arity of the predicate. Given a fixed
et of predicates p1, . . . , pm (each with a possibly different arity),
n event can be then be represented as a function that defines
he value of each predicate for each possible argument.

As an example, consider the simple situation where the set of
bjects is made of two light bulbs S = {a, b}, and the predicate
n : S → B2 which represents the fact that a light bulb is on. A
ossible event in this context could be {on(a) = ⊤, on(b) = ⊥},
hich indicates the situation where light bulb a is on and b is off.
trace is just a succession of such events, where the definition of
ach predicate may obviously change from one event to the next,
hus representing their varying data content.

This basic model can be extended to allow predicates with
ore than one argument, and also predicates where each argu-
ent may be taken from a different set. One can see that this

epresentation subsumes (i.e. is more general than) the previous
ormats, as it is relatively straightforward to represent tuples or
ested structures using a set of appropriately defined predicates.

.2.5. Snapshots
So far, all event types considered consist of individual data

nits that represent a single ‘‘state’’ or ‘‘action’’. However, events
ay conflate multiple such states or actions into single data
tructure, possibly loosing information about their actual content
nd ordering in the process. We then have snapshots of these
vents [4]. Fig. 5 represents a snapshot of two data variables
ecorded by life data recorder (LDR), a device that records updates
o a set of variables generated by a medical device.

The snapshot in the figure is composed of four ‘‘frames’’
ecording the variations in the values of two variable x (that
ccurs one time per frame) and y (that occurs at most four times
er frame, so a dash entry means no value recorded for y). These
alues are represented as a snapshot, since the knowledge about
he exact moment where x changed its value with respect to the

ultiple changes of y is lost. Consequently, each frame recorded

R. Taleb, S. Hallé and R. Khoury Computer Science Review 50 (2023) 100594

i
e

c

(

i

a
i
l
w

2

p
f
p
t
f

p
b
r
a
a
q
t
i
i
i
F
O

s
i
i
e
t
u

t
t
l
s
s
t
s
w

2

e
[
s
u
o
a
s
t
a
t
t
X
t
U
h

b
b
a

t
p
p
o
t
m
s
e
s

p

s an abstract representation of several traces of events, where
ach event is a tuple (x, y). Formally, one possible trace of the

variable updates that happen between frame 0 and frame 1 of
Fig. 5 can be represented as

(2, 4)
x

−→ (3, 4)
y
−→ (3, 3)

y
−→ (3, 2)

y
−→ (3, 4)

if the value of x changes before any change of y; another trace
an be

2, 4)
y
−→ (2, 3)

x
−→ (3, 3)

y
−→ (3, 2)

y
−→ (3, 4)

f the value of x changes between the first and second change of
y.

2.3. Specification languages

The desired or correct behavior of the system can be specified
s a set of specification properties. Each specification property
s an expression represented using one of several specification
anguages [39]. In the following, we describe some of the classical
ays of representing a property presented in the literature.

.3.1. Regular expressions
Since the correct execution of a system is often related to the

ossible ordering in which events are allowed to be observed, a
irst natural way of expressing properties is to consider them as
atterns that must be matched against a sequence of symbols. To
his end, regular expressions are a popular declarative language
or describing sets of strings [39].

A regex comprises a sequence of characters describing a search
attern in a text; a typical regex mixes raw symbols (which must
e matched as is) with special characters that can be used to rep-
esent multiple alternatives or a form of repetition. For instance,
period (‘‘’’.) matches any character, while a range (‘‘[]’’) matches
ny of the characters contained within the brackets. In addition,
uantifier characters can be affixed to a symbol to indicate that
he match may occur a variable number of times. Thus, ‘‘x?’’
ndicates that x can be observed zero or one time, while ‘‘x+’’
ndicates that x may be present at least once. Additionally, group-
ng characters such as ‘‘()’’ create a sequence or sub-expression.
inally, alternation characters such as ‘‘|’’ represent the logical
R operator, so that ‘‘x | y’’ indicates that either x or y must be

observed.
Regexes can be used to describe a regular language pattern

and express a property. As an example, consider the policy stating
that a red light should be immediately followed by a green
light. The language of this pattern is a collection of strings over
the alphabet Σ = {green, yellow, red}. Using regular expression
operators, this can be expressed as follows:

(green | yellow)∗ red green+(green | yellow)∗

Examples of monitors accepting regular expressions as their
specifications include JavaMOP [72] and SEQ.OPEN [73].

2.3.2. Finite-state automata
A finite-state automaton [74] is a computational model used

to describe the behavior of a system that can be in one of a finite
number of states, and can transition between those states in re-
sponse to some input. Formally, it can be defined as a quadruplet
M = ⟨Σ, S, s0, δ, SF ⟩ where Σ is the set of input characters, S
is a set of states, s0 ∈ S is the initial state, δ : S × Σ → S is
the transition function, and SF ⊆ S is the set of final or accepting
states. For every input, the automaton moves from the current
state to the next state using the transition function and it ends

in one of the final states. Since the transition function admits at

6

Fig. 6. A finite-state automaton representing the traffic lights property.

most a single next state given any state and input symbol, the au-
tomaton is called a Deterministic Finite Automata (DFA) [75]. The
automaton is called non-deterministic if the transition function is
replaced by a transition relation.

Fig. 6 represents the traffic light property using a finite state
automaton. Here, s0 is the initial state and both s1 and s2 are final
tates. The automaton transitions from s0 to s1 when encounter-
ng a red light event (r) where it should check whether the next
nput event is g or not. If g appears, the automaton returns to s0,
lse if a non-green event appears, then the automaton moves to
he final state s2 and is stuck there producing the same output
ntil the end of the input trace.
An expansion of NFA is the Probabilistic Automaton (PA) [76]

hat incorporates the likelihood of a particular transition into the
ransition function, resulting in a transition matrix. The class of
anguages recognized by probabilistic automata is referred to as
tochastic languages, which encompasses regular languages as a
ubset. The number of stochastic languages is incalculable. In con-
rast to DFA and NFA, PA employs a weighted set or vector of next
tates. These weights must total 1, representing probabilities,
hich renders it a stochastic vector.

.3.3. LTL: Linear temporal logic [1]
An alternate way of specifying conditions on sequences of

vents is to turn to logic-based notations. Linear Temporal Logic
1] is one such notation; it is built up from a finite set of propo-
itional variables AP , over which expressions can be constructed
sing the logical operators (¬, ∨ and ∧), and the temporal modal
perators (G, F, X and U). These operators are called ‘‘future time’’,
s they express conditions that hold from some starting point in a
equence and for subsequent events. If ϕ represents a condition,
he expression Gϕ for example, stands for globally and means that
formula ϕ must hold globally, i.e. for every suffix of the current
race. On the other hand, Fϕ stands for eventually and stipulates
hat ϕ should hold at some point in the future. The expression
ϕ stands for next, meaning that ϕ should hold in the suffix of

he trace starting from the next event. Finally, the binary operator
stands for until; the expression ϕ1 Uϕ2 means that ϕ1 has to

old at least until ϕ2 becomes true, and that ϕ2 must hold at
some point in the future. Several operators can be combined to
represent complex conditions on the accepted ordering of events
in a trace, such as G¬a∧F b, stating that a should never hold and
must finally hold. The traffic light property ‘‘a red light should
e immediately followed by a green light’’ can be expressed in LTL
s follows: G (red → (X green)).
Several efforts have been made to augment LTL with quantita-

ive operators that can represent quantitative (metric) real-time
roperties that are beyond the scope of classical LTL. Given the
lethora of these logics, we will only emphasize the significant
nes. For a more comprehensive explanation, readers can refer
o the cited sources. Metric Temporal Logic (MTL) [77] is the
ost extensively scrutinized and investigated real-time exten-
ion of LTL. As MTL holds significant prominence among other
xtensions, it will be explained in greater detail in the next
ection.
Past-LTL [1] extends LTL with temporal operators that refer to

ast events, allowing expressing properties such as ‘‘a has always

R. Taleb, S. Hallé and R. Khoury Computer Science Review 50 (2023) 100594

b
o
s
o
a
d
a
q
s
e
i
t
q

2

i
t
r

w
1

m
p
i
f
t
t
a

i
s
i
s

2

t
c
n
u
a
a
a
t
a
s
i
c
u
l
U
a
i
I
x

een true in the past’’. Interval LTL [78] also extends LTL with
perators that allow specifying properties over intervals of time,
uch as ‘‘a holds for at least k time units within every interval
f length n’’. Probabilistic LTL [79] where probabilistic operators
re introduced into LTL, allowing expressing properties with a
egree of uncertainty, such as ‘‘with probability p, eventually
happens’’. Quantified LTL [80] where LTL is extended with

uantifiers, allowing expressing properties over subsets of the
tate space, such as ‘‘for all states satisfying condition C , A holds
ventually’’. LTL-FO+ extends LTL with quantifiers on data values
nside events [50]. Finally, TK-LTL [81] which extends the seman-
ics of LTL with several syntactic structures aimed providing a
uantitative evaluation of different aspect of the trace.

.3.4. MTL: Metric temporal logic
MTL [77,82] is a propositional bounded-operator logic, which

s an extension of LTL with timing constraints. Temporal opera-
ors (such as ‘until’, ‘next’, and‘since’) are augmented with time
eferences. The U operator of LTL is replaced with UI , where I is
an interval of reals with endpoints in N ∪ {∞}. MTL can express
deadline properties, meaning that the system is required to react
within a specified time-frame after a particular action takes place.
For example, consider the property that ‘‘every alarm is followed
by a shutdown event in 10 s unless all clear is sounded first’’. It is
expressed in MTL as: □(alarm → (♢(0,10)allClear∨♢{10}shutdown)),
here □means always, ♢means eventually, (0, 10) means ‘within
0 seconds’ and {10} means ’in exactly 10 seconds’.
MTL can be applied to linearly ordered time domains, which

ay be represented as discrete, dense, or continuous. The inter-
retation of MTL varies depending on the selected time flow, and
ts semantics may change accordingly. For example, suppose that
: R+

→ 2Σ is a mapping from a real-time point t ∈ R+ to
he set of propositions holding at time t . Semantically, in a dense
ime, we have that f |H ϕ1 ∪I ϕ2 if ∃t ∈ I such that f t |H ϕ2
nd ∀t ′ ∈ (0, t) : f t

′

|H ϕ1, where f t (s) = f (t + s). MTL can also
represent the trace as a sequence of timed words (a time word σ
s a finite or infinite word (t0, a0)(t1, a1) . . . ∈ (R+

×Σ), where the
equence of ti is strictly monotonic and non-zero). The semantics
n this case can be as follows: σ [i] |H ϕ1 ∪I ϕ2 if and only if ∃j ≥ i
uch that σ [j] |H ϕ2, (tj − ti) ∈ I and (∀i ≤ k < j)σ [k] |H ϕ1.

.3.5. LOLA: Logic of linear arithmetic
LOLA [83] is a temporal logic-based language that allows users

o specify temporal properties over streams using various logi-
al operators, such as conjunction, disjunction, implication, and
egation. A stream of events is the same as the trace of events
sed in other languages, however a stream can be thought of as
n infinite sequence of real data values continuously generated
nd consumed. LOLA is a computation language that accepts
specification in the form of a set of stream equations using

yped stream variables. The output streams are computed from
given set of input streams. It has been shown that the expres-
iveness of LOLA exceeds that of FSM, LTL and MTL (described
n Sections 2.3.2 and 2.3.3) because it can handle quantitative
onstraints over real-valued variables. A stream can be computed
sing values from other streams by using arithmetic operators,
ogical operators (such as ∧, ∨...), temporal operators (such as
ntil...) and other operators to combine streams. It could also
llow a stream to be defined by referring to the value of an event
n another stream k positions behind, using the construct s[−k, x].
f −k corresponds to an offset beyond the start of the trace, value
is used instead. For example, the stream s1 = t1[+1, false]

which is obtained by taking at each position i the value corre-
sponding to another stream t1 at position i+ 1, except at the last
position, which assumes the default value false. Moreover, the
language provides the expression ite(b; s ; s), which represents
1 2

7

an if-then-else construct: the value returned depends on whether
the predicate of the first operand evaluates to true.

LOLA can be used to model RV as a stream computation.
Consider the specification property ‘‘every red light should not
be followed by a yellow light’’; suppose that g , r and y are two
input streams of Boolean events, representing green, red and
yellow light events respectively. Using LOLA, the property could
be expressed as follows:

t := y[1, false]
ϕ := ¬(r ∧ t)

The equation t checks if the next event is yellow, except at the
last position, which assumes the default value false. The equation
ϕ returns False whenever ¬(r ∧ ¬t) is True, i.e. whenever a red
light appears and a yellow light appears in the next position (t
evaluates to False), and True otherwise. This output can be used
as the monitor verdict for the property.

As seen, the stream RV (SRV) as pioneered by LOLA is spe-
cialized for specifying synchronous streams, which means that
events arrive in discrete steps where every input stream has an
event at every step and all output streams produce an event.
This is suitable for monitoring of correctness properties and per-
forming quantitative measures. However, it is not appropriate
for processing events that arrive at different frequencies and
have arbitrary real-time timestamps, such as in cyber–physical
systems, where timing is a critical issue.

2.3.6. Tessla: Temporal stream-based specification language
TeSSLa [84] is an asynchronous specification language that

natively supports timestamped events. It mandates a global order
for all stream events, but it does not necessitate all streams
to have events occurring simultaneously. This enables modeling
high-frequency streams.

An event stream in TeSSLa can be specified over a time do-
main T and a data domain D as a finite or infinite sequence
s = a0t0, a1t1 . . . ∈ TD. To model a specification property, the
language has many well-defined operators which can be used to
transform an input stream of events into another stream. Given
an input stream write that provides and write events to a file. The
stream write can be in the form write = wt0,−t1, wt2, wt3,−t4,
−t5, wt6..., where w means that a write event happens and
- means no event happens. The following specification checks
whether the lapse of time between two write events exceeds 5
time units.

difference := time(write) − last(time(write), write)
output := filter(difference > 5, difference − 5)

The time(write) operator accesses the timestamp each event in
the write stream. The last operator applies the operator
time(write) on the previous event. The stream difference computes
the time difference between the current w event and the previ-
ous one. The stream difference − 5 is filtered by the condition
difference > 5 using the filter operator. The resulting stream
output is a sequence of output verdicts.

Note that TeSSLa is enriched with many other operators, such
as the delay operator, which can create events at certain points.
For example, the above property can raise a unit event on the
output stream as soon as we know that there was no write event:

timeout := const(5)(write)
output := delay(timeout, write)

The first equation maps the values of events to the constant
value of 5, which is then used as timeout value. In other words,
the timeout stream is derived from the write stream by replacing

R. Taleb, S. Hallé and R. Khoury Computer Science Review 50 (2023) 100594

e
ach w event with the constant 5. In the second equation, the
delay function works as a timer, which is set to a timeout value
with the first argument and reset with any w event on the second
argument. After 5 consecutive timestamps without a w event, an
error is raised in the output stream.

2.3.7. Other specification languages
In preceding sections, we provided an overview of the prin-

cipal specification languages employed in the relevant literature
concerning RV with incomplete traces. These will be cited in
Sections 4 and 5. Nonetheless, numerous alternative specification
language tools and RV frameworks are utilized in the literature.
We provide a concise overview of them in this subsection.

We start with the Runtime Monitoring Language (RML)
[85,86], a simple yet potent Domain Specific Language (DSL)
specifically devised for RV. RML is entirely modular and de-
tached from the instrumentation and the specific type of sys-
tem under scrutiny. The foundation and interpretation of RML
hinge on a fundamental calculus known as Trace Calculus (TC)
that boasts significant expressiveness, accommodating opera-
tors like prefix, concatenation, union, intersection, shuffle, and
recursion. Additionally, it is parametric, accommodating specifi-
cations dependent on runtime-discovered values, generic enough
to make certain specification parts reusable through abstraction
over variables, and capable of handling infinite traces.

Larva [87–89] is a Java-based runtime verification tool. It uses
symbolic automata as the foundational structure for its specifi-
cation language. This design allows users acquainted with finite
state machines to seamlessly transition to specifying properties
and ensures Turing completeness by allowing the incorpora-
tion of Java code within transitions. Another notable hallmark
of Larva is its foreach construct, a mechanism that simplifies
the inclusion of top-level universal quantification within spec-
ifications. The tool also features built-in timers that can either
trigger or safeguard transitions, streamlining the establishment of
real-time properties. Additionally, for the facilitation of modular
property definitions, Larva permits communication between prop-
erties through non-blocking channels, enabling the exchange of
Java objects across monitors via internal communication events.

Other tools share similarities with Larva in terms of archi-
tecture and purpose, most notably JavaMOP [90] and MarQ [91].
The distinctive contribution of the Larva-associated body of work
lies in its divergence from conventional specification languages,
particularly LTL, in favor of an automaton-based notation.

Hawk [46] is programming-oriented extension of the rule-
based Eagle logic. On its side, Eagle [92,93] is a runtime verifi-
cation tool that encompasses both a rule-based language and an
accompanying interpreter. This comprehensive framework sup-
ports an array of temporal logics, including future and past time
logics, interval logics, extended regular expressions, state ma-
chines, real-time and data constraints, as well as statistical anal-
ysis. Each transition within Eagle carries a condition, not only
pertaining to the state machine input but also involving the vari-
ables constituting the underlying system. These transitions also
incorporate an action that influences the state variables. Notably,
the rules formulated in the Eagle system can embody either
maximal or minimal fixpoint semantics, providing the flexibility
to articulate both weak and strong interpretations of identical
operators.

Drawing inspiration from PSLang, ConSpec [94] is a specifica-
tion language tailored to operate within the confines of resource-
constrained mobile devices. The framework mandates the formu-
lation of a distinct contract for every application. Subsequent to
installation on a device, this contract undergoes rigorous scrutiny
against the user’s specified policies. In scenarios where the stip-
ulated contract fails to align with the user’s policies, the appli-
cation finds itself barred from installation onto the device. Al-
ternatively, for instances where a comprehensive pre-installation
8

contract evaluation remains unfeasible, a runtime monitor is
seamlessly integrated into the application, allowing ongoing as-
sessment post-installation.

3. Incomplete and uncertain sources of events

As we have seen in the previous section, existing approaches
to RV make use of a large number of models for the represen-
tation of events, as well as the expression of properties. There
are almost as many tools and models as there are combinations
of traces and specification languages, and some works have even
attempted to define conversions to go from one to another [30].
However, the vast majority of these approaches are underpinned
by a fundamental assumption: the trace on which the monitoring
is carried out is complete, and all the events it contains are
exact and devoid of any error or uncertainty. Regardless of the
condition to be evaluated and the notation used to represent it,
the verdict produced by a monitor is reliable only if this crucial
condition is respected.

Yet, one can easily imagine situations where the contents
of a trace may not entirely be trusted: events may go missing,
numerical measurements may carry an intrinsic uncertainty, etc.
We shall group under the term ‘‘data restriction’’ any situation
where an input trace is considered unreliable, regardless of the
reason. As we shall see in Section 4, some works in the field
of RV address the issue in different ways. However, before even
describing how the problem can be tackled, it is appropriate to
discuss the various ways in which an input trace can become
incomplete or uncertain. In this section, we present a synthesis
of the various causes for such partial information that have been
invoked in the literature.

3.1. Mechanisms of data restriction

A first element that needs to be studied is the actual location
in the monitoring process where data restriction takes place, and
in what way this restriction affects the evaluation of a property on
a trace. Fig. 7 represents a general view of the situations where
data restriction may happen. In this figure, D is the original or
‘‘perfect’’ version of a data object (i.e. the input trace), while D′ is
a degraded, modified, or otherwise ‘‘unreliable’’ version of D.

A monitor M can be viewed as a process that performs a
read operation on the contents of the data object, which can
be likened to a form of ‘‘query’’ Q . The result of this query R
corresponds to the trace (or part of the trace) whose content is
needed by the monitor. For example, one could view the access to
each individual event of a trace as a form of query-response loop
that the monitor needs to perform in order to evaluate a given
property. The figure represents four situations that can occur with
respect to data restrictions. Situation 0, on the left-hand side
of the figure, corresponds to the case where no data restriction
occurs. Monitor M0 performs a read operation Q0 on the contents
of the data object D and obtains the exact value in response R0.

In situation 1, on the right-hand side, the monitor does not
access the original data object D, but rather its restricted version
D′. The monitor can still freely query the restricted data object D′

by sending the query Q1 and receiving a response R1. This situa-
tion is representative of cases of (unintentional) data corruption,
but also of deliberate restrictions meant to prevent access to the
original trace contents. For example, values in a data object may
be subject to anonymization, or parts of the object may simply be
deleted to avoid unauthorized access.

In situation 2, at the bottom of the figure, the monitor M2
queries the data object, but the original query Q2 is transformed
into a less precise query Q ′

2 – or blocked altogether. The monitor
will receive the ‘‘correct’’ response R , but for the modified query
2

R. Taleb, S. Hallé and R. Khoury Computer Science Review 50 (2023) 100594

Q
t
t
q
e
r
m
q

m
e
o

3

c
i
t
a
p
p
c

n
t
t
i
t

3

s
i
i
t
t
s
d
a
i
f
l

1
b

Fig. 7. An overview of data restriction situations.

′

2 which probably queries different or less precise information
han Q2. Access control policies can be a reason behind blocking
he query in this situation. Finally, in situation 3, the roles of
uery and response are reversed. The monitor can query what-
ver it wants, but the response may get transformed before
eaching it. This situation is similar to situation 1, however the
odifications in this situation are applied to the output of the
uery, and not to the data object itself.
All three situations can have the same observable effect to the

onitor: receiving imprecise data, or even nothing at all. How-
ver, the difference lies in the mechanism by which uncertainty
r imprecision is introduced.

.2. Causes of data restrictions

Independent of the mechanism by which data restriction oc-
urs, causes of incomplete data in traces can be broadly divided
nto intentional and unintentional causes. Intentional causes are
he restriction mechanisms enforced by the user; hence they
re expected, such as data restricted due to an access control
olicy. On the other hand, unintentional causes are unexpected
henomena that cause a loss of data, such as a sudden data
orruption.
In a runtime monitoring context, both the intentional and

on-intentional causes will affect the monitoring process due to
heir impact on the quantity and quality of the data available
o monitor. In other words, some level of uncertainty will be
ntroduced into the data fed to monitor, which differs based on
he method of restriction imposed.

.2.1. Intentional causes
We call ‘‘intentional causes’’ any deliberate operation that re-

ults in a degradation of the original input trace that can have an
mpact on the verdict returned by a monitor. For example, most
nformation systems are equipped with mechanisms to prevent
he disclosure of their confidential data. It can be an access con-
rol mechanism that determines who can access what, or one of
everal data protection techniques such as data, encryption, and
ata anonymization. In both cases, access to the data is restricted,
nd some query responses will be returned to the sender carrying
ncorrect or incomplete data or even no answer. We detail in the
ollowing some of the possible intentional causes listed in the
iterature.

Intentional causes can be represented by any of the situations
, 2 and 3 of Fig. 7. In situation 1, the intentional modification can
e applied to data source D to obtain D′. The user then queries D′
9

instead of D and get imprecise response containing data different
from the original data in D. Similarly, intentional modifications
can be applied to Q2 (resp. R3) in situation 2 (resp. 3) to obtain Q ′

2
(resp. R′

3); the user will obtain the result of Q ′

2 (resp. R′

3) instead
of Q2 (resp. R3).

Access-control policy. An access control policy is a rule that de-
fines who is authorized to access which data and under what
circumstances he can do so. Several access control models are
commonly used in computer systems [95–108]. Each model has
different way of enforcing the rules, however all of them have the
same aim to restrict the access to certain data. Data encryption
can also be seen as a mechanism to enforce access control as it
hides the data by converting it from a readable format into an
unreadable encoded format [109].

As a simple example, consider a log containing medical
records, where the field ‘‘diagnosis result’’ of each patient can
only be accessed by a doctor. A runtime monitor verifying the sat-
isfaction of property such as ‘‘the number of patients diagnosed
by cancer is equal to 60’’ would need to access the restricted data
values to be able to compute the number of patients with cancer
to produce a certain verdict. With no access to such data, the
monitor will produce an inconclusive verdict.

The situation of access control policy is represented in situa-
tion 3 in Fig. 7: if Q3 requests to access objects O1 and O2 while
an access control policy states that the requester is permitted
only to access O1, instead of receiving R3, the requester will get
an incomplete or a reduced response R′

3 where the object O2 is
missing.

Data anonymization. Data anonymization is a technique used to
protect sensitive data by hiding personally identifiable informa-
tion while maintaining the integrity of the data [110]. The process
of data anonymization introduces uncertainty into data that was
initially certain.

There are several data anonymization techniques [111]. Gener-
alization consists of reducing the precision of attribute values by
changing their scale. For example, a discrete numerical data (such
as age) value can be replaced by an interval of values where one
of these values is the correct original value (such as [30 − 40]),
and a categorical data value (such as city name) in the original
data set can be replaced by a set of possible data values (such
as {Montréal, Laval, Longueuil}). Each value in the data set or
data interval is considered as one possible ‘‘world’’. A monitor
accessing certain data values from the anonymized data set will
get a set of possible events instead of one precise event.

Suppression is another anonymization technique, which this
time completely deletes a data attribute or a part of the data set.
On its side, replacement is a method that consists of substituting
of characters of an attribute or value of the data with a predefined
symbol (such as X or *). Note that, in case of complete suppression
of a data value, the monitor will get a missing event. In case of
partially masking characters, the monitor will get partially incom-
plete events (an uncertain event where a part of it is missing).
Another type of anonymization is the slight modification of data
attributes by adding some (random) noise to make them less
accurate. This could be, for example, adding or subtracting days
or months to a date. In this case the monitor will get incorrect or
corrupted events.

Data perturbation. While data anonymization techniques only
seek to completely remove or mask identifying information from
the data set to prevent linking the data back to specific indi-
viduals or entities, data perturbation techniques seek to balance
the need for privacy protection with the need to maintain the
usefulness and accuracy of the data for analysis and decision-
making [112,113]. There are various techniques for data per-
turbation, including randomization and noise addition, and data
swapping.

R. Taleb, S. Hallé and R. Khoury Computer Science Review 50 (2023) 100594

t
a
i
f
c
[
w
c
e
o
p
t

r
v

L
l
p
t
t
o

m
q
s
i
m
t
p
w

D
a
a
S
p
p
t
b
t
e
r
o

i
i
p
s
o
o
s
a

f
p

c
r
b
p
d
D
h
a
o
h
u
p
e
t
p
A
a
u

p
e
i
e
F
c
t
T
t
b
‘
s

3

a
n
d
t
p
e

D
c
d
i
t
m
k
b

t
d
c
i
l
v
n
w
a
o

One method of randomization is called projection perturba-
ion [114], which is a geometric data perturbation technique
pplied to a data set whose values are represented as data points
n a multidimensional space. A set of data points is projected
rom the original multidimensional space to another randomly
hosen space. Another perturbation method is by noise addition
115–117] where certain amount of random noise can be added
hile the specific information, such as the column distribution,
an still be effectively reconstructed from the perturbed data. For
xample, in the case of an execution log, suppose that a sequence
f events is made of successive numerical values x1, x2, . . . , xn. A
ossible way of applying data perturbation would be to change
he original data by adding random noise values r = r1, . . . , rn
to the original data, thus producing a modified trace x1 + r1, x2 +

r2, . . . , xn + rn, which would be published along with the distri-
bution of r . Such a perturbation makes it impossible to recover
the original content of each event, but still preserves the validity
of coarse-grained properties applying on the set of values. For
example, a property expressing a condition on the average of the
events is likely to produce the same verdict on the original and
the modified trace.

With respect to data perturbation by swapping, it is applied
by exchanging or swapping data values. In runtime monitoring,
it could be by swapping data values of an event attributes of
an event or swapping entire events in a trace. For example, in
a traffic light data set, if the green light event is swapped with
the yellow light event and a monitor is checking the property a
ed light should be always followed by a green light, the resulting
erdicts will be imprecise due to the swapped events.

oad shedding. Load shedding is a technique for removing extra
oad from a system so that the overhead is reduced and the
rocessing time keeps up with the rate of input arrivals when
hey become overloaded [118]. However, due of load shedding,
he resulting data sets after load shedding can have varying levels
f accuracy as a result of missing data values [119,120].
Load shedding is mostly applied in the data stream manage-

ent systems, where the processing delay is the most important
uality metric. In cases of overloading, which are typical in data
tream systems, the ability to maintain a desired level of delay
s severely limited. Joshi et al. [5] describe a scenario where a
edia player software is instrumented with a library given a fixed

ime budget. In a given time interval T , the instrumentation can
roduce at most B events; any event exceeding this threshold
ithin this interval is replaced by a special ‘‘non-event’’ called χ .

ata sampling. Is a technique employed to systematically select
subset of data values from a pre-defined population to serve
s a data source for data analysis tools and RV monitors [121].
ampling techniques are broadly divided into two categories:
robability and non-probability sampling. With probability sam-
ling, one can specify the probability of an element (such as
he events having the attribute x equal to a certain value n)
eing included in the sample. Among the probability sampling
echniques, we have the ‘‘simple random sampling’’, where each
lement has an equal chance of being selected, and ‘‘stratified
andom sampling’’ where each element has a known probability
f being selected.
In the case of non-probability sampling, the probability of

ncluding an element in the sample cannot be estimated. Hence it
s less expensive than the probability sampling. Among the non-
robability sampling, we have ‘‘quota sampling’’ where quotas are
et for the number of elements to be included in the sample based
n certain characteristics. These quotas are determined based
n a prior knowledge of the population, and the ‘‘convenience
ampling’’ which involves selecting sample units based on their
ccessibility to the selector, which could be influenced by various
10
actors such as geographic proximity, availability during the study
eriod, or willingness to participate in the analysis.
It is known that the monitor reports only the result of pro-

essing the events that it observes. Hence, a precise monitoring
esult depends on a precise sampling technique. In other words,
y selecting a representative subset of the trace for analysis, RV
rocess can be made more efficient, while still providing a high
egree of confidence in the correctness of the system’s behavior.
ata sampling has been used to mitigate the computational over-
ead in runtime monitoring [122]: Arnold et al. [123] presented
runtime environment that can efficiently check the violations
f user-specified correctness properties with a controlled over-
ead. They introduced property-guided sampling and in partic-
lar object-centric sampling, to collect sampled profiles while
reserving correctness of the analysis. Property-guided sampling
nsures that the sampled profile maintains sufficient properties
o make the dynamic analysis meaningful. Object-centric sam-
ling allows an analysis to sample at the object instance level.
n object can be marked as tracked, and the analysis can receive
ll profile events for this object while receiving no events for
ntracked objects.
Other monitoring approaches tend to do sampling by tem-

orarily disabling monitoring process; this is the case of Huang
t al. [124], whose proposed technique temporarily disables mon-
toring of selected events for the shortest possible duration while
nsuring that the user-specified target overhead is not exceeded.
ei et al.‘s [125] method selectively enables monitoring for spe-
ific function executions. By default, their method tracks a func-
ion execution only if it is called in a previously unseen context.
heoretically, a function’s context encompasses all memory loca-
ions it accesses. Storing and comparing all such contexts would
e prohibitively costly. They use less demanding definitions of
‘context’’ and ‘‘context matching’’ which may lead to missing
ome interesting behaviors.

.2.2. Non-intentional causes
Apart from the intentional causes enumerated above, there

lso exist unforeseen situations that result in data restriction. All
on-intentional causes belong to situation 1 of Fig. 7 where the
ata source D is changed to D′ after applying certain modification
echnique(s). The user will query D′ instead of D and get im-
recise response containing data different from the original data
xisting in D.

ata corruption. A first obvious non-intentional cause is data
orruption. Events in a trace can be stored on a medium that
egrades over time and may render access to some of their values
mpossible; error detection codes, such as CRC-32, can also reveal
hat stored data is invalid, without necessarily providing the
eans to recover the original data. In such a situation, all one can
now is that an event occurred or that some value was recorded,
ut that the actual contents cannot be trusted.
Another common type of data corruption occurs during data

ransmission, when a data event or an interval of events is
ropped from the stream, for example, due to a momentary
ommunication link failure or as a result of environmental factors
nterfering with data transmission, particularly when using wire-
ess transmission methods. Assuming that each transmitted data
alue is assigned a unique and incrementing ID, the presence of
on-successive IDs can be used by a user connected to the source
here these events are stored to detect the occurrence of such
drop. This makes it possible to determine how many events
ccurred, but not their values.

R. Taleb, S. Hallé and R. Khoury Computer Science Review 50 (2023) 100594

I
t
r
t
m
o
t
t
H
p

u
r
E
t
T

ncorrect system instrumentation. As mentioned in Section 2.1.2,
he instrumentation is a computational process that extracts and
ecords events from a software system during execution to make
hem available for analysis by a decision procedure (such as an RV
onitor) [39]. The recorded events are sent to the monitor as an
rdered stream (a trace of events). The event order in the execu-
ion trace is usually guaranteed by instrumentation to correspond
o the order in which the appropriate computing step occurred.
owever, in some cases, such as distributed environments, only a
artial ordering of events can be properly relayed to the monitor.
There are other situations where logging statements are man-

ally inserted by the developers [17,18]. In such a context, many
elevant logging statements can be missing from a system [126].
ach logging statement typically is assigned a log level. There are
ypically six types of log levels ordered based on their verbosity:
RACE > DEBUG > INFO > WARN > ERROR > FATAL. The usage of

these levels by developers can be highly unreliable [127] where
the same statement in two distinct code locations can be assigned
two different levels (e.g. INFO vs. DEBUG). For example, if a user
sets the verbosity level to be printed at the WARN level, only the
logging statements with the level WARN or ERROR or FATALwould
be printed out (and thus reach a monitor). If a relevant event for
the evaluation of a property is assigned the incorrect level, it runs
the risk of being filtered out on the grounds of the verbosity level
and not reach the monitor.

Such manually-generated logging statements can also be im-
precise in themselves. For example, suppose that a message such
as ‘‘Error reading resource’’ can be used to indicate either a disk
or a network failure; a monitor for a property such as ‘‘every disk
failure must stop the program’’ may report incorrect violations
because two types of failure get the same message and translate
into the same event.

Imprecise measurements. As was discussed in Section 2, in some
situations events contain values that have been measured by
some sensor device. These devices might suffer from low data
quality due to long-term use and other environmental factors
[128] resulting in bias, drifting, full failure, or precision loss and
other faults in the data recording process. Supplying a decision
procedure such that a runtime monitor with inaccurate data
from sensors will affect the verdict produced by the monitor. A
simple example from Taleb et al. [2] considers a sensor recording
temperature producing a value T having an error range, e.g. T =

20◦
± 0.5. If the verdict produced when monitoring a property

depends on whether T ≤ 20 or T > 20, the monitor will not be
able to produce a definite verdict for a range of values of T .

Another example of such a situation is illustrated by the moni-
toring of the position of a drone [129]. The altitude a of the drone
can be modeled as a probability distribution. In such a model, a
Boolean statement such as a > 3 cannot be expressed directly,
as the precise value of a is unknown. One can only speak of the
probability Pr(a > 3); in such properties, Boolean statements are
recovered by giving bounds, such as Pr(a > 3) ≥ 0.99.

Impedance mismatch. Impedance mismatch is a cause of data
uncertainty that occurs while checking a property over a trace
of events during RV. In order to monitor an event, the property
is checked over the event parameters and emits a verdict if
the parameters of the event are compatible with the property.
Usually, we can solve this issue by rewriting the property so that
it can align with the instrumentation and the event parameters.
Impedance mismatch occurs if two conditions are satisfied: first,
there is no knowledge about event parameters. Second, the pa-
rameters used to express the property do not align with the event
parameters and there is no possibility to re-write the property so

that it matches the event parameters.

11
For example, a property may specify conditions on individual
values of x and y, while the source of events only gives their sum
s. Taleb et al. suggest that impedance mismatch can occur, for
instance, when one wishes to monitor a new property over a log
that has been recorded for another purpose [2]. One solution that
does not require rewriting the property is to turn values of s into
imprecise versions of x and y.

Decentralized and distributed systems. A distributed and decen-
tralized monitoring setting is typically built from subsystems or
processes situated at various locations or nodes [130]. These enti-
ties operate independently and establish communication among
themselves through an underlying communication platform. Each
location retains a record of events that occur. In a runtime moni-
toring configuration, monitor instances are also dispersed across
different locations and possess the capability to communicate
with one another. This arrangement offers the flexibility to con-
duct property checks in a decentralized manner.

In real-world scenarios, both non-distributed and distributed
systems are susceptible to encountering failures. Nevertheless,
failures within distributed systems can be more intricate com-
pared to non-distributed systems due to the separate nature of
the executing units. Communication between nodes can intro-
duce loss of information; nodes can fail due to hardware issues
or software bugs, or may behave maliciously or provide incorrect
information. These failures are known as Byzantine failures and
can lead to data corruption and uncertainty about the integrity
of the system. Systems that use replication for fault tolerance, it
can be challenging to ensure consistency across replicated copies
of data. If updates to data are not synchronized correctly, data
inconsistencies may occur, leading to uncertainty about which
version of the data is accurate.

3.2.3. Effects of data restrictions
In the preceding sections, we described the mechanisms of

data restrictions and all the causes of data restrictions that can
happen intentionally and non-intentionally. We hinted by means
of a few examples to the impact that these restrictions can have
on the verdict produced by a monitor. In this section, we examine
this notion in more detail and discuss the possible effects of data
restrictions on the monitoring process.

Consider a simple situation where possible atomic events are
Σ = {a, b, c}, a trace σ = abcababbca, and the simple property
that stipulates that ‘‘every a must immediately be followed by
b’’. If the monitor is fed event a, and the subsequent event b
is dropped from the trace, it will incorrectly conclude that the
property is violated upon receiving the next event c. The same
will happen if, instead of being dropped, b is corrupted and turned
into event c . In those situations, the monitor reaches a definitive
verdict, but this verdict is incorrect in light of the content of the
original trace.

A different set of issues can arise if the presence or content of
events is uncertain. For example, suppose that the actual identity
of the second event of the trace is not known. In such a situation,
the monitor cannot reach a definitive verdict: the property could
be satisfied (if the unknown event is b) or violated (if it is
anything else). A similar outcome occurs in the situation where b
may or may not have occurred.

We distinguish between eight types of data restrictions. This
categorization will be used in later sections to classify the works
on RV under uncertainty according to the type of restriction they

consider.

R. Taleb, S. Hallé and R. Khoury Computer Science Review 50 (2023) 100594

C
f
l
m

o
w
i
s
b

t
Y
t
e
i
r

C
n
a

g
i
o
o

c
m

ase 1: We know exactly one event is missing and where. In this
irst case, the monitor is given a trace where the number and
ocation of missing events is known. For example, a monitor
ight receive the input trace σ = abcχbabbca, where χ is marker

indicating that at this precise location, an event is known to have
occurred but was lost. We have seen this happens in some cases
of load shedding where actual events are dropped and replaced
by an empty ‘‘non-event’’. This can also occur in situations where
each event is given a sequential number, and where a gap in the
order of these numbers is detected.

In such a situation, the monitor may ignore the missing events
and proceed with the next event, or generate a non-conclusive
verdict, or consider the set of all possible events that may occur
in this gap. Note that this case can be extended to the situation
where n successive events are known to be lost (which would
be detected by the presence of multiple successive χ markers),
or multiple individual events are missing throughout the input
trace.

Case 2: We know an event is invalid, but we can’t recover its
contents. This case is handled in the same way as the previous
one. A corrupted event can be considered as a missing event
whose occurrence is known. As we discussed earlier, corruption
can be made known by means of checksums and other integrity
checks, which can typically uncover the presence of corruption
but not always recover from it.

Case 3: We know events are missing, but we do not know how many.
This time the χ marker may only be interpreted as the presence
of an interval of missing events, but the number of events in this
interval is unknown. Thus a runtime monitor may receive the
trace σ = abc?abbca, where this time ? indicates the location
f an interval of missing events. This could occur, for example,
hen the communication link feeding events to the monitor

s interrupted and then resumed, but without the presence of
equential numbers that could indicate how many events have
een lost in the meantime.
This case is much harder to handle than the previous two, due

o the higher degree of uncertainty on the contents of the trace.
et, in some cases, a monitor can still recover from such situa-
ions and produce a sound verdict. For example, if the monitor
valuates the property ‘‘every c is eventually followed by an a’’,
t could conclude that the received prefix satisfies the property
egardless of the length and content of the missing gap.

ase 4: Events are missing and we don’t know about it. In this case,
o marker is even present to signal possibly missing events. Thus,
monitor would receive for example the trace σ = abcabbca; the

monitor is not notified of whether, if any, and where, are missing
events in this input trace. As with case 3, a monitor could still
produce a valid verdict for some input traces and some properties,
however it does not even have a mean of knowing when its
verdict could be incorrect. We list this situation for the sake of
completion, but it goes without saying that none of the surveyed
works address this situation.

Case 5: Events are corrupted and we don’t know about it. This is
equivalent to case 4. The monitor will process the event as if
ignoring the presence of corrupted events.

Case 6: We know an event may be one from a set, but we don’t
know which one. This can be seen as a more precise type of
uncertainty than cases 1 and 2. Instead of supposing that a
missing event could be any one in Σ , this time the monitor is
iven slightly more precise information as a set of possible events
s known. One solution could be replacing the event with a set
f possible replacements or by the conjunction of the elements
f this set. For example, the monitor could receive the trace
12
σ = abc{b, c}babbca, where the exact value of the fourth event is
unknown, but it can only be b or c.

This happens, for example, if an event is partially corrupted,
so that its contents is known in part (enough to eliminate a set
of possibilities over what it could be). It is also a symbolic way
of representing uncertainty over numerical values; thus a value
of 20 ± 0.5 indicates that the ‘‘true’’ value can be any one in the
interval [19.5, 20.5], without knowing exactly which one it is.

Case 7: We know an event x may or may not have occurred. In
this situation, the monitor is fed events, but some of them have a
marker indicating that their occurrence is uncertain. For example,
a monitor could receive a trace σ = abċabbca, where the dot over
the first c indicates that this event may or may not have occurred.
Conceptually, this case can be handled in a way similar to Case 6,
if one allows the empty event ϵ to be one of the possibilities.

Case 8: We know events x and y occurred, but we don’t know which
came first. This situation happens in cases where the interleaving
of multiple events is not precisely known, such as in the Life Data
Recorder discussed earlier. In this case, the monitor could receive
a trace such as σ = ab(c ∥ a)bbca, where c ∥ a indicates that both
and a have occurred, but their exact ordering is missing. The
onitor in this case could consider the two possibilities {ca, ac}

and produce a set of two possible verdicts.
We shall mention that, depending on the specification prop-

erty, the monitor may be able to produce a conclusive verdict
regardless of what and how many the missing events are. For
example, if the property states that each b should be finally fol-
lowed by a, once receiving the event a after the gap, the monitor
is able to produce a conclusive and sound verdict. Moreover, in
some situations and for some specification properties, extending
an existing specification language with useful operators allows
writing a specification property in a way that avoids the need for
the missing or uncertain event in producing a correct verdict [6].

4. RV approaches to data restrictions

As explained in Section 3, the presence of data restrictions
can be caused by a variety of factors, either intentional or un-
intentional. Moreover, data restrictions obviously have an impact
on the verdict produced by a monitor in some situations. In this
section, we survey and categorize the various approaches that
have been taken in RV literature to address this issue.

Two types of data restrictions must be distinguished at the on-
set: unknown restrictions correspond to the first example, where
the monitor has no means of assessing where and how data
restriction occurs; for example, when an event is dropped and no
mechanism exists to inform the monitor of its absence, or when
its contents are corrupted and it is impossible to discover this.
This type of data restriction commonly occurs in distributed sys-
tems where identifying the root cause of data loss or uncertainty
can be complex.

By definition, it is impossible to always recover from un-
known data restriction: the monitor will necessarily produce an
incorrect verdict in some situations. For example, in distributed
systems, monitoring and debugging require specialized tools and
techniques, adding uncertainty to the troubleshooting process.
However, some approaches consider RV for distributed systems
by keeping into account this type of restrictions by relying on the
programming language or model used to implement the mon-
itors. Audrito et al. [131,132] for example, define the behavior
of the distributed devices by perceiving them as a collective
computational entity that collectively executes a distributed com-
putational process, utilizing the field calculus as a fundamental
programming language. Aggregate computing is decentralized by

R. Taleb, S. Hallé and R. Khoury Computer Science Review 50 (2023) 100594

n
t
a
w
M
a
m

d
t
u
a
o
n
c
w
i

s
w
a
o
f
w
a

t
w
b
a
f

T
t

f ,
l
a

4

p
t
f
o
o
d

4
T
f
m
t
k
e
l
e

ature. The absence of peer-to-peer connections and an abstrac-
ion from actual message transmission leads to a fault-tolerant
chieved by construction, as missing or delayed messages or net-
ork partitioning are indistinguishable from normal operation.
oreover, relying on the field calculus, their approach can self-
dapt to changes in the network topology. Thus, it inherently
anages instances of failure without manual intervention.
The rest of the works surveyed in this section address known

ata restrictions. These correspond to alterations of the input
race that the monitor is made aware of. Examples of this type of
ncertainty include: a numerical measurement accompanied by
n interval of uncertainty; a placeholder indicating that an event
ccurred without knowledge of its actual contents; or a mecha-
ism that can identify that a data object is corrupted without the
apability of recovering its contents. In those cases, a monitor can
arn its user that the presence of data restrictions may have an

mpact on the accuracy or the validity of its verdict.
The nature of this warning varies from one study to another:

ome works propose a verdict associated to a probability; other
orks output multiple possible verdicts. As we shall see, some
pproaches use statistical methods to create a RV model capable
f computing a final verdict, while others build the model using
ormal languages and automata theory, and many approaches
ork on the abstraction of incomplete event traces to achieve an
bstract verdict.
In this section, we describe approaches from literature that

ackle the problem of RV with incomplete or imprecise data and
e classify them into abstraction based approaches, statistical-
ased approaches and language-based approaches. Each of these
pproach is described in the same way, by summarizing the
ollowing elements:

• The type of uncertainty targeted, by linking them to the
various cases enumerated in Section 3.2.3

• The type of events (atomic, numerical, tuples, etc.) and the
way uncertainty about them is represented

• The method used to represent the specification and the type
of verdict produced by the monitor (e.g. probability, interval,
set of possible values, etc.)

he formalism used by each approach to represent the events and
he specification properties are listed in Table 4.

Furthermore, we divide the existing works into three broad
amilies of techniques: abstraction-based approaches (Section 4.1)
anguage-based approaches (Section 4.2), and statistical-based
pproaches (Section 4.3).

.1. Abstraction-based solutions

Some RV approaches use abstraction methods to solve the
roblem of monitoring a property over an incomplete trace. At-
empting to fill a gap in a trace with all possible replacements
or the missing or uncertain event will produce a large number
f concrete traces. Abstracting the set of concrete traces into
ne abstract trace will simplify the approach. In this section, we
iscuss the RV approaches based on abstraction.

.1.1. Taleb et al. [2]: RV under access restrictions
ype of uncertainty targeted:. First, Taleb et al. proposed a logical
ramework that accounts for incomplete and uncertain infor-
ation due to several reasons that restrict a monitor’s access

o the source of events. A proxy is used to model different
inds of access restrictions including missing events, corrupted
vents, encrypted events, partially unknown events, and corre-
ated uncertainty where the deterioration is correlated with other
vents.
13
Type of events and their representation. An event is a valuation
that assigns to each atomic proposition a truth value from domain
B = {⊥,⊤}. For example, if A = {a, b, c} is a set of atomic
propositions, an event is represented as e = {a = ⊥, b =

⊤, c = ⊤}. This is also called a uni-event because it contains
one valuation or one possible world only. The proxy is built using
a finite-state machine. It takes a valuation as input and models
the uncertainty by generating all the possible replacements (this
represents cases 6 and 7 of Section 3.2.3). The output is a set
of valuations called a multi-event. For example, one kind of
uncertainty is: it is impossible to know which one of the propositions
a or b holds in an input event, only that at least one of them is true. In
this case the proxy will replace an input event that supports a by
an output multi-event that only supports the weaker proposition
a∨b. In other words, the event e = {a = ⊤, b = ⊥, c = ⊥} where
a holds is transformed to the multi-event v = {{a = ⊤, b =

⊥, c = ⊥}, {a = ⊥, b = ⊤, c = ⊥}, {a = ⊤, b = ⊤, c = ⊥}},
where at least a or b holds. Similarly for events where b holds. A
trace of multi-events is called a multi-trace.

Method used to represent specification property and type of verdict.
With respect to the specification property, Taleb et al. use a mealy
machine to lift a multi-monitor (that can accept a multi-event
as input) from a uni-monitor (that can accept a uni-event). For
a given multi-trace, the output of the multi-monitor is the set of
outputs obtained by running the underlying uni-monitor on every
possible uni-projection (every possible path or sequence of uni-
events producing an output verdict). This set of outputs is called
a multi-verdict. On the other hand, the fact that events fed to a
monitor can now contain multiple valuations has an impact on
the possible verdicts produced by the monitor where two uni-
projections may result in two different verdicts. This ambiguity
can be measured by associating each verdict to the fraction of
all uni-traces that yield this verdict and hence can be used as a
quantitative indication of its likelihood.

4.1.2. Leucker et al. [3]: RV for timed event streams with partial
information
Type of uncertainty targeted. For their part, Leucker et al. pro-
posed a solution for RV over streams of data containing missing
and imprecise values. A data stream is a sequence of timestamps
and data values representing the stream’s events. To model im-
precise values, streams are lifted from concrete domains of data
to abstract domains. For example, a concrete numerical value in a
concrete stream can be represented as an interval of real numbers
in the abstract stream. Briefly, an abstract event stream is repre-
sented as multiple concrete event streams carrying information
about the events and the gaps (this represents cases 6 and 7 of
Section 3.2.3).

Type of events and their representation. With respect to event
representation, a concrete event at a timestamp t can be a known
event d of any type (such as Boolean) belonging to a data domain
D, ⊥ if there is no event at t , or ? for timestamps after the
progress of the stream. A data abstraction of a data domain D
is an abstract domain D# where a particular point t can either
be a known event from D with a known timestamp, ⊥ if there
is no event at t (but there are events at t ′ > t), ⊤ if there is an
event at t but it is unknown (imprecise), and ⌣ to represent
a gap (a segment of an abstract event stream that represents all
combinations of events that could possibly occur in that segment,
both in terms of timestamps and values).

Method used to represent specification property and the verdict
type. Leucker et al. extended the TeSSLa specification language
described in Section 2.3.6 into Abstract TeSSLa by defining an ab-
stract counterpart operator for each concrete operator of TeSSLa.

R. Taleb, S. Hallé and R. Khoury Computer Science Review 50 (2023) 100594

T
c
T

o
b
r
S
f
c
n
a
s
v
o
v
e
s
p
f
c
i

4
T
f
o
u
s
i
u
s
u
s
u
p
t
t
(
a
u

T
f
f
p
v
o

(

(

(

s
r

M
t
m
t
t
(
t
i

t
a
s
o
t
i
c
a
a
p
a
c

p
S
t

i
m
t
r
a
p
e
w
a
a
m
o
I
e
K
A
a

4

a
o
c

4
T
p
p
a
i
a
t
p
a

T
a
c
a
r

his allows deriving an abstract specification property from a
oncrete specification property by replacing every concrete
eSSLa operator with its abstract counterpart.
The abstract specification is proved to be a sound abstraction

f the concrete specification, i.e., every concrete verdict generated
y the original specification on a set S of possible input traces is
epresented by the abstract verdict applied to an abstraction of
. For example, in the domain B, a concrete event can be true,
alse, or ⊥. Applying a concrete TeSSLa specification, we get a
onclusive concrete verdict for the true and false events, and a
on-conclusive verdict when encountering ⊥ (missing event) or
n imprecise event or a gap of any length. However, for an ab-
tract trace in the domain B#, an abstract verdict (set of concrete
erdicts) is produced when applying the abstract specification
ver the abstract events. For a known event, the resulting abstract
erdict contains one concrete conclusive verdict. For a missing
vent, which is still represented as ⊥, the abstract verdict is the
ame as the verdict produced on a concrete event ⊥. For an im-
recise event replaced by ⊤ which represents any possible event
rom B, the abstract verdict is a set containing all the possible
onclusive verdicts. For a gap replaced by⌣ , the abstract verdict
s a set of all possible conclusive and non-conclusive verdicts.

.1.3. Wang et al. [4]: RV of traces under recording uncertainty
ype of uncertainty targeted. Wang et al. [4] present an approach
or RV to handle the uncertainty that arises due to imprecise
rder of events in a trace. A Life Data Recorder device (LDR) is
sed to collect updates to data variables such as x and y and
tores their values as a snapshot vector (Section 2.2.5) or a frame
n the memory. Some variables are process variables that are
pdated once in a frame, while other variables can be updated
everal times in the same frame. Uncertainty arises when the
pdate of one variable interleaves with the other variables in the
ame frame and the knowledge about the exact ordering of their
pdates in the frame is lost. As a simple example, suppose that a
rocess variable x is updated one time (from value 2 to value 3) in
he frame f , and the variable y is updated two times (from value 4
o 3 and from 3 to 5) in the same frame f . One possible ordering of
x, y) updates could be (2, 4)

x
−→ (3, 4)

y
−→ (3, 3)

y
−→ (3, 5). When x

nd y interleave, we cannot determine the exact ordering of (x, y)
pdates (this represents case 8 of Section 3.2.3).

ype of events and their representation. Wang et al. consider each
rame recorded by LDR as an abstract state, and each mapping
rom the variables x and y to their values a concrete state. A
ossible concrete state is (2,4) which maps x to value 2 and y to
alue 4. Several traces of concrete states can be extracted from
ne abstract state such as:

2, 4)
x
−→ (3, 4)

y
−→ (3, 3)

y
−→ (3, 5)

2, 4)
y
−→ (2, 3)

x
−→ (3, 3)

y
−→ (3, 5)

2, 4)
y
−→ (2, 3)

y
−→ (2, 5)

x
−→ (3, 5)

A sequence of abstract states form an abstract trace Tr . The
et of concrete traces consistent with the abstract state Tr(i) is
epresented as Path(Tr(i)).

ethod used to represent specification property and the verdict
ype. Past LTL (Section 2.3.3) [1,26,133] is used to represent the
onitoring property using atomic formulas such as ⊙ϕ (meaning

hat ϕ was true at the immediately previous state), ⋄ϕ (meaning
hat there was some time in the past when ϕ was true), ⊡ϕ
meaning that ϕ was always true in the past), and φSψ (meaning
hat either φ was always true in the past, or ψ held somewhere
n the past and since then φ has always been true).
14
Wang et al. aim to monitor a property over the abstract
race provided by the LDR. They keep the syntax for past-LTL
nd introduce a new three-valued semantics based on standard
emantics for concrete traces. A formula ϕ evaluates to true (⊤)
n an abstract trace Tr only if it evaluates to ⊤ on all concrete
races consistent with Tr; it evaluates to false (⊥) on Tr only if it
s ⊥ on every concrete trace consistent with Tr; otherwise a non-
onclusive ? is resulted. To monitor the property ϕ = φSψ over
concrete trace p0, . . . , pm a checking algorithm iterates through
ll concrete states from p0 through pm. In each concrete state
j, the checker keeps the resulting verdicts of all subformulas (φ
nd ψ) on the trace p0, . . . , pi−1 (called the checker state). The
hecker updates its state based on the values in pi.
To monitor the formula ϕ = φ Sψ over an abstract trace

Tr , the semantics are built in a recursive fashion assuming the
resulting verdicts of checking the subformulas φ and ψ over the
artial trace Tr(i) is finished and available in a mapping SV i :

ubFormulas(ϕ) → {⊤,⊥, ?}. The function checkOne(SV i; p;ϕ) is
hen used, where p is one concrete trace from Path(Tr(i + 1)),
the function returns whether ϕ is satisfied on all, none, or some
(neither all nor none) concrete traces formed by concatenating
any concrete trace in Path(Tr(i)) with p.

Kallwies et al. [134] studied the problem of recurrent mon-
toring with partial knowledge about input events. Recurrent
onitoring checks a property from a specific position t in the

race (not necessarily a prefix of the trace). Each event is rep-
esented as a tuple of atomic symbol and position in trace. If
violation of the property occurred, it is associated with this
articular position t rather than the entire trace. Kallwies et al.
xtended recurrent monitoring to k-offset recurrent monitoring
here the verdict that the monitor must compute is shifted by
constant offset k. They extend past-LTL with bounded future
nd propose anticipatory recurrent monitoring. The anticipatory
onitor computes functions that predict the future verdicts of the
riginal monitor which are possible after the current observation.
t can be also used to handle uncertain events. An uncertain input
vent is modeled as a set of possible inputs that actually happen.
allwies et al. also used assumptions to improve the anticipation.
nother approach for Kallwies that deals with uncertainty using
ssumptions is in [135].

.2. Using language-based solutions

Aside from statistical and abstraction-based methods, some
pproaches proposed a formal language equipped with useful
perators to write a specification property that can produce con-
lusive verdicts when monitoring a trace with incomplete events.

.2.1. Joshi et al. [5]: RV of LTL on lossy traces
ype of uncertainty targeted. They presented an approach to the
roblem of RV in the presence of transient loss, which is a non-
ermanent loss of an event or a finite sequence of events is lost in
trace. After the data loss, the number of events that happened

s known but their content is unknown (this represents cases 1
nd 2 of Section 3.2.3). The goal of the authors is to show that
here are some properties that can be monitored regardless of the
resence of lossy events, under the condition that the monitor is
ble to observe subsequent valid events after the loss.

ype of events and their representation. An event can be a single
tomic proposition from an alphabet Σ or an atomic formula
omposed of atomic propositions connected using Boolean oper-
tors (such as conjunction ∨ and disjunction ∧). A lossy event is
epresented by the symbol χ .

R. Taleb, S. Hallé and R. Khoury Computer Science Review 50 (2023) 100594

M
T
a
a
t
a
l
v
a
o
l
l
m
w
s
m
e
l
t
w
H
b
e

b
m
l
=

4
p
T
i
a
r

T
t
c

(
a
p

ethod used to represent specification property and the verdict type.
he specification property is expressed using LTL (Section 2.3.3)
nd converted into an RV-LTL monitor, which is a finite-state
utomaton presented by Bauer et al. [25] as an extension of
he LTL3 semantics into B4 = {⊤,⊤p,⊥p,⊥}, where ⊤p and ⊥p
re emitted whenever an observed system behavior has not yet
ead to a violation or acceptance of the monitored property. The
alue ⊤p (respectively ⊥p) means that the system will presum-
bly satisfy (respectively violate) the property in the future. In
rder to determine whether the property is monitorable over a
ossy trace, Joshi et al. build an algorithm that searches for a
oss-tolerant alphabet and a loss-tolerant cluster in the RV-LTL
onitor. A loss-tolerant alphabet represents the input elements
here each element forces the monitor to transition into a unique
tate irrespective of its current state. The monitor is supposed to
ove to the unique state at the end of the loss if the processed
lement after the loss belongs to the loss-tolerant alphabet. A
oss-tolerant cluster constitutes the set of states where each state
ransits the monitor to the same next state within the cluster
hen processing the same input from the loss-tolerant alphabet.
ence, If a loss occurs when the current state of the monitor
elongs to a loss-tolerant cluster, the transitions of the cluster
nsure that the next state would still be one of the same cluster.
A loss-tolerant monitor M is derived from an RV-LTL monitor

y adding a new state. Whenever a lossy element χ appears, the
onitor moves to this state and outputs the verdict ‘‘?’’. Hence, a

oss-tolerant monitor produces an output in the truth-domain B5
{⊤,⊤p, ?, ⊥p,⊥} which is B4 augmented with ‘‘?’’.

.2.2. Basin et al. [6]: Monitoring compliance policies over incom-
lete and disagreeing logs
ype of uncertainty targeted. They study the effect on RV of miss-
ng data due to logging failures and disagreement between logs
bout the occurrence of certain events when multiple logs are
equired to verify a property.

ype of events and their representation. Basin et al. represent
he uncertainty over event occurrences by means of what they
all a logging knowledge base. A knowledge base is a sequence
D = D0,D1, . . . of first-order structures defined over the set
of ternary Boolean values {⊤,⊥, ?}, where ‘‘?’’ represents the
unknown truth value. Each first-order structure represents a dis-
crete time point, and totally defines the (ternary) truth value of
each event predicate. Informally, for some predicate r of input
arity n, r(a1, . . . , an) = ⊤ in a given time point τ indicates
that the event r(a1, . . . , an) with parameters a1, . . . , an happened
at τ . Conversely, r(a1, . . . , an) = ⊥ in a given time point τ
indicates that the event r(a1, . . . , an) did not happen at τ . Fi-
nally, r(a1, . . . , an) =? represents a knowledge gap with regard
to whether r(a1, . . . , an) happened at τ (this represents case 7 of
Section 3.2.3).

Method used to represent specification property and the verdict
type. Basin et al. propose what they call a compliance policy
language L3, which is a variant of First-Order Temporal Logic
(FOTL) [136], to formalize and evaluate compliance policies in
the presence of incomplete knowledge. A compliance policy is
typically represented as a set of regulative normative statements
(norms), that express what conditions need to be held by an
agent to be authorized to do specific actions. Norms are applied
at all times within a system, and deadlines are critical to manage
temporal norms. Based on these notions, a compliance policy in
L3 is a closed formula of the form □∀x̄.ϕ.

For logging failure, Basin et al. assume that during the logging
process, all events at are recorded correctly, and if a logging
failure happens at a time point τ , the logging process stops and
nothing is recorded until the process is restarted. Based on this
15
assumption, policy violation could be avoided at τ (where the
failure happens) if the policy to be checked depends on the past
events that are already recorded before τ . The language L3 is
equipped with the temporal connective operator ♦[b,b′)ϕ which
returns true if ϕ is true at least at one past time point in the time
interval [max(0, τ − b′

− 1), τ − b], and false if it is false at all the
time points in this interval. For example, the compliance policy If
a request is serviced at a web-server, then it must not have been
denied by a firewall (in the past x time points) is formalized as
□∀r.(service(r) −→ ¬♦[0,x)deny(r)), where r is the request and
service(r) and deny(r) are predicates respectively representing
the servicing and denying events of the request r . If the failure
happens at τ and we want to verify the predicate service(r) at
τ , then all requests that had been denied at the previous x time
points potentially violate the policy. However, if none of these
time points has deny(r) hold, the policy is therefore satisfied. So,
not all logging failures must result in potential violations.

L3 also specifies the obligations that should be respected by
two parties exchanging documents; for example, the policy ‘‘all
received documents must be paid for within 5 days’’. L3 provides
the operator ♢[0,6)pay(d) which has the same interpretation as
♦[b,b′)ϕ but for future time points, and the operator ⊗ which
is better than ∨ and ∧ in the sense that none of the parties
will be favored over the other when they disagree about the
occurrence of an event. The policy is stated in L3 as follows:
□∀d.send(d) ⊗ receive(d) −→ ♢[0,6)pay(d). If nothing is sent at τ ,
the receiver’s log does not contain a receive(d) and the sender’s
log does not contain a send(d), then the receiver in this case will
not pay anything (false⊗false −→ false evaluates to true meaning
that the policy is satisfied). Contrarily, when a document is sent,
we have that true ⊗ true −→ true evaluates to true meaning
that the policy is also satisfied. However, the sender may insert
fictitious send(d) events to oblige the receiver to pay while the
receiver’s log disagrees (no receive(d) event in the receiver’s log).
In this case, the ⊗ operator can be used: true⊗ false evaluates to
⊥, and ⊥ −→ false evaluates to ⊥. In this case, specification no
longer favors one party over the other.

4.2.3. Basin et al. [7]: On real-time monitoring with imprecise times-
tamps
Type of uncertainty targeted. Basin et al. raised the problem of im-
precise timestamps of traces influencing the correct verification
of the properties.

Type of events and their representation. Two types of traces are
considered: an observed trace and a real trace. The observed
trace is a timed word σ containing imprecise timestamps and is
represented as a sequence of tuples (τi, ai) where i ∈ N, τi ∈ T
T is a discrete time domain) is the time stamp and ai ∈ 2P is an
tomic proposition from P . The real system trace, which contains
recise timestamps, is represented as a timeline ρσ .
To represent the imprecise timestamps, Basin et al. assume a

timestamp imprecision δ ≥ 0, where an imprecise timestamp
is assumed to belong to [τi − δ, τi + δ] (this represents case 6
of Section 3.2.3 applied to timestamps instead of event values).
A set of timelines TL(σ) can be obtained from a timed word
based on the function π : T → 2P , where π (t) = ai if
ts−1

= {i} (where ts : N → T is an injective function and
ts(i) ∈ [τi − δ, τi + δ]) or π (t) = ∅ otherwise). For example,
if σ = ({p}, 1), ({q}, 1), ({r}, 2), ({s}, 5)... and δ = 1, the time
intervals are [0, 2], [0, 2], [1, 3], [4, 6] and a possible timeline is
π where π (0.6) = {q}, π (1.2) = {r}, π (1.3) = {p} and π (t) = ∅

for t ∈ [0, 4)\{0.6, 1.2, 1.3}.

R. Taleb, S. Hallé and R. Khoury Computer Science Review 50 (2023) 100594

M
B

t
t
i
T
t

w
F
a
p
t
a
c
n

f
a
a
⊥

4
d
T
R
t
l

T
p
T
m
l
e

M
F
e
T
o

p
i
p
v
t
t
s
h

r
v
D
o
t
v
c
v
c
⊥

w
t
⊥

c
a

ethod used to represent specification property and the verdict type.
asin et al. use MTL (Section 2.3.4) to rewrite ϕ into tf (ϕ), where

tf (ϕ) accounts for timestamp imprecision by relaxing the implicit
temporal constraints on atoms. For example, instead of having ‘‘p
holds now’’, we have ‘‘p holds at a time point within the interval
[0, δ] in the past starting from now or p will eventually hold at a
ime point within the interval [0, δ] from now’’. Formally, p ∈ P :

f (p) := (♦[0,δ]p) ∨ (♢[0,δ]p). On the other hand, they transform σ

nto a monitored timeline ρσ by ignoring timestamp imprecision.
hen they use an existing monitor (for precisely timestamped
races) to monitor ρσ with respect to tf (ϕ).

They aim to identify the MTL fragments ϕ for which confor-
mance with tf (ϕ) over ρσ implies conformance of all π ∈ TL(σ)
ith ϕ, which consequently implies the satisfaction of ϕ over σ .
or example, if ϕ = p and tf (p) is satisfied at t , then p is satisfied
t some t ′ within the interval [t − δ; t + δ], and thus there is a
ossible timeline for which ϕ is satisfied at t . However, not all
imelines satisfy ϕ at t . In this case, we cannot obtain guarantees
bout a precise verdict of whether σ satisfies ϕ, so we obtain non-
onclusive verdict ‘‘?′′. In contrast, for ¬ϕ = ¬p, we have tf (p) is
ot satisfied at t , then ϕ is not satisfied on the interval [t−δ; t+δ]

on ρσ , then there is no possible timeline satisfying p at t . Hence,
we can obtain guarantees that σ satisfies ϕ. As a conclusion, the
ragments of the property that can be satisfied (resp. violated) at
ll time points in the interval [t − δ; t + δ] and consequently by
ll (resp. none) of the timelines π and emit the verdict ⊤ (resp.
) are those in which atomic propositions occur only negatively.

.2.4. Basin et al. [8]: RV of temporal properties over out-of-order
ata streams
ype of uncertainty targeted. Basin et al. present an approach for
V of properties over a data stream whose events may arrive to
he monitor out of order or may not arrive due to delays and
osses (this represents case 8 of Section 3.2.3).

ype of events and their representation. The monitor observes a
refix of a timed word with gaps due to arbitrary message delays.
hese gaps may be filled when more messages arrive to the
onitor from time to time. The timed word is a sequence of

etters, and each letter is of the form ⟨I, σ ⟩ where I is a non-
mpty interval describing a time point in the timed word and σ is

a partial function describing an action. Initially the monitor does
not know anything about the system behavior, so the timed word
is represented as an infinite gap ⟨[0,∞), []⟩. If a message (such as
‘‘predicate p is true’’) arrives at timestamp 1, the interval [0,∞)
will be split and the timed word becomes ⟨[0, 1), []⟩⟨{1}, [p →

true]⟩⟨(1,∞), []⟩, and so on. If the monitor concludes that no
action in the interval [0, 1), the letter ⟨[0, 1), []⟩ can be removed
and the timed word becomes ⟨{1}, [p → true]⟩⟨(1,∞), []⟩.

Method used to represent specification property and the verdict type.
Basin et al. extend MTL (Section 2.3.4) into MTL↓ to reason about
data values in the trace, where a freeze quantifier ↓ is used to take
a value from a register in the state at a time point and freezes it
into a variable. A freeze quantifier is a weak form of existential
quantification. An MTL↓ policy example is:

□ ↓
cid c. ↓tid t. ↓amt a.trans(c, t, a) ∧ a ≥ 2000 →

□(0,3] ↓
tid t ′. ↓amt a′.¬trans(c, t ′, a′)

which states that ‘‘if a customer executes a transaction that
exceeds $2000, then he must not execute any other transaction
for 3 days’’. The registers cid, tid and amt stores the customer id,
transaction id and the transferred sum respectively. The variables
c and t are frozen to the values in cid and tid respectively. The
variables a and a′ are frozen to values stored in the register amt
but at different times. The same for t and t ′.
16
Basin et al. interpret the truth values as in Kleene logic and
conservatively extend the logic’s standard Boolean semantics as
in [6]. MTL↓’s three-valued semantics is defined by [[w, i, v |H

ϕ]] ∈ B3 where w is the observation, i ∈ N is the time point
and v : V → D is a partial valuation that maps each logical
variable to its value (V is the set of variables and D is the data
domain). If ϕ = t or ϕ = f , a precise verdict is simply produced.
However, if ϕ = p(x̄), then a precise verdict is produced only if
v(x̄) is defined, otherwise a non-conclusive verdict ⊥ is emitted.
If we have ↓

r x.ϕ, then the valuation v is obtained by freezing
the value of x to the value in the register r . For the Boolean
connectives ¬,∨ and ∧, the interpretation is trivial. However for
other connectives such as UI , more interpretation is needed.

4.2.5. Ferrando et al. [9]: RV with imperfect information through
indistinguishability relations
Type of uncertainty targeted. According to Ferrando et al., the
standard RV of LTL properties is based upon the assumption that
the absence of an event a is considered equivalent to its negation
¬a, which is not true in a case where a exists but it is indistin-
guishable from another event. So, they focus on differentiating
between knowing when something is not true and knowing when
something is unknown.

Type of events and their representation. Events are atomic propo-
sitions from an alphabet Σ . The absence of information is char-
acterized by duplicating Σ such that Σ̄ = {p⊤, p⊥,∀p ∈ Σ}.
The imperfect in information happens when atomic propositions
such as p and q cannot be distinguished from each other (this
represents case 2 od Section 3.2.3). This allows to introduce the
equivalence relation p ∼ q, the equivalent class γ = {p, q}, and
the witness [γ]⊤ = {p⊤, q⊤} and [γ]⊥ = {p⊥, q⊥}.

They define two versions of traces: the explicit version σe
where p⊤ ∈ σe(i) if p holds at σ (i) and p⊥ ∈ σe(i) if p does not
hold at σ (i); and the visible version σv derived from the σe where
[γ]⊤ (resp. [γ]⊤) ∈ σv(i) if ∀p ∈ γ , p⊤ (resp. p⊥) ∈ σe(i).

ethod used to represent specification property and the verdict type.
errando et al. use LTL to express the property ϕ. They define an
xplicit version ϵ(ϕ) of ϕ, where ϵ(p) = [γ]⊤ and ϵ(¬p) = [γ]⊥.
hey also define the operators ∨ and ∧, as well as the next
perator ◦, where ϵ(◦ϕ) = ◦ϵ(ϕ).
Ferrando et al. extend the standard monitor’s synthesis

ipeline (Fig. 2 of Section 2.1.1) to explicitly consider imperfect
nformation. They generate the DFA of ϵ(ϕ) to recognize the
refixes of trace that satisfy ϕ and ϵ(¬ϕ) to recognize those that
iolate ϕ. However, the duplication of the atomic propositions in
he formula breaks the duality between ϕ and ¬ϕ. For this reason,
hey added ⊗ϕ which is ¬ϵ(ϕ)∧ ¬ϵ(¬ϕ) and followed the same
teps to generate the DFA of ⊗ϕ which can recognize the prefixes
aving continuations that do not satisfy nor violate ϕ.
Each of the three monitors will process a visible trace δv and

eturn a verdict in {⊤,⊥, ?}. The resulting the three verdicts
ϵ(ϕ), vϵ(¬ϕ), v⊗ϕ emitted by the DFA of ϵ(ϕ), DFA of ϵ(¬ϕ) and
FA of ⊗ϕ respectively, can be combined to deduce one final
utcome. Five possible combinations exist: ⊤ if there is no con-
inuation of δv which either violates ϕ or makes it undefined (i.e.
ϵ(¬ϕ) = ⊤, v⊗ϕ = ⊥, vϵ(ϕ) = ⊥). The verdict ⊥ if there is no
ontinuation which either satisfies ϕ or makes it undefined (i.e.
ϵ(¬ϕ) = ⊥, v⊗ϕ = ⊤, vϵ(ϕ) = ⊥). The verdict uu if there is no
ontinuation which either satisfies or violates ϵ(ϕ) (i.e. vϵ(¬ϕ) =

, v⊗ϕ = ⊥, vϵ(ϕ) = ⊤). The verdict ?̸⊥ if there is no continuation
hich will eventually violate ϵ(ϕ), but there are continuations
hat satisfy ϵ(ϕ) and make it undefined (i.e. vϵ(¬ϕ) = ⊤, v⊗ϕ =

, vϵ(ϕ) = ⊤). Symmetrically, the verdict ?̸⊤ if there are no
ontinuations satisfying ϵ(ϕ), but continuations that violate ϵ(ϕ)
nd make it undefined exist (i.e. v = ⊥, v = ⊤, v = ⊤).
ϵ(¬ϕ) ⊗ϕ ϵ(ϕ)

R. Taleb, S. Hallé and R. Khoury Computer Science Review 50 (2023) 100594

F
b
v

t
h
t
t
a

M
t
m
d
s
τ
s

p
i
o

i
n
o
T
O

M
S
m
M
s
a
O
t
w
s
s
s
t
t
t

[
T
w
n
f
r
s

4
T
b
o
t
a

T
t
e
n
d
o
o
p
a
i
a
p
p
m
D

M
t
s
d

inally, the verdict ? if the monitor cannot conclude anything yet,
ecause there exist continuations satisfying ϵ(ϕ), continuations
iolating ϵ(ϕ), and continuations that make it undefined (i.e.
vϵ(¬ϕ) = ⊤, v⊗ϕ = ⊤, vϵ(ϕ) = ⊤).

4.2.6. Aceto et al. [10]: Monitoring for silent actions
Type of uncertainty targeted. The approach conducted by Aceto
et al. centers around the monitorability of a system that encoun-
ters silent actions or events. These actions refer to computational
steps that are not revealed in the system model’s level of ab-
straction. Nonetheless, the model presents sufficient indications
of their occurrence throughout execution.

Type of events and their representation. Two types of actions are
represented using atomic symbols: external or observable actions
and silent actions. The system states or processes are modeled as
a standard labeled-transition system (LTS) model L, where actions
stimulate the transitions between states. The processing of silent
action is represented by a τ -transition. Several silent actions can
happen successively causing a sequence of τ -transitions which
can be obscured by turning them into υ-transitions, thus hiding
how many transitions were taking place at certain points and
obtaining an obscured LTS L′ (the obscuring of the number of
ransitions is equivalent to case 3 of Section 3.2.3). Any state
aving a τ -transition in L still have a τ -transition in L′. External
ransitions are not affected and if a state p has a sequence of τ -
ransitions in L leading to a state q that can perform an external
ction, this observation is preserved in L′.

ethod used to represent specification property and the verdict
ype. Specification properties are expressed in a variant of the
odal µ-calculus called µHML formulae (Hennessy Milner Logic)
escribed in [137]. µ-HML is a dynamic logic with structure
imilar to an automaton and modal operators that also describe
-transitions. Its operators include true, false,∨,∧, [µ]ϕ, p which
tates that ∀ state q of the LTS reached by event µ from p, ϕ holds
at q, and ⟨µ⟩ϕ, p which states that ∃q reached by event µ from p
and ϕ holds at q.

The monitoring setup is composed of an LTS system L and a
monitor M consists of a set of states SM and accepts external and
silent actions. When the system produces a trace event µ that the
monitor is able to analyze by transitioning from m to n, where
m, n ∈ SM , the constituent components of a monitored system
m ◁ p move in lockstep, where m ◁ p means that the LTS is in
state p when M is in state m. On the other hand, if M is unable to
analyze an event µ, the monitored system still executes, but the
monitor transitions to an inconclusive state end, where it remains
for the rest of the computation.

Aceto et al. focus on rejection monitors to monitor safety
fragments of the µHML formula, and use a state no to designate
the rejection state. A monitor at state m rejects a process p in L
if there exists a process q in L and a sequence of actions s such
that the monitor ends in state no and the system is at state q after
processing the trace s.

4.3. Statistical-based solutions

Another way to verify a property against a trace that con-
tains uncertainty is to statistically compute the probability that
the property is satisfied. In other words, the probability that a
positive verdict is emitted.

4.3.1. Stoller et al.: RV with state estimation (RVSE)
Type of uncertainty targeted. Stoller et al. [54] account for missing
events in a trace and present the RVSE algorithm which is based
on a statistical model of the monitored system. The aim is to
fill the gaps and predict the probability that a positive verdict is
emitted when encountering a gap.
17
Type of events and their representation. Simple atomic symbols
are used to represent the internal states of the system. A Hidden
Markov Model (HMM) is used to represent the actual internal
states of the system and can be learned from complete system
traces using machine learning algorithms [138–141]. The pres-
ence of a gap is represented by the symbol gap(L), where L is a
robability distribution representing the length of the gap and L(l)
s the probability that the gap has length l (this represents case 3
f Section 3.2.3).
Using the forward algorithm, at each time point t, the system

s in some internal (hidden) state si, it undergoes a change to a
ext state sk according to a transition probability, and emits an
bservation symbol oj according to an observation probability.
he result is a sequence of observation symbols such as O =

1,O2, . . . ,Ot .

ethod used to represent specification property and the verdict type.
toller et al. use a DFA M to represent the property ϕ to be
onitored. For each observation symbol emitted by the HMM,
moves from the current state to the next one. The sequence O

atisfies the property if and only if it leaves the monitor M in an
ccepting state mf when processing the last observation symbol
t , and the probability of satisfaction is computed based on the
ransition and observation probabilities taking into account all
ays of reaching the configuration in which the HMM is in state

t and M is in state mf . If a gap appears in the observation
equence whenM is at state n andH is at state si, the observation
ymbol, say v, emitted by si cannot be determined. In this case,
he extended forward algorithm sums over all the possibilities
hat the monitor can move from a predecessor p to n by adding
he probability of each observation symbol between p and n.

Another statistical-based approach is proposed by Zhou et al.
142]. They first learn an HMM and transform it to a Discrete
ime Markov Chain (DTMC), which is a stochastic process in
hich the next state depends only on the current state, and
ot any historical states. However, instead of using the classical
orward algorithm, they used Baum–Welch algorithm (reader can
efer to [143] for more details about the algorithm) to model the
ystem based on the previously observed target event sequence.

.3.2. Kalajdzic et al. [11]: RV with particle filtering (RVPF)
ype of uncertainty targeted. The approach of Kaladjzic et al. is
ased on that of Stoller’s et al. They also account for the presence
f gaps in the trace. However, they introduce a technique for con-
rolling the trade-off between runtime overhead and prediction
ccuracy.

ype of events and their representation. Similar to Stoller et al.,
he system states are represented using an HMM and each state
mits an observation symbol. The symbol gap(L) is used to de-
ote a possible gap whose length is drawn from a probability
istribution L over the natural numbers (this represents case 3
f Section 3.2.3). However, Kalajdzic et al. introduce a new type
f events called ‘‘peek events’’, which represent observations of
arts of the program state, which are performed probabilistically
t the end of a gap. Peek events help correct the movement errors
ntroduced by using the HMM model during gaps. After each gap,
peek operation inspects a variable or a set of variables in the
rogram state and returns an observation qt . This information
rovided by a peek event helps to reduce the uncertainty in the
onitor state after gaps, which in turn narrows down the monitor
FA’s possible states.

ethod used to monitor and fill gaps and the verdict type. Similar
o Stoller et al., the goal is to calculate a probability that the
ystem’s behavior satisfies ϕ, i.e. to produce a probabilistic ver-
ict. However, in contrast to Stoller et al., Kalajdzic et al. model

R. Taleb, S. Hallé and R. Khoury Computer Science Review 50 (2023) 100594

t
N
t
e
p

a

t

he composition of the HMM and DFA as a Dynamic Bayesian
etwork (DBN), which is a type of Bayesian network that relates
he system state variables xt and the monitor state variables st to
ach other and to the observation variables ot as well as to their
revious states xx−1 and st−1 over adjacent time steps. If a gap is

encountered at time t , a peek event qt is produced at the end of
the gap.

Kalajdzic et al. proposed the RVPF algorithm where the system
state is represented by a set of particles. A particle is a hypo-
thetical state of the system being modeled which represents a
possible value or configuration of the system’s state, and is often
drawn from a probability distribution that reflects the uncertainty
in the state estimation. The idea is to represent the system state
with a large number of particles and use them to estimate the
probability distribution of the true state of the system. Particle
filtering (PF) is used with sequential importance resampling (SIR)
to estimate the internal state of the DBN. The importance weight
of each particle in a state is summed to estimate the probability
of that state. When an observed event occurs, each particle selects
a state transition to execute by sampling the joint transition
probability distribution of the DBN. The particles are then redis-
tributed among the states that provided the best prediction of
the current observation. By utilizing the DBN structure and the
current observation, SIR is used to decrease the variance of the
PF and enhance its performance.

4.3.3. Wilcox et al. [12]: RV of stochastic, faulty systems
Type of uncertainty targeted. Wilcox et al.’s monitor a safety
property over mixed stochastic systems (which consist of both
hardware and software components) that may suffer from state
uncertainty as they degrade due to hardware failure, and impre-
cise or unobserved future states due to the possible interactions
of their components (a state could be missing or uncertain but
treated as missing, so this refers to cases 1 and 2 of Section 3.2.3).

Method used to represent specification property. A safety con-
straint ϕ is written in LTL (see 2.3.3) which is converted into
automata (see 2.3.2), mainly an NBA to automate the monitoring.
However, NBA does not guarantee a complete transition function
of the safety requirement. Hence, an NBA is converted into a
deterministic BA.

Type of events and their representation and the monitoring method.
The embedded system states are represented using Probabilistic
Hierarchical Constraint Automata (PHCA) formalism. PHCA is sim-
ilar to an HMM in the sense that it employs hidden states and
probabilistic transitions. However, PHCA incorporates state con-
straints and a hierarchy of component automata. The system is
modeled as a collection of individual PHCA components that com-
municate through shared variables. Each component is defined by
discrete modes of operation, which represent both normal and
faulty behavior. These modes can transition probabilistically or
based on system commands, and can also be constrained by the
modes of other components.

The states of the PHCA are: qt : the safety state of the system
at time t , defined as the state of the DBA that describes the safety
constraint ϕ, xt : system state at time t , ct : system command
t time t and zt the observation at time t . If xt is observable,

qt can be easily calculated from available information. Else, qt
cannot be known. However, one can estimate the probability that
the system remains safe with ϕ by determining the probability
distribution of the DBA state qt , which is based on the history of
observations (z1:t) and commands (c1:t). This probability distribu-
ion is called a belief state B(yt) =

∑
xt P(qt , xt |z1:t , c1:t), where

yt = qt ⊗ xt .
The computation of the belief state over the BA is similar to

the standard Forward algorithm for HMM belief state update.
18
The subsequent state is predicted in a stochastic manner, taking
into account the previous belief and transition probabilities of
the models. This prediction is subsequently adjusted based on
received observations. The observation probability (P(zt |xt)) and
transition probability (P(xt |xt−1, ct)) are both reliant on the phys-
ical system’s model. In the case of an HMM, these probabilities
are defined as a component of the system’s model. However, for
PHCA, these probabilities are determined by calculating the tran-
sition and observation probabilities of the specified components
throughout the system.

5. Synthesis

In Section 4, various approaches that address the challenge of
RV when uncertainty exists in the underlying trace are described.
However, these approaches vary in terms of the types of uncer-
tainty considered, the formalism used to represent events, the
specification languages for property representation, the monitor-
ing methods/algorithms employed, and the types of verdicts pro-
duced. In this section, we aim to analyze and compare these dif-
ferences. Furthermore, we evaluate each approach based on key
features that characterize RV, such as soundness, completeness,
and monotonicity.

5.1. Events and uncertainty representation

Approaches in Section 4 account for different types of uncer-
tainty in the trace: missing events whose content is unknown,
imprecise events whose content is not completely defined, events
with imprecise timestamps whose time of occurrence is not clear,
or unordered events that arrive to the monitor in an unknown se-
quence. Table 1 specifies the different types of events uncertainty
for each approach and how each approach represents uncertain
events.

Taleb et al. (Section 4.1.1) replace a missing event with all
possible valuations which means that each imprecise or missing
event is replaced by a set of possible replacements. Wang et al.
(Section 4.1.3) and Basin et al. (Section 4.2.4) both account for
unordered events. Wang et al. replace the whole trace (which
is an abstract trace) by the set of all possible sequences or all
possible orderings of the events, whereas Basin et al. used the
timed word ⟨[0,∞), []⟩ representing an infinite gap. Whenever
a new event arrives, the timed word is split to insert the event at a
specific time point. Leucker et al. (Section 4.1.2) account for three
types of uncertainty: a missing event at time point t represented
as ⊥t , imprecise event at t is represented as ⊤ and a gap (a
segment of the abstract stream representing all combinations of
events in terms of timestamps and values) is represented as ⌣ .
Basin et al. (Section 4.2.3) also account for imprecise timestamps
in a trace represented as a timed word. They assume a timestamp
imprecision δ ≥ 0 and an imprecise timestamp is assumed to
belong to [τi − δ, τi + δ]. Based on this, several timelines are
obtained from one timed word.

Joshi (Section 4.2.1), Stoller (Section 4.3.1) and Kalajdzic
(Section 4.3.2) only account for complete loss of events, and
not uncertain events. They simply represent a missing event
by a symbol. Joshi et al. use the symbol χ , whereas Stoller
et al. and Kalajdzic et al. use the symbol gap(L). Ferrando 4.2.5
accounts for imprecise or indistinguishable events. If an event p
is indistinguishable, it is represented as p and ¬p. For Wilcox et al.
(Section 4.3.3), a missing event is simply an unobserved state x in
the system model. As to Aceto et al. (Section 4.2.6), their approach
is limited to one kind of uncertainty which is replacing a group
of τ silent actions with one less precise υ silent action.

Basin et al. (Section 4.2.2) use a model that represents uncer-
tainties over event occurrences. A knowledge gap with regard to

R. Taleb, S. Hallé and R. Khoury Computer Science Review 50 (2023) 100594

w
a
r
b

5

H
c
s
o
t
t
f
a

v
s
T
o
c
i
S
v
(
v

(
t
p
r
t
v
R
i
s

Table 1
Different types of events uncertainty and their representation.
Approach Missing events Imprecise events Imprecise timestamps Unordered events Representation

Taleb (Section 4.1.1) All possible valuations
Leucker (Section 4.1.2) ⊥t or ⊤t or ⌣
Wang (Section 4.1.3) All possible sequences
Joshi (Section 4.2.1) Symbol χ
Basin (Section 4.2.2) ?
Basin (Section 4.2.3) interval [t − δ; t + δ]

Basin (Section 4.2.4) ⟨time interval , []⟩

Ferrando (Section 4.2.5) p and ¬p ∀p ∈ Σ

Aceto (Section 4.2.6) v-transition
Stoller (Section 4.3.1) Symbol gap(L)
Kalajdzic (Section 4.3.2) Symbol gap(L)
Wilcox (Section 4.3.3) Unobservable state x
d
o

t
i
b
e
v
b
t
e
?
u
i
c

t
a
b
a

i
e
d
w
t
c
s
p
T

hether a predicate r(a1, . . . , an) happened at τ is represented
s r(a1, . . . , an) =?. In the case of Basin (Section 4.2.3), they
epresent an event as a tuple where each timestamp is replaced
y an interval of time.

.2. Different forms of verdicts

RV is all about producing one precise verdict for each event.
owever, the presence of uncertain or missing events makes this
hallenging due to the inability of the monitor to precisely ob-
erve the event and correctly emit a verdict. Changing the format
f representing events in a trace to account for the imprecision in
heir content may change the form (in terms of structure) and the
ype (in terms of number) of the output verdicts. Table 2 shows
or each approach in Section 4, the type of the produced verdict
nd the form used to represent it.
Some approaches produce a set of verdicts instead of one

erdict. Taleb et al. (Section 4.1.1) replace each input event by the
et of possible valuations and emits a verdict for each valuation.
he verdict produced is in the form of a set of verdicts rather than
ne single verdict. They also suggest quantifying each verdict by
ounting how many uni-traces projections of a multi-trace result
n each verdict, producing a form of ‘‘probability’’ or ‘‘likelihood’’.
imilarly for Leucker (Section 4.1.2), whose approach emits a
erdict for each concrete event, resulting in a set of verdicts
abstract verdict) for an abstract event. The result is an abstract
erdict representing a set of the verdicts of the concrete events.
Stoller (Section 4.3.1), Kalajdzic (Section 4.3.2) and Wilcox

Section 4.3.3) use a probabilistic model such as HMM and PHCA
o represent the system states, and estimate their verdicts as a
robability that an event satisfies the property. Other approaches
ely on an extension of existing formalisms to define new verdicts
hat account for missing/uncertain events, and produce a single
erdict, such as Joshi (Section 4.2.1) who extends the existing
V-LTL to produce the non-conclusive verdict ? when process-
ng the symbol χ . Similarly, Ferrando (Section 4.2.5) extend the
tandard monitor’s pipeline to include the verdicts {uu, ?̸⊥, ?̸⊤, ?}
and explicitly consider imprecise events. Aceto (Section 4.2.6)
focus on rejection monitors for safety fragments of their policy,
which ends in state no if a process is rejected and in a non-
conclusive state end if the event cannot be analyzed (meaning
that the property is non-monitorable). Their approach is limited
in that it only accounts for violations. However, it tackles issues
related to monitorability which are not considered in the other
approaches discussed in this survey.

The rest of the approaches in Table 2 produce a single verdict
in B3 such as Basin et al. (Sections 4.2.2, 4.2.3, 4.2.4) and Wang
et al. (Section 4.1.3). Wang et al. generate all the possible se-
quences (concrete traces) consistent with the given abstract trace
and produce a concrete verdict for each concrete trace. However,
the final verdict is a single verdict ⊤ if all the concrete verdicts

are ⊤, ⊥ if all concrete verdicts are ⊥, or ? otherwise.

19
5.3. Soundness, completeness and monotonicity

Soundness, completeness, and monotonicity are important
concepts used to evaluate the effectiveness of RV approaches.
Soundness indicates how much confidence one can have in the
output of monitor. It refers to the ability to produce a correct
verdict indicating whether the monitored system has either sat-
isfied or violated the specified property, without any ambiguity
or uncertainty.

Completeness, on the other hand, refers to the ability of an RV
approach to capture all relevant events or behaviors of a system
during runtime without missing any violations or satisfactions
of the expected properties [41]. In other words, a monitor is
complete if it is able to return a conclusive verdict, whenever
processing an event. The monitor should not return the non-
conclusive symbol ‘‘?’’ unless it is unable to correctly analyze the
event or if the event is missing or imprecise and the monitor is
not able to access it. In both cases, the monitor is not able to
detect a violation or a satisfaction. Hence, it is not complete. Note
that the output symbol ‘‘?’’ indicates that the outcome generated
by the monitoring process lacks the precision to yield a definitive
judgment (⊤ or ⊥). Consequently, it fails to establish a decisive
etermination regarding whether a property is entirely satisfied
r unequivocally violated at the end of the trace.
Consider the property p is eventually true over the trace ‘qqqq’,

he monitor does not return a conclusive verdict (⊤ or ⊥) because
t is not able to observe any p event. However, the monitor may
e able to return a conclusive verdict when observing subsequent
vents. Some approaches tried to come up with a more precise
erdict to distinguish this case (the case where the monitor may
e able to change its verdict relying on the future events) from
he case where the monitor will not be able to change it. Joshi
t al. [5] emits ⊤p or ⊥p and Ferrando et al. [9] emits ? ̸⊥ or
̸⊥. Their approaches also emit the non-conclusive verdicts ‘‘?’’ or
u. However, our perspective perceives all of these outcomes as
mprecise determinations that hinder the monitor from achieving
ompleteness.
Monotonicity indicates that the verdicts obtained do not re-

ract as new events become available. In other words, if a RV
pproach makes a conclusion about the behavior of a system
ased on a set of observations, and then additional observations
re made, the conclusion should not be invalidated.
In scenarios involving uncertain or missing events, guarantee-

ng the above concepts becomes challenging because the pres-
nce of knowledge gaps could limit the ability of the monitor to
etect some violations or satisfactions of the specified properties,
hich affects the soundness and completeness of the monitor. On
he other hand, one must ensure that the verdicts persist after
losing knowledge gaps to guarantee the monotonicity. Table 3
tates for each of the approaches of Section 4 whether it totally or
artially guarantees soundness, completeness and monotonicity.
he symbols in the table are explained as follows: indicates

R. Taleb, S. Hallé and R. Khoury Computer Science Review 50 (2023) 100594
Table 2
Different methods to represent verdicts.
Approach One-verdict Multi-verdicts Probability Form

Taleb (Section 4.1.1) Set of verdicts from {⊤,⊥, ?}
Leucker (Section 4.1.2) Set of verdicts from {⊤,⊥, ?}
Wang (Section 4.1.3) One value from {⊤,⊥, ?}
Joshi (Section 4.2.1) One value from {⊤,⊤p , ?, ⊥p,⊥}
Basin (Section 4.2.2) One value from {⊤,⊥, ?}
Basin (Section 4.2.3) One value from {⊤,⊥, ?}
Basin (Section 4.2.4) One value from {t, f, ⊥}

Ferrando (Section 4.2.5) One value from {⊤,⊥, uu, ?̸⊥, ?̸⊤, ?}
Aceto (Section 4.2.6) One value from {no, end}
Stoller (Section 4.3.1) Probability of satisfaction
Kalajdzic (Section 4.3.2) Probability of satisfaction
Wilcox (Section 4.3.3) Probability of satisfaction
i

that the feature is totally covered, indicates that the feature is
partially covered, ✗ indicates that the feature is not covered and
U indicates that it is undetermined, i.e., impossible to precisely
determine whether the feature is covered or not.

The statistical-based approaches (Stoller et al. (Section 4.3.1),
Kalajdzic et al. (Section 4.3.2), Wilcox et al. (Section 4.3.3)), use a
model of the system (an HMM or a PHCA) to estimate the prob-
abilities of hidden states, fill the gaps and generate a sequence
of observation symbols representing the most likely sequence
of hidden states and emitted events. However, it is important
to note that the accuracy of the imputed events depends on
the accuracy of the HMM and the estimated probabilities. If the
HMM does not accurately capture the underlying system behav-
ior or the estimated probabilities are unreliable, the generated
sequence may not accurately reflect the actual system behavior,
leading to false positives (incorrectly reporting a violation) and
false negatives (failing to report a violation). Therefore, guar-
anteeing soundness and completeness of the statistical-based
approaches is challenging. The same can be with respect to the
monotonicity, as the verdict’s consistency cannot be guaranteed.

Taleb et al. (Section 4.1.1) assume that all valuations of the
input multi-event are still valuations of the output multi-event
(world-preserving proxy), hence the verdicts that are supposed
to be emitted for the input valuations are preserved. Conse-
quently, false verdicts are still emitted for violating events, and
true verdicts are still emitted for valid events, which guarantees
the soundness of the approach. With respect to monotonicity, as
each missing event is replaced by the set of all possible replace-
ments and the multi-verdict includes all the possible verdicts, this
means the same multi-verdict will be produced for any replace-
ment. Hence verdicts are preserved. Similarly, the approach of
Leucker et al. (Section 4.1.2) states that the verdict of each con-
crete trace persists in the abstract trace. This feature guarantees
the soundness and monotonicity of the approach. The approach of
Wang et al. (Section 4.1.3) states that a true (resp. false) verdict is
emitted when monitoring a property over an abstract trace if and
only if all the concrete traces consistent with this abstract trace
evaluate to true (resp. false). Otherwise, the outcome is uncertain.
This guarantees the monotonicity of the approach because the
same verdict will be produced for any possible replacement of
events. The approach is also sound because it produces correct
verdicts. However, the three approaches of Sections 4.1.1, 4.1.2
and 4.1.3 are not complete because, in some cases, an uncertain
verdict is produced.

With respect to Joshi et al. (Section 4.2.1), the loss-tolerant
monitor M guarantees soundness because it produces a verdict
at the end of the trace compatible with that of an RV-LTL monitor,
assuming that a loss tolerant cluster and a loss tolerant alphabet
exist. However, some patterns such as □(a → (b ∧ c)) cannot be
soundly monitored under transient loss. The approach guarantees
monotonicity because, as described by Joshi et al., the output of

the M is always equal to that of an RV-LTL (before and after m

20
processing the lossy elements χ). Since the outputs of an RV-LTL
monitor is monotonic, we conclude that the output of M is also
monotonic. However, the approach is not complete since the state
machine produces the uncertain verdict ? when processing χ .

The approach of Basin et al. (Section 4.2.2) aims to avoid
reporting a policy violation unless there is indeed a violation.
This implies that the approach is sound. Their approach is not
complete in the sense that some policy violations may not be
reported. However, completeness is guaranteed on an expressive
fragment of the compliance policy that retains all the language’s
connectives but limits the usage of free variables. With respect to
the monotonicity requirement, the policy language used by Basin
et al.’s work ensures that this requirement is maintained. In this
language, evaluations of formulas do not reduce the amount of
knowledge when resolving incompleteness in the extension of a
logging knowledge base.

The approach of Basin et al. (Section 4.2.4) provides soundness
and completeness guarantees in the sense that verdicts are cor-
rect w.r.t. the observations given to the monitor, meaning that,
assuming no failures occur, violations and satisfactions of specifi-
cations will eventually be reported despite the presence of finite
message delays. Their reasoning is monotonic with respect to the
partial order on truth values, where ⊥ is less than t and f , and t
and f are incomparable. This monotonicity property ensures that
closing knowledge gaps does not contradict previously obtained
Boolean truth values. In other words, when filling a knowledge
gap represented by ⊥ with either t or f , the resulting truth value
will always be consistent with the previously obtained one.

The approach of Basin et al. (Section 4.2.3) is sound in the
sense it always emits a correct verdict. However, soundness
is guaranteed only for certain MTL fragments in which atomic
propositions occur only negatively. The approach is also complete
for these fragments because the same precise verdict is emitted
for all the timelines and for the timed word σ . Similar to Basin
et al. (Section 4.2.4), the approach is monotonic.

The approach of Ferrando et al. (Section 4.2.5) is sound in the
sense that all the emitted verdicts are correct. In other words, a
negative verdict is emitted only if a violation occurs and a pos-
itive verdict is emitted only if a satisfaction happens. However,
the algorithm is not complete in the sense that at some point,
no verdict is emitted (represented by ‘‘?′′) which means that a
satisfaction or a violation is missed. Monotonicity is guaranteed
because the verdict ⊤ is produced if and only if there is no con-
tinuation of δv which either violates ϕ or makes it undefined, and
the verdict ⊥ is produced if and only if there is no continuation
which either satisfies ϕ or makes it undefined. This means that
once the verdict ⊤ or ⊥ is emitted, it persists over all the possible
continuations of the trace.

According to Aceto et al. (Section 4.2.6), their monitor can
check for a µHML formula ϕ on L from any obscuring L′ of L if ∀p
n L′: p does not satisfy ϕ on L if and only if p is rejected by the
onitor on L′. So, the verdict produced when monitoring over L′

R. Taleb, S. Hallé and R. Khoury Computer Science Review 50 (2023) 100594

H
t
a

Table 3
Features and limitations in related works.
Approach Monotonic Complete Sound

Taleb (Section 4.1.1) ✗

Leucker (Section 4.1.2) ✗

Wang (Section 4.1.3) ✗

Joshi (Section 4.2.1) ✗

Basin (Section 4.2.2)
Basin (Section 4.2.3)
Basin (Section 4.2.4)
Ferrando (Section 4.2.5) ✗

Aceto (Section 4.2.6)
Stoller (Section 4.3.1) U U U
Kalajdzic (Section 4.3.2) U U U
Wilcox (Section 4.3.3) U U U

Table 4
Different methods to represent events and policies.
Approach Event type Policy

Taleb (Section 4.1.1) Valuation over
Boolean variables

DFA

Leucker (Section 4.1.2) Timestamp, data
value

TeSSLa

Wang (Section 4.1.3) Atomic event or
process variable

Past-LTL

Joshi (Section 4.2.1) Atomic symbol LTL
Basin (Section 4.2.2) Predicate with arity FOTL
Basin (Section 4.2.3) Tuple (atomic

symbol, timestamp)
MTL

Basin (Section 4.2.4) Tuple (time interval,
atomic symbol)

Freeze MTL

Ferrando (Section 4.2.5) Atomic symbol LTL
Aceto (Section 4.2.6) Atomic symbol µHML Logic
Stoller (Section 4.3.1) Observation symbol DFA
Kalajdzic (Section 4.3.2) Observation symbol DFA
Wilcox (Section 4.3.3) Observation symbol LTL

is compatible with the verdict produced when monitoring over L.
ence, the approach is guaranteed to be sound. However, similar
o Basin et al. (Section 4.2.2), completeness is guaranteed only for
fragment of the µHML formula. Aceto et al. state that once the

monitor transitions to the inconclusive state end (resp. rejection
state no), it remains in this state for the rest of the computation.
This indicates that the approach is monotonic.

5.4. Comparison based on specification language

The approaches in Section 4 use various specification lan-
guages to express the specification property. The languages are
summarized in Table 4. Each specification language is charac-
terized by its operators and expressiveness. Some approaches
such as that of Joshi et al. (Section 4.2.1), Ferrando et al. (Sec-
tion 4.2.5) and Wilcox et al. (Section 4.3.3) simply use the LTL
formalism to express properties using atomic propositions and
Boolean connectives. To automate the monitoring process Joshi
et al., Ferrando et al. and Wilcox et al. convert the LTL into FSM,
DFA and BA respectively to automate the monitoring process.

Others such as Stoller et al. (Section 4.3.1), Kalajdzic et al.
(Section 4.3.2) and Taleb et al. (Section 4.1.1) directly use finite
state machines to represent the property. Aceto et al.
(Section 4.2.6) use µHML formulae (Hennessy Milner Logic) whose
structure is similar to an automaton. Additionally, it has modal
operators that describe τ -transitions.

Some approaches use an extension of LTL such as Wang et al.
(Section 4.1.3) who use Past-LTL which augments the LTL with
operators that reason about the past. While Past-LTL does not
offer greater expressiveness than LTL, it is much more concise
and convenient for defining correctness properties when it comes
to RV over finite traces [1]. Since the events in their approach
21
lack explicit timestamps, only linear time properties in LTL are
analyzed. Basin et al. (Section 4.2.2) also propose an augmented
LTL specification language that use the operators of LTL and
propose more connective operators to reason about the past and
future time points and operators to reason about incompleteness
and handle inconsistencies. Another language used by Basin et al.
(Section 4.2.3) is MTL which extends LTL with timing constraints
over the temporal operators to reason about the imprecision in
timestamps. Later, Basin et al. (Section 4.2.4) extended the MTL
with freeze variables to reason about data values in the trace. MTL
and Freeze MTL have more operators than LTL and allow specify-
ing time constraints. However, the presence of freeze quantifiers
and temporal connectives in the specification property increases
the running time of the monitoring algorithm.

The above logics are common in static verification and are not
suitable for stream RV. In contrast, Leucker et al. (Section 4.1.2)
extended the existing TeSSLa specification language into Abstract
TeSSLa and propose an abstract operator for each concrete oper-
ator of TeSSLa. Their language is suitable for monitoring streams
and is equipped with operators to reason about imprecise times-
tamps which increases its expressiveness.

The relative expressiveness of these languages cannot be es-
tablished in a clear-cut manner. It is known that propositional
LTL, past LTL and DFA are equivalent for finite prefixes of a
trace. The remaining specification languages are strictly more
expressive than those three, although a strict ordering between
them is not known.

5.5. Comparison based on evaluation methods

A last element of comparison between these works is the
empirical assessment of their performance. Table 5 summarizes
the methods that each of the approaches in Section 4 rely on to
evaluate their work and the results they obtained.

Taleb et al. (Section 4.1.1) run tests across a variety of un-
certainty scenarios to determine the overhead imposed by the
existence of the access proxy and multi-monitor in terms of both
running time and memory consumption. In terms of running
time, the presence of an access proxy causes a slowdown in
the monitoring process because the monitor must handle multi-
events rather than uni-events and track the many possible states
of the uni-monitor. However, for the given scenarios, this slowing
spans between 2× and 8×, indicating that handling multi-events
does not impose a significant burden on monitor performance.
In terms of memory consumption, having many events increased
the maximum amount of memory consumed by the monitor, but
this increase is minor and never reaches a factor of 1.5.

Leucker et al. (Section 4.1.2) perform empirical evaluation
on different TeSSLa specifications to evaluate the computational
overhead in terms of how many concrete TeSSLa operators are
needed to realize the Abstract TeSSLa specification. Results
showed that evaluating the abstract specification typically only
increases the computational cost by a constant factor, and if a
concrete specification can be monitored in linear time (in the size
of the trace) its abstract counterpart can be as well.

Wang et al. (Section 4.1.3) test a number of properties over an
actual number of traces. The experiments show that 97.7% of the
running time was spent on executing the checkOne function, due
to the exponential number of concrete traces corresponding to
an abstract state. With respect to the frequency of the resulting
uncertain verdicts, the results show that a low number of traces
(15.61%) end in inconclusive verdict. This is justified by the fact
that most of the temporal operators are insensitive to the uncer-
tainty, and also the scope of uncertainty is bounded within one
abstract state.

Joshi et al. (Section 4.2.1) show that the additional overhead
incurred by loss-tolerant monitor M due to additional states is

R. Taleb, S. Hallé and R. Khoury Computer Science Review 50 (2023) 100594

w
a
t

t
s
a
o
a
f
a

v
t
t
t
t
a
f

(
o
c
a
i

c
e

Table 5
Empirical evaluations of different approaches.
Approach Evaluation factor Result

Taleb (Section 4.1.1) Running time Between 2× and
8×

Memory
consumption

Less than 1.5

Leucker (Section 4.1.2) Computational
cost

Increased by
constant factor

Wang (Section 4.1.3) Running time of
an abstract state

97% of the total
running time

Frequency of
uncertain verdicts

15.61%

Joshi (Section 4.2.1) Memory
consumption

Between 5 and
534 transitions

Time complexity m × n × 2n

Complexity O(N2
h × Nd)

Basin (Section 4.2.4) Running time Increases rapidly

Ferrando (Section 4.2.5) Monitor execution
time

Linear w.r.t. the
trace length

Monitor synthesis
time

Exponential w.r.t.
LTL length

Stoller (Section 4.3.1) Inaccuracy 15× better than
naive approach

Time complexity
without gap

O(N2
h × Nd)

Time complexity
with gap

O(N2
h × N2

d)

Kalajdzic (Section 4.3.2) Memory
consumption

16 × Np + 3560

Execution time Outperforms RVSE
of Stoller

Wilcox (Section 4.3.3) Time complexity O(n2)
Space complexity O(n)

not significant (only an increase of at most two from that of
the corresponding RV-LTL monitor). The overhead in terms of
memory at runtime due to the increased number of transitions
in M is also proved to be minimal (fluctuating between 5 and
534 extra transitions) compared to an RV-LTL. With respect to
the time complexity of the monitoring algorithm, it is exponential
with the number of states of M and is equivalent to m × n × 2n

here m is the size of Σ and n is the number of state in M. It is
lso proved that the size complexity of M is identical to that of
he RV-LTL monitor.

Basin et al. (Section 4.2.4) perform experiments to evaluate
he effect of freeze quantifiers and temporal connectives in the
pecification property on the running time. They also offset the
rrival time of an event by a random delay to evaluate the effect
f out-of-order arrival on the running time. The results show
n increase in the running time for formulas containing more
reeze quantifiers and temporal connectives. The running time
lso increases when messages are received out-of-order.
Ferrando et al. (Section 4.2.5) carried out experiments by

arying the length of the trace of events. The results showed that
he execution time is linear w.r.t. the length of the trace, then
he time required for the monitor to analyze a single event in
he trace is constant. They also measure the execution time for
he monitor synthesis from LTL formulas with different lengths
nd proved that increases exponentially with the size of the input
ormula.

Stoller et al. (Section 4.3.1) measure the overall inaccuracy
i.e. how many events are not observed due to sampling), and
btained a ratio of 0.0205. This level of inaccuracy is quite low,
onsidering the severity of the sampling. In comparison, the in-
ccuracy of a naive approach that ignores gaps due to sampling
s 0.3135; this is approximately 15× worse. With respect to time
22
omplexity, it is O(N2
h ×Nd) for a single observation without a gap

vent and O(N2
h × N2

d) for a gap event, where Nh and Nd are the
numbers of states of the HMM and the DFA, respectively.

Kalajdzic et al. (Section 4.3.2) conduct experiments to evaluate
the effect of the number of particles Np on execution time and
memory consumption. The amount of required memory is a linear
function of the number of particles and was measured to be
16 × Np + 3560 using a 10-state HMM. Compared to RVSE, this
is higher, and in comparing to the AP-RVSE, it is around 80 times
lower. In terms of execution time, RVPF outperforms RVSE for all
gap lengths with increasing number of particles.

Wilcox et al. (Section 4.3.3) The cost of computing that a state
is safe is entirely dependent on the sizes of Q and X . In order
to find the probability of each qt , we must loop twice over these
sets. If n is the size of the combined set, n = |Q × X |, then we
have a time complexity of O(n2), and a space complexity of O(n).

With respect to the rest of the approaches in Table 5 (Basin
et al. Sections 4.2.2 and 4.2.3 and Aceto et al. Section 4.2.6), no
empirical evaluations are provided.

6. Conclusion and future work

This survey provided a comprehensive analysis of the existing
literature on monitoring with incomplete traces. It discussed the
various sources of uncertainty that have been identified and
examines their impact on the monitoring process. The survey
evaluated and compared different approaches for monitoring in-
complete traces, taking into consideration the types of uncertain-
ties addressed, representations of uncertain events, the formalism
used for event and policy representation, and the methods of rep-
resenting output verdicts. The advantages and limitations of each
approach were also highlighted based on their respective evalua-
tion results. The thorough analysis of the surveyed works allows
us to identify several areas where future research is warranted.
We list the main ones in the following.

First, a direct extension of the model proposed by Taleb et al.
(Section 4.1.1) would be the symbolic manipulation of infinite
or continuous variables, which would allow the convenient ex-
pression of a wider range of event types and access restrictions.
Additionally, the concept of uncertainty could be broadened to
encompass other formal notations beyond Mealy machines, such
as Linear Temporal Logic. Another potential avenue for future
research lies in the realm of runtime enforcement [144,145],
where the proxy can be modeled to make the modifications so
that each trace it produces is a replacement of the input trace that
satisfies the given property, and all output traces could then be
evaluated to identify the optimal replacement trace that requires
the minimum number of modifications.

The approach developed by Wang et al. (Section 4.1.3) can be
expanded to incorporate the complete semantics of LTL, includ-
ing past-time and future-time operators. However, this exten-
sion would require significant effort. Another potential extension
could address imprecise timestamps in recorded traces. Indeed,
in the recorded traces, abstract states are timestamped when the
state is recorded, but the time of actual observations is lost, which
introduce uncertainty for timed operators. Therefore, it would
be valuable to explore techniques for handling imprecise times-
tamps and addressing the impact of uncertainty on real-time
properties.

Joshi et al. (Section 4.2.1) research could be extended to allow
the approach to handle timed traces and more complex system
architectures, such as distributed and concurrent systems. The
approaches of Basin et al. ((Section 4.2.2) and (Section 4.2.3))
could be enhanced by conducting case studies to evaluate their

R. Taleb, S. Hallé and R. Khoury Computer Science Review 50 (2023) 100594

e
t
i
d
p
o

(
t
e
g
t
l
o
o
e
a
w
v
S
s
t
a
v

v
t
s
i
o
B

a
o
t
t
p
s
a

i
c
p
F
r
t
p
o
o
t
e
t
i
i
m
o
a
e

D

r
i
b
p
C
p
o

F

ffectiveness in real-world settings. Similarly, Aceto et al. (Sec-
ion 4.2.6,) could assess the performance of their proposed mon-
toring approach by proposing a monitoring algorithm and con-
ucting experiments. Basin et al. (Section 4.2.2) would also ex-
lore different truth spaces to distinguish between different kinds
f knowledge gaps and disagreements.
While the experimental evaluation of Basin et al.’s approach

Section 4.2.4) is promising, their method currently cannot handle
he monitoring of systems generating thousands or millions of
vents per second. Further research is necessary, including al-
orithmic optimization, which the authors plan to undertake in
he future, as well as deploying and evaluating their approach in
arge-scale case studies. Finally, future investigations could focus
n the empirical assessment of the time and space complexity
f the monitoring process. Ferrando et al. (Section 4.2.5) plan to
xpand their approach in future work by proposing a method to
dd additional information to the monitor’s verdict. This method
ould utilize the event trace, the LTL property, and the monitor’s
erdict to establish a level of confidence in the final outcome.
pecifically, in cases where the outcome is uu, instead of simply
tating that the property is undefined with respect to the trace,
hey could use a probability distribution over the relevant equiv-
lence classes to assert that the property would be satisfied (or
iolated) with a certain probability threshold.
In the approach of Stoller et al. (Section 4.3.1), the matrix–

ector calculations performed by the RVSE algorithm to get the
ransition and observation probabilities when processing any ob-
ervation symbol makes the computation cost very high and
ncrease the overhead dramatically, especially in the presence
f large gaps. One future direction is to tackle this problem.
artocci et al. [146] propose approximately precomputed RVSE

(AP-RVSE) that significantly reduces the runtime overhead of
RVSE by precomputing and storing the results of the matrix
calculations performed by RVSE. However, their approach intro-
duces some approximation error. With respect to Kalajdzic et al.
(Section 4.3.2), an interesting extension could involve creating a
runtime-variable version of RVPF, in which the number of parti-
cles employed for state estimation can be adjusted dynamically.
This would enable the flexible control of the tradeoff between
estimation accuracy, memory consumption, and speed. The ap-
proach of Wilcox et al. (Section 4.3.3) has undergone preliminary
validation, which demonstrates its ability to rapidly and precisely
identify safety violations in small models. Their future efforts
might focus on determining the effectiveness of these methods
on larger models.

Taleb et al. (Section 4.1.1) is the only work with an explicit
modeling of noise, in the form of the proxy, which makes it possi-
ble to model various kinds of perturbations (or data degradation)
on an input trace and observe their effect on the monitor. For
example, a valuation can simply swap the assignments of events
a and b to make them indistinguishable: an input multi-event
that supports a is transformed into an output multi-event that
only supports the weaker proposition a ∨ b (and similarly for
events that support b). In other words, it is no longer possible to
conclude precisely that a is true or that b is true, only that at least
one of them is true. Ferrando et al. (Section 4.2.5) can represent
this form of uncertainty as an equivalence relation a ∼ b. Some
language-based approaches do not account for uncertain events
(e.g. Sections 4.2.3, 4.2.4) and other approaches (Sections 4.2.1,
4.2.2, 4.2.6) are limited in their ability to account for uncertainty.
The best these approaches can do is to approximate uncertainty
by assuming that the occurrence of both a and b is unknown.
However, this abstraction is only precise for events where neither
a nor b are true. When dealing with abstract data domains such as
that of Leucker et al. (Section 4.1.2), the situation becomes even
less desirable. These domains are defined for each variable sep-
arately and must remain consistent throughout the entire trace.
23
Therefore, the only way to preserve the world when abstracting
is to replace the values of a and b with all possible values at
all time points, resulting in an even greater over-approximation.
Statistical-based approaches (Sections 4.3.1, 4.3.2 and 4.3.3) can
be also extended to deal with imprecise events. An imprecise
event a ∨ b can be treated in the same way as a missing event
(gap), however, assuming the monitor is at state n, one can add
only the transition probabilities of the predecessors of n where
a ∨ b holds instead of summing over all the predecessors of n.

Each of the approaches surveyed should consider addressing
the problem of incompleteness as an additional future exten-
sion. Table 3 shows that all of the approaches surveyed (except
the statistical-based ones) guarantee soundness. However, most
of them are not complete. Even those considered as complete
(Sections 4.2.2, 4.2.3, 4.2.4, 4.2.6) provide completeness only for
some fragments of their specification policy.

An interesting future extension of the RV approaches under
uncertainty is to study the effect of uncertainty on the monitored
property. A property could be robust with respect to the existing
type of uncertainty, i.e. still produces the correct verdict despite
the imperfect events in the trace. For example, the property
‘‘every a is eventually followed by c ’’ is robust to a type of trace
corruption where events b and d are indistinguishable. One could
lso modify the property to make it more robust. In the work
f Alechina et al. [147] for example, instead of modifying the
race to enhance the observation capabilities, they show how
o synthesize an approximation of an ‘‘ideal’’ norm that can be
erfectly monitored given a monitor, and which is optimal in the
ense that any other approximation would fail to detect at least
s many violations of the ideal norm.
An RV approach could be also improved by creating a spec-

fication formalism that provides explicit constructs to express
onstraints on the system’s behavior that take into account the
ossibility of imprecise events directly from within the property.
or example, a property can constrain imprecise events to cor-
espond to at most n concrete events which help ensure that
he system is able to maintain a desired level of accuracy or
recision in its behavior. This would also minimize the number
f possible replacement traces of the input trace and the number
f output verdicts. The specification formalism could also specify
hat no trace should contain more than n successive missing
vents. By imposing this limit, the specification can ensure that
he system is able to recover from errors or unexpected inputs. By
ncluding explicit constructs for reasoning about uncertainty and
mprecision, the specification formalism may be able to provide
ore precise and flexible ways to specify requirements for RV
f complex systems. However, it is important to carefully design
nd validate such constructs to ensure that they are useful and
ffective in practice.

eclaration of competing interest

The authors declare the following financial interests/personal
elationships which may be considered as potential competing
nterests: Sylvain Halle reports financial support was provided
y Canada Research Chairs. Sylvain Halle reports financial sup-
ort was provided by Natural Sciences and Engineering Research
ouncil of Canada. Raphael Khoury reports financial support was
rovided by Natural Sciences and Engineering Research Council
f Canada.

unding

Canada Research Chairs, grant number 950-230760.

R. Taleb, S. Hallé and R. Khoury Computer Science Review 50 (2023) 100594

D

R

ata availability

No data was used for the research described in the article.

eferences

[1] A. Pnueli, The temporal logic of programs, in: 18th Annual Symposium
on Foundations of Computer Science, Providence, Rhode Island, USA, 31
October - 1 November 1977, IEEE Computer Society, 1977, pp. 46–57,
http://dx.doi.org/10.1109/SFCS.1977.32.

[2] R. Taleb, R. Khoury, S. Hallé, Runtime verification under access restric-
tions, in: 9th IEEE/ACM International Conference on Formal Methods in
Software Engineering, FormaliSE@ICSE 2021, Madrid, Spain, May 17-21,
2021, IEEE, 2021, pp. 31–41, http://dx.doi.org/10.1109/FormaliSE52586.
2021.00010.

[3] M. Leucker, C. Schallhart, A brief account of runtime verification, J. Log.
Algebraic Methods Program 78 (5) (2009) 293–303, http://dx.doi.org/10.
1016/j.jlap.2008.08.004.

[4] S. Wang, A. Ayoub, O. Sokolsky, I. Lee, Runtime verification of traces under
recording uncertainty, in: Runtime Verification - Second International
Conference, RV 2011, San Francisco, CA, USA, September 27-30, 2011.
Revised Selected Papers, 2011, pp. 442–456, http://dx.doi.org/10.1007/
978-3-642-29860-8_35.

[5] Y. Joshi, G.M. Tchamgoue, S. Fischmeister, Runtime verification of LTL on
lossy traces, in: A. Seffah, B. Penzenstadler, C. Alves, X. Peng (Eds.), Pro-
ceedings of the Symposium on Applied Computing, SAC 2017, Marrakech,
Morocco, April 3-7, 2017, ACM, 2017, pp. 1379–1386, http://dx.doi.org/
10.1145/3019612.3019827.

[6] D.A. Basin, F. Klaedtke, S. Marinovic, E. Zalinescu, Monitoring compliance
policies over incomplete and disagreeing logs, in: S. Qadeer, S. Tasiran
(Eds.), Runtime Verification, Third International Conference, RV 2012,
Istanbul, Turkey, September 25-28, 2012. Revised Selected Papers, in: Vol.
7687 of Lecture Notes in Computer Science, Springer, 2012, pp. 151–167,
http://dx.doi.org/10.1007/978-3-642-35632-2_17.

[7] D.A. Basin, F. Klaedtke, S. Marinovic, E. Zalinescu, On real-time monitoring
with imprecise timestamps, in: B. Bonakdarpour, S.A. Smolka (Eds.),
Runtime Verification - 5th International Conference, RV 2014, Toronto,
on, Canada, September 22-25, 2014. Proceedings, in: Vol. 8734 of Lecture
Notes in Computer Science, Springer, 2014, pp. 193–198, http://dx.doi.
org/10.1007/978-3-319-11164-3_16.

[8] D.A. Basin, F. Klaedtke, E. Zalinescu, Runtime verification of temporal
properties over out-of-order data streams, in: R. Majumdar, V. Kuncak
(Eds.), Computer Aided Verification - 29th International Conference, CAV
2017, Heidelberg, Germany, July 24-28, 2017. Proceedings, Part I, in:
Lecture Notes in Computer Science, vol. 10426, Springer, 2017, pp.
356–376, http://dx.doi.org/10.1007/978-3-319-63387-9_18.

[9] A. Ferrando, V. Malvone, Runtime verification with imperfect information
through indistinguishability relations, in: B. Schlingloff, M. Chai (Eds.),
Software Engineering and Formal Methods - 20th International Confer-
ence, SEFM 2022, Berlin, Germany, September 26-30, 2022. Proceedings,
in: Lecture Notes in Computer Science, vol. 13550, Springer, 2022, pp.
335–351, http://dx.doi.org/10.1007/978-3-031-17108-6_21.

[10] L. Aceto, A. Achilleos, A. Francalanza, A. Ingólfsdóttir, Monitoring for silent
actions, in: 37th IARCS Annual Conference on Foundations of Software
Technology and Theoretical Computer Science, FSTTCS 2017, December
11-15, 2017. Kanpur, India, 2017, pp. 7:1–7:14, http://dx.doi.org/10.4230/
LIPIcs.FSTTCS.2017.7.

[11] K. Kalajdzic, E. Bartocci, S.A. Smolka, S.D. Stoller, R. Grosu, Runtime
verification with particle filtering, in: Runtime Verification - 4th Inter-
national Conference, RV 2013, Rennes, France, September 24-27, 2013,
Proceedings, 2013, pp. 149–166, http://dx.doi.org/10.1007/978-3-642-
40787-1_9.

[12] C.M. Wilcox, B.C. Williams, Runtime verification of stochastic, faulty
systems, in: H. Barringer, Y. Falcone, B. Finkbeiner, K. Havelund, I. Lee,
G.J. Pace, G. Rosu, O. Sokolsky, N. Tillmann (Eds.), in: Vol. 6418 of
Lecture Notes in Computer Science, Springer, 2010, pp. 452–459, http:
//dx.doi.org/10.1007/978-3-642-16612-9_34.

[13] K. Havelund, G. Reger, D. Thoma, E. Zalinescu, Monitoring events that
carry data, in: E. Bartocci, Y. Falcone (Eds.), Lectures on Runtime Veri-
fication - Introductory and Advanced Topics, in: Vol. 10457 of Lecture
Notes in Computer Science, Springer, 2018, pp. 61–102, http://dx.doi.org/
10.1007/978-3-319-75632-5_3.

[14] M. Pezze, M. Young, A survey of software testing techniques, ACM
Comput. Surv. 40 (4) (2008) 1–92.

[15] E.M. Clarke, O. Grumberg, D.E. Long, Model checking, in: M. Broy (Ed.),
Proceedings of the NATO Advanced Study Institute on Deductive Program

Design, Marktoberdorf, Germany, 1996, pp. 305–349.

24
[16] Y. Bertot, P. Castéran, Interactive theorem proving and program de-
velopment - Coq’art: The calculus of inductive constructions, in: Texts
in Theoretical Computer Science, in: An EATCS Series, Springer, 2004,
http://dx.doi.org/10.1007/978-3-662-07964-5.

[17] W. Xu, L. Huang, A. Fox, D.A. Patterson, M.I. Jordan, Detecting large-
scale system problems by mining console logs, in: Proceedings of the
22nd ACM Symposium on Operating Systems Principles 2009, SOSP 2009,
Big Sky, Montana, USA, October 11-14, 2009, 2009, pp. 117–132, http:
//dx.doi.org/10.1145/1629575.1629587.

[18] D. Yuan, H. Mai, W. Xiong, L. Tan, Y. Zhou, S. Pasupathy, SherLog: Error
diagnosis by connecting clues from run-time logs, in: Proceedings of the
15th International Conference on Architectural Support for Programming
Languages and Operating Systems, ASPLOS 2010, Pittsburgh, Pennsylva-
nia, USA, March 13-17, 2010, 2010, pp. 143–154, http://dx.doi.org/10.
1145/1736020.1736038.

[19] D.P. Attard, A. Francalanza, A monitoring tool for a branching-time logic,
in: Y. Falcone, C. Sánchez (Eds.), Runtime Verification - 16th International
Conference, RV 2016, Madrid, Spain, September 23-30, 2016, Proceedings,
in: Vol. 10012 of Lecture Notes in Computer Science, Springer, 2016, pp.
473–481, http://dx.doi.org/10.1007/978-3-319-46982-9_31.

[20] K. Havelund, G. Reger, Runtime verification logics a language design
perspective, in: L. Aceto, G. Bacci, G. Bacci, A. Ingólfsdóttir, A. Legay, R.
Mardare (Eds.), Models, Algorithms, Logics and Tools - Essays Dedicated
to Kim Guldstrand Larsen on the Occasion of His 60th Birthday, in: Vol.
10460 of Lecture Notes in Computer Science, Springer, 2017, pp. 310–338,
http://dx.doi.org/10.1007/978-3-319-63121-9_16.

[21] M. Laurenzano, M.M. Tikir, L. Carrington, A. Snavely, PEBIL: Efficient static
binary instrumentation for linux, in: IEEE International Symposium on
Performance Analysis of Systems and Software, ISPASS 2010, 28-30 March
2010, White Plains, NY, USA, IEEE Computer Society, 2010, pp. 175–183,
http://dx.doi.org/10.1109/ISPASS.2010.5452024.

[22] E. Bodden, K. Havelund, Racer: Effective race detection using aspectj, in:
B.G. Ryder, A. Zeller (Eds.), Proceedings of the ACM/SIGSOFT International
Symposium on Software Testing and Analysis, ISSTA 2008, Seattle, WA,
USA, July 20-24, 2008, ACM, 2008, pp. 155–166, http://dx.doi.org/10.1145/
1390630.1390650.

[23] J. Gubbi, R. Buyya, S. Marusic, M. Palaniswami, Internet of Things (iot):
A vision, architectural elements, and future directions, Future Gener.
Comput. Syst. 29 (7) (2013) 1645–1660, http://dx.doi.org/10.1016/j.future.
2013.01.010.

[24] G. Reger, K. Havelund, What is a trace? A runtime verification perspective,
in: T. Margaria, B. Steffen (Eds.), Leveraging Applications of Formal Meth-
ods, Verification and Validation: Discussion, Dissemination, Applications
- 7th International Symposium, ISoLA 2016, Imperial, Corfu, Greece,
October 10-14, 2016. Proceedings, Part II, in: Vol. 9953 of Lecture Notes
in Computer Science, 2016, pp. 339–355, http://dx.doi.org/10.1007/978-
3-319-47169-3_25.

[25] A. Bauer, M. Leucker, C. Schallhart, Runtime verification for LTL and
TLTL, ACM Trans. Softw. Eng. Methodol. 20 (4) (2011) 14:1–14:64, http:
//dx.doi.org/10.1145/2000799.2000800.

[26] K. Havelund, G. Rosu, Efficient monitoring of safety properties, Int. J.
Softw. Tools Technol. Transf. 6 (2) (2004) 158–173, http://dx.doi.org/10.
1007/s10009-003-0117-6.

[27] J. Huang, C. Erdogan, Y. Zhang, B.M. Moore, Q. Luo, A. Sundaresan, G.
Rosu, ROSRV: runtime verification for robots, in: B. Bonakdarpour, S.A.
Smolka (Eds.), Runtime Verification - 5th International Conference, RV
2014, Toronto, on, Canada, September 22-25, 2014 Proceedings, in: Vol.
8734 of Lecture Notes in Computer Science, Springer, 2014, pp. 247–254,
http://dx.doi.org/10.1007/978-3-319-11164-3_20.

[28] A. Artikis, T. Eiter, A. Margara, S. Vansummeren, Foundations of composite
event recognition Dagstuhl seminar 20071, Dagstuhl Rep. 10 (2) (2020)
19–49, http://dx.doi.org/10.4230/DagRep.10.2.19, https://drops.dagstuhl.
de/opus/volltexte/2020/13058.

[29] C. Sánchez, G. Schneider, W. Ahrendt, E. Bartocci, D. Bianculli, C. Colombo,
Y. Falcone, A. Francalanza, S. Krstic, J.M. Lourenço, D. Nickovic, G.J.
Pace, J. Rufino, J. Signoles, D. Traytel, A. Weiss, A survey of challenges
for runtime verification from advanced application domains (beyond
software), Formal Methods Syst. Des. 54 (3) (2019) 279–335, http://dx.
doi.org/10.1007/s10703-019-00337-w.

[30] A. Mrad, S. Ahmed, S. Hallé, É. Beaudet, Babeltrace: A collection of
transducers for trace validation, in: S. Qadeer, S. Tasiran (Eds.), Runtime
Verification, Third International Conference, RV 2012, Istanbul, Turkey,
September 25-28, 2012, Revised Selected Papers, in: Vol. 7687 of Lecture
Notes in Computer Science, Springer, 2012, pp. 126–130, http://dx.doi.
org/10.1007/978-3-642-35632-2_14.

[31] R. Gerth, D.A. Peled, M.Y. Vardi, P. Wolper, Simple on-the-fly automatic
verification of linear temporal logic, in: P. Dembinski, M. Sredniawa (Eds.),
Protocol Specification, Testing and Verification XV, Proceedings of the

Fifteenth IFIP WG6.1 International Symposium on Protocol Specification,

http://dx.doi.org/10.1109/SFCS.1977.32
http://dx.doi.org/10.1109/FormaliSE52586.2021.00010
http://dx.doi.org/10.1109/FormaliSE52586.2021.00010
http://dx.doi.org/10.1109/FormaliSE52586.2021.00010
http://dx.doi.org/10.1016/j.jlap.2008.08.004
http://dx.doi.org/10.1016/j.jlap.2008.08.004
http://dx.doi.org/10.1016/j.jlap.2008.08.004
http://dx.doi.org/10.1007/978-3-642-29860-8_35
http://dx.doi.org/10.1007/978-3-642-29860-8_35
http://dx.doi.org/10.1007/978-3-642-29860-8_35
http://dx.doi.org/10.1145/3019612.3019827
http://dx.doi.org/10.1145/3019612.3019827
http://dx.doi.org/10.1145/3019612.3019827
http://dx.doi.org/10.1007/978-3-642-35632-2_17
http://dx.doi.org/10.1007/978-3-319-11164-3_16
http://dx.doi.org/10.1007/978-3-319-11164-3_16
http://dx.doi.org/10.1007/978-3-319-11164-3_16
http://dx.doi.org/10.1007/978-3-319-63387-9_18
http://dx.doi.org/10.1007/978-3-031-17108-6_21
http://dx.doi.org/10.4230/LIPIcs.FSTTCS.2017.7
http://dx.doi.org/10.4230/LIPIcs.FSTTCS.2017.7
http://dx.doi.org/10.4230/LIPIcs.FSTTCS.2017.7
http://dx.doi.org/10.1007/978-3-642-40787-1_9
http://dx.doi.org/10.1007/978-3-642-40787-1_9
http://dx.doi.org/10.1007/978-3-642-40787-1_9
http://dx.doi.org/10.1007/978-3-642-16612-9_34
http://dx.doi.org/10.1007/978-3-642-16612-9_34
http://dx.doi.org/10.1007/978-3-642-16612-9_34
http://dx.doi.org/10.1007/978-3-319-75632-5_3
http://dx.doi.org/10.1007/978-3-319-75632-5_3
http://dx.doi.org/10.1007/978-3-319-75632-5_3
http://refhub.elsevier.com/S1574-0137(23)00061-8/sb14
http://refhub.elsevier.com/S1574-0137(23)00061-8/sb14
http://refhub.elsevier.com/S1574-0137(23)00061-8/sb14
http://refhub.elsevier.com/S1574-0137(23)00061-8/sb15
http://refhub.elsevier.com/S1574-0137(23)00061-8/sb15
http://refhub.elsevier.com/S1574-0137(23)00061-8/sb15
http://refhub.elsevier.com/S1574-0137(23)00061-8/sb15
http://refhub.elsevier.com/S1574-0137(23)00061-8/sb15
http://dx.doi.org/10.1007/978-3-662-07964-5
http://dx.doi.org/10.1145/1629575.1629587
http://dx.doi.org/10.1145/1629575.1629587
http://dx.doi.org/10.1145/1629575.1629587
http://dx.doi.org/10.1145/1736020.1736038
http://dx.doi.org/10.1145/1736020.1736038
http://dx.doi.org/10.1145/1736020.1736038
http://dx.doi.org/10.1007/978-3-319-46982-9_31
http://dx.doi.org/10.1007/978-3-319-63121-9_16
http://dx.doi.org/10.1109/ISPASS.2010.5452024
http://dx.doi.org/10.1145/1390630.1390650
http://dx.doi.org/10.1145/1390630.1390650
http://dx.doi.org/10.1145/1390630.1390650
http://dx.doi.org/10.1016/j.future.2013.01.010
http://dx.doi.org/10.1016/j.future.2013.01.010
http://dx.doi.org/10.1016/j.future.2013.01.010
http://dx.doi.org/10.1007/978-3-319-47169-3_25
http://dx.doi.org/10.1007/978-3-319-47169-3_25
http://dx.doi.org/10.1007/978-3-319-47169-3_25
http://dx.doi.org/10.1145/2000799.2000800
http://dx.doi.org/10.1145/2000799.2000800
http://dx.doi.org/10.1145/2000799.2000800
http://dx.doi.org/10.1007/s10009-003-0117-6
http://dx.doi.org/10.1007/s10009-003-0117-6
http://dx.doi.org/10.1007/s10009-003-0117-6
http://dx.doi.org/10.1007/978-3-319-11164-3_20
http://dx.doi.org/10.4230/DagRep.10.2.19
https://drops.dagstuhl.de/opus/volltexte/2020/13058
https://drops.dagstuhl.de/opus/volltexte/2020/13058
https://drops.dagstuhl.de/opus/volltexte/2020/13058
http://dx.doi.org/10.1007/s10703-019-00337-w
http://dx.doi.org/10.1007/s10703-019-00337-w
http://dx.doi.org/10.1007/s10703-019-00337-w
http://dx.doi.org/10.1007/978-3-642-35632-2_14
http://dx.doi.org/10.1007/978-3-642-35632-2_14
http://dx.doi.org/10.1007/978-3-642-35632-2_14
http://refhub.elsevier.com/S1574-0137(23)00061-8/sb31
http://refhub.elsevier.com/S1574-0137(23)00061-8/sb31
http://refhub.elsevier.com/S1574-0137(23)00061-8/sb31
http://refhub.elsevier.com/S1574-0137(23)00061-8/sb31
http://refhub.elsevier.com/S1574-0137(23)00061-8/sb31
http://refhub.elsevier.com/S1574-0137(23)00061-8/sb31
http://refhub.elsevier.com/S1574-0137(23)00061-8/sb31
http://refhub.elsevier.com/S1574-0137(23)00061-8/sb31

R. Taleb, S. Hallé and R. Khoury Computer Science Review 50 (2023) 100594
Testing and Verification, Warsaw, Poland, 1995, 38 of IFIP Conference
Proceedings, Chapman & Hall, 1995, pp. 3–18.

[32] M.O. Rabin, D.S. Scott, Finite automata and their decision problems, IBM
J. Res. Dev. 3 (2) (1959) 114–125, http://dx.doi.org/10.1147/rd.32.0114.

[33] R. Bloem, B. Jobstmann, N. Piterman, A. Pnueli, Y. Sa’ar, Synthesis of
reactive(1) designs, J. Comput. System Sci. 78 (3) (2012) 911–938, http:
//dx.doi.org/10.1016/j.jcss.2011.08.007.

[34] M.Y. Vardi, P. Wolper, Automata-theoretic techniques for modal logics of
programs, J. Comput. Syst. Sci. 32 (2) (1986) 183–221.

[35] M.Y. Vardi, Automatic verification of probabilistic concurrent finite-state
systems, Distrib. Comput. 11 (3) (1998) 139–155.

[36] T. Babiak, F. Blahoudek, J. Křet’ınsk‘y, D. Štill, Ltl2dstar: A tool for
ltl synthesis, in: Proceedings of the 24th International Conference on
Computer Aided Verification, Springer, 2012, pp. 571–577.

[37] B. Finkbeiner, M. Schewe, Efficient translation of ltl formulae into de-
terministic Büchi automata, in: Proceedings of the 7th International
Conference on Verification, Model Checking, and Abstract Interpretation,
Springer, 2006, pp. 53–67.

[38] D. D’Souza, P. Thiagarajan, Synthesis of non-deterministic automata from
temporal logic specifications, Form. Methods Syst. Des. 17 (1) (2000)
5–30.

[39] E. Bartocci, Y. Falcone, A. Francalanza, G. Reger, Introduction to runtime
verification, in: E. Bartocci, Y. Falcone (Eds.), Lectures on Runtime Ver-
ification - Introductory and Advanced Topics, in: Vol. 10457 of Lecture
Notes in Computer Science, Springer, 2018, pp. 1–33, http://dx.doi.org/
10.1007/978-3-319-75632-5_1.

[40] C. Luk, R.S. Cohn, R. Muth, H. Patil, A. Klauser, P.G. Lowney, S. Wallace, V.J.
Reddi, K.M. Hazelwood, Pin: Building customized program analysis tools
with dynamic instrumentation, in: V. Sarkar, M.W. Hall (Eds.), Proceedings
of the ACM SIGPLAN 2005 Conference on Programming Language Design
and Implementation, Chicago, IL, USA, June 12-15, 2005, ACM, 2005, pp.
190–200, http://dx.doi.org/10.1145/1065010.1065034.

[41] Y. Falcone, S. Krstic, G. Reger, D. Traytel, A taxonomy for classifying
runtime verification tools, in: C. Colombo, M. Leucker (Eds.), Runtime
Verification - 18th International Conference, RV 2018, Limassol, Cyprus,
November 10-13, 2018, Proceedings, in: Vol. 11237 of Lecture Notes in
Computer Science, Springer, 2018, pp. 241–262, http://dx.doi.org/10.1007/
978-3-030-03769-7_14.

[42] A. Bauer, M. Leucker, C. Schallhart, The good, the bad, and the ugly, but
how ugly is ugly? in: O. Sokolsky, S. Tasiran (Eds.), Runtime Verification,
7th International Workshop, RV 2007, Vancouver, Canada, March 13,
2007, Revised Selected Papers, in: Vol. 4839 of Lecture Notes in Computer
Science, Springer, 2007, pp. 126–138, http://dx.doi.org/10.1007/978-3-
540-77395-5_11.

[43] F.B. Schneider, Enforceable security policies, ACM Trans. Inf. Syst. Secur.
3 (1) (2000) 30–50, http://dx.doi.org/10.1145/353323.353382.

[44] J. Ligatti, L. Bauer, D. Walker, Run-time enforcement of nonsafety policies,
ACM Trans. Inform. Syst. Secur. 12 (3) (2023) http://dx.doi.org/10.1145/
1455526.1455532.

[45] Y. Falcone, You should better enforce than verify, in: Runtime Verification
- First International Conference, RV 2010 St Julians, Malta, November 1-
4, 2010, Proceedings, in: 6418 of Lecture Notes in Computer Science,
Springer, 2010, pp. 89–105, http://dx.doi.org/10.1007/978-3-642-16612-
9_9.

[46] M. d’Amorim, K. Havelund, Event-based runtime verification of Java
programs, ACM SIGSOFT Softw. Eng. Notes 30 (4) (2005) 1–7, http:
//dx.doi.org/10.1145/1082983.1083249.

[47] M.R. Boussaha, R. Khoury, S. Hallé, Monitoring of security properties using
beepbeep, in: A. Imine, J.M. Fernandez, J. Marion, L. Logrippo, J. García-
Alfaro (Eds.), Foundations and Practice of Security - 10th International
Symposium, FPS 2017, Nancy, France, October 23-25, 2017, Revised
Selected Papers, in: Vol. 10723 of Lecture Notes in Computer Science,
Springer, 2017, pp. 160–169, http://dx.doi.org/10.1007/978-3-319-75650-
9_11.

[48] J. Simmonds, S. Ben-David, M. Chechik, Monitoring and recovery of web
service applications, in: M.H. Chignell, J.R. Cordy, J. Ng, Y. Yesha (Eds.),
The Smart Internet - Current Research and Future Applications, in: Vol.
6400 of Lecture Notes in Computer Science, Springer, 2010, pp. 250–288,
http://dx.doi.org/10.1007/978-3-642-16599-3_17.

[49] R. Pegoraro, R.B. Halima, K. Drira, K. Guennoun, J.M. Rosário, A framework
for monitoring and runtime recovery of web service-based applications,
in: J. Cordeiro, J. Filipe (Eds.), ICEIS 2008 - Proceedings of the Tenth
International Conference on Enterprise Information Systems, Vol. ISAS-2,
Barcelona, Spain, June 12-16, 2008, 2008, pp. 201–206.

[50] S. Hallé, R. Villemaire, Runtime enforcement of web service message
contracts with data, IEEE Trans. Serv. Comput. 5 (2) (2012) 192–206,

http://dx.doi.org/10.1109/TSC.2011.10.

25
[51] M.A. Köhl, H. Hermanns, S. Biewer, Efficient monitoring of real driving
emissions, in: C. Colombo, M. Leucker (Eds.), Runtime Verification - 18th
International Conference, RV 2018, Limassol, Cyprus, November 10-13,
2018, Proceedings, in: Vol. 11237 of Lecture Notes in Computer Science,
Springer, 2018, pp. 299–315, http://dx.doi.org/10.1007/978-3-030-03769-
7_17.

[52] S. Varvaressos, K. Lavoie, S. Gaboury, S. Hallé, Automated bug finding in
video games: A case study for runtime monitoring, Comput. Entertain. 15
(1) (2017) 1:1–1:28, http://dx.doi.org/10.1145/2700529.

[53] P. Moosbrugger, K.Y. Rozier, J. Schumann, R2U2: Monitoring and diagnosis
of security threats for unmanned aerial systems, Formal Methods Syst.
Des. 51 (1) (2017) 31–61, http://dx.doi.org/10.1007/s10703-017-0275-x.

[54] S.D. Stoller, E. Bartocci, J. Seyster, R. Grosu, K. Havelund, S.A. Smolka,
E. Zadok, Runtime verification with state estimation, in: Runtime Veri-
fication - Second International Conference, RV 2011, San Francisco, CA,
USA, September 27-30, 2011, Revised Selected Papers, 2011, pp. 193–207,
http://dx.doi.org/10.1007/978-3-642-29860-8_15.

[55] K. Havelund, D.A. Peled, D. Ulus, The dejavu runtime verification
benchmark, 2018.

[56] J. Vallet, A. Mrad, S. Hallé, É. Beaudet, The relational database engine: An
efficient validator of temporal properties on event traces, in: E. Bagheri,
D. Gasevic, S. Hallé, M. Hatala, H.R.M. Nezhad, M. Reichert (Eds.), 17th
IEEE International Enterprise Distributed Object Computing Conference
Workshops, EDOC Workshops, Vancouver, BC, Canada, September 9-13,
2013, IEEE Computer Society, 2013, pp. 275–284, http://dx.doi.org/10.
1109/EDOCW.2013.37.

[57] A. Khalid, L.C. Briand, Checking data completeness in test data using
runtime verification, in: Fundamental Approaches to Software Engineer-
ing - 18th International Conference, FASE 2015, Held as Part of the
European Joint Conferences on Theory and Practice of Software, ETAPS
2015, London, UK, April 11-18, 2015. Proceedings, 2015, pp. 276–290,
http://dx.doi.org/10.1007/978-3-662-46675-9_17.

[58] J. Piechotta, D. Holling, R. Hähnle, A. Podelski, Online detection of multiple
violations in requirements specifications, in: Proceedings of the 27th
ACM SIGSOFT International Symposium on Software Testing and Analysis,
ISSTA 2018, Amsterdam, the Netherlands, July 16-21, 2018, 2018, pp.
82–93, http://dx.doi.org/10.1145/3213846.3213872.

[59] V. Arora, F. van Breugel, P. Fischer, A. Gorbenko, Monitoring CSV data
using multi-parametric run-time interval logic, in: IEEE International
Conference on Software Engineering and Formal Methods, SEFM 2017,
Trento, Italy, September 6-10, 2017, 2017, pp. 283–298, http://dx.doi.org/
10.1007/978-3-319-66197-1_19.

[60] M. Lupp, Extensible markup language, in: S. Shekhar, H. Xiong, X. Zhou
(Eds.), Encyclopedia of GIS, Springer, 2017, p. 583, http://dx.doi.org/10.
1007/978-3-319-17885-1_400.

[61] S. Hallé, R. Villemaire, Runtime verification for the web - a tutorial
introduction to interface contracts in web applications, in: H. Barringer, Y.
Falcone, B. Finkbeiner, K. Havelund, I. Lee, G.J. Pace, G. Rosu, O. Sokolsky,
N. Tillmann (Eds.), Runtime Verification - First International Conference,
RV 0 (2010) St Julians, Malta, November 1-4, 2010. Proceedings, in: Vol.
6418 of Lecture Notes in Computer Science, Springer, 2010, pp. 106–121,
http://dx.doi.org/10.1007/978-3-642-16612-9_10.

[62] 1849-2016 - IEEE standard for extensible event stream (XES) for achieving
interoperability in event logs and event streams, 2016.

[63] K. Havelund, G. Reger, G. Rosu, Runtime verification past experiences
and future projections, in: B. Steffen, G.J. Woeginger (Eds.), Computing
and Software Science - State of the Art and Perspectives, in: Vol. 10000
of Lecture Notes in Computer Science, Springer, 2019, pp. 532–562,
http://dx.doi.org/10.1007/978-3-319-91908-9_25.

[64] L. Baresi, M. Cominetti, M. Rossi, Jrec: A framework for runtime mon-
itoring of web services, in: Fourth International Conference on Service
Oriented Computing, ICSOC’06, IEEE, 2006, pp. 479–488, http://dx.doi.org/
10.1007/11948148_12.

[65] G. Bacci, M. Bartoletti, A.M. Moggi, E. Tuosto, Axml: A tool for runtime
verification of xml documents, in: 17th International Conference on Tools
and Algorithms for the Construction and Analysis of Systems, TACAS
2011, Springer, 2011, pp. 228–232, http://dx.doi.org/10.1007/978-3-642-
19835-9_18.

[66] C. Colombo, M. Pradella, M. Rossi, Xmonitor: A runtime verification
tool for xml documents, in: 7th International Conference on Runtime
Verification, RV 2017, Springer, 2017, pp. 226–233, http://dx.doi.org/10.
1007/978-3-319-68167-2_15.

[67] D. Barrera, D. Perez-Palacin, R. Barrado, J. Calvo-Manzano, T. San Feliu,
J. Garcia-Garcia, Flint: Fast log inspection for runtime verification of
complex system interactions, in: 2019 IEEE International Conference on
Software Maintenance and Evolution, ICSME, IEEE, 2019, pp. 447–457,

http://dx.doi.org/10.1109/ICSME.2019.00058.

http://refhub.elsevier.com/S1574-0137(23)00061-8/sb31
http://refhub.elsevier.com/S1574-0137(23)00061-8/sb31
http://refhub.elsevier.com/S1574-0137(23)00061-8/sb31
http://dx.doi.org/10.1147/rd.32.0114
http://dx.doi.org/10.1016/j.jcss.2011.08.007
http://dx.doi.org/10.1016/j.jcss.2011.08.007
http://dx.doi.org/10.1016/j.jcss.2011.08.007
http://refhub.elsevier.com/S1574-0137(23)00061-8/sb34
http://refhub.elsevier.com/S1574-0137(23)00061-8/sb34
http://refhub.elsevier.com/S1574-0137(23)00061-8/sb34
http://refhub.elsevier.com/S1574-0137(23)00061-8/sb35
http://refhub.elsevier.com/S1574-0137(23)00061-8/sb35
http://refhub.elsevier.com/S1574-0137(23)00061-8/sb35
http://refhub.elsevier.com/S1574-0137(23)00061-8/sb36
http://refhub.elsevier.com/S1574-0137(23)00061-8/sb36
http://refhub.elsevier.com/S1574-0137(23)00061-8/sb36
http://refhub.elsevier.com/S1574-0137(23)00061-8/sb36
http://refhub.elsevier.com/S1574-0137(23)00061-8/sb36
http://refhub.elsevier.com/S1574-0137(23)00061-8/sb37
http://refhub.elsevier.com/S1574-0137(23)00061-8/sb37
http://refhub.elsevier.com/S1574-0137(23)00061-8/sb37
http://refhub.elsevier.com/S1574-0137(23)00061-8/sb37
http://refhub.elsevier.com/S1574-0137(23)00061-8/sb37
http://refhub.elsevier.com/S1574-0137(23)00061-8/sb37
http://refhub.elsevier.com/S1574-0137(23)00061-8/sb37
http://refhub.elsevier.com/S1574-0137(23)00061-8/sb38
http://refhub.elsevier.com/S1574-0137(23)00061-8/sb38
http://refhub.elsevier.com/S1574-0137(23)00061-8/sb38
http://refhub.elsevier.com/S1574-0137(23)00061-8/sb38
http://refhub.elsevier.com/S1574-0137(23)00061-8/sb38
http://dx.doi.org/10.1007/978-3-319-75632-5_1
http://dx.doi.org/10.1007/978-3-319-75632-5_1
http://dx.doi.org/10.1007/978-3-319-75632-5_1
http://dx.doi.org/10.1145/1065010.1065034
http://dx.doi.org/10.1007/978-3-030-03769-7_14
http://dx.doi.org/10.1007/978-3-030-03769-7_14
http://dx.doi.org/10.1007/978-3-030-03769-7_14
http://dx.doi.org/10.1007/978-3-540-77395-5_11
http://dx.doi.org/10.1007/978-3-540-77395-5_11
http://dx.doi.org/10.1007/978-3-540-77395-5_11
http://dx.doi.org/10.1145/353323.353382
http://dx.doi.org/10.1145/1455526.1455532
http://dx.doi.org/10.1145/1455526.1455532
http://dx.doi.org/10.1145/1455526.1455532
http://dx.doi.org/10.1007/978-3-642-16612-9_9
http://dx.doi.org/10.1007/978-3-642-16612-9_9
http://dx.doi.org/10.1007/978-3-642-16612-9_9
http://dx.doi.org/10.1145/1082983.1083249
http://dx.doi.org/10.1145/1082983.1083249
http://dx.doi.org/10.1145/1082983.1083249
http://dx.doi.org/10.1007/978-3-319-75650-9_11
http://dx.doi.org/10.1007/978-3-319-75650-9_11
http://dx.doi.org/10.1007/978-3-319-75650-9_11
http://dx.doi.org/10.1007/978-3-642-16599-3_17
http://refhub.elsevier.com/S1574-0137(23)00061-8/sb49
http://refhub.elsevier.com/S1574-0137(23)00061-8/sb49
http://refhub.elsevier.com/S1574-0137(23)00061-8/sb49
http://refhub.elsevier.com/S1574-0137(23)00061-8/sb49
http://refhub.elsevier.com/S1574-0137(23)00061-8/sb49
http://refhub.elsevier.com/S1574-0137(23)00061-8/sb49
http://refhub.elsevier.com/S1574-0137(23)00061-8/sb49
http://refhub.elsevier.com/S1574-0137(23)00061-8/sb49
http://refhub.elsevier.com/S1574-0137(23)00061-8/sb49
http://dx.doi.org/10.1109/TSC.2011.10
http://dx.doi.org/10.1007/978-3-030-03769-7_17
http://dx.doi.org/10.1007/978-3-030-03769-7_17
http://dx.doi.org/10.1007/978-3-030-03769-7_17
http://dx.doi.org/10.1145/2700529
http://dx.doi.org/10.1007/s10703-017-0275-x
http://dx.doi.org/10.1007/978-3-642-29860-8_15
http://refhub.elsevier.com/S1574-0137(23)00061-8/sb55
http://refhub.elsevier.com/S1574-0137(23)00061-8/sb55
http://refhub.elsevier.com/S1574-0137(23)00061-8/sb55
http://dx.doi.org/10.1109/EDOCW.2013.37
http://dx.doi.org/10.1109/EDOCW.2013.37
http://dx.doi.org/10.1109/EDOCW.2013.37
http://dx.doi.org/10.1007/978-3-662-46675-9_17
http://dx.doi.org/10.1145/3213846.3213872
http://dx.doi.org/10.1007/978-3-319-66197-1_19
http://dx.doi.org/10.1007/978-3-319-66197-1_19
http://dx.doi.org/10.1007/978-3-319-66197-1_19
http://dx.doi.org/10.1007/978-3-319-17885-1_400
http://dx.doi.org/10.1007/978-3-319-17885-1_400
http://dx.doi.org/10.1007/978-3-319-17885-1_400
http://dx.doi.org/10.1007/978-3-642-16612-9_10
http://refhub.elsevier.com/S1574-0137(23)00061-8/sb62
http://refhub.elsevier.com/S1574-0137(23)00061-8/sb62
http://refhub.elsevier.com/S1574-0137(23)00061-8/sb62
http://dx.doi.org/10.1007/978-3-319-91908-9_25
http://dx.doi.org/10.1007/11948148_12
http://dx.doi.org/10.1007/11948148_12
http://dx.doi.org/10.1007/11948148_12
http://dx.doi.org/10.1007/978-3-642-19835-9_18
http://dx.doi.org/10.1007/978-3-642-19835-9_18
http://dx.doi.org/10.1007/978-3-642-19835-9_18
http://dx.doi.org/10.1007/978-3-319-68167-2_15
http://dx.doi.org/10.1007/978-3-319-68167-2_15
http://dx.doi.org/10.1007/978-3-319-68167-2_15
http://dx.doi.org/10.1109/ICSME.2019.00058

R. Taleb, S. Hallé and R. Khoury Computer Science Review 50 (2023) 100594
[68] M. Kowalski, S. Hoffmann, J. Halleux, Umbral: A stream processing
language for runtime verification of real-time systems, in: Proceedings
of the 34th IEEE/ACM International Conference on Automated Software
Engineering, ASE, IEEE, 2019, pp. 688–699, http://dx.doi.org/10.1109/ASE.
2019.00065.

[69] L. Moura, A. Sampaio, M. Souza, J.P. Feitosa, A. Oliveira, R. Marinho, Varan:
A tool for runtime monitoring and verification of system software, in:
2018 IEEE/ACM 40th International Conference on Software Engineering:
Companion, ICSE-Companion, IEEE, 2018, pp. 503–504, http://dx.doi.org/
10.1145/3183440.3183460.

[70] L. Holík, M. Koreň, M. Novák, J. Šimáček, J. Třmač, Panda: Monitoring and
diagnosis of distributed systems, arXiv preprint arXiv:1905.11953.

[71] M. Aghaei, L. Baresi, C. Ghezzi, Medusa: A runtime verification framework
for data-centric applications, in: Proceedings of the 40th International
Conference on Software Engineering, ICSE, ACM, 2018, pp. 89–99, http:
//dx.doi.org/10.1145/3180155.3180190.

[72] F. Chen, G. Rosu, Java-MOP: A monitoring oriented programming environ-
ment for Java, in: N. Halbwachs, L.D. Zuck (Eds.), Tools and Algorithms for
the Construction and Analysis of Systems, 11th International Conference,
TACAS 2005, Held as Part of the Joint European Conferences on Theory
and Practice of Software, ETAPS 2005, Edinburgh, UK, April 4-8, 2005.
Proceedings, in: Vol. 3440 of Lecture Notes in Computer Science, Springer,
2005, pp. 546–550, http://dx.doi.org/10.1007/978-3-540-31980-1_36.

[73] H. Garavel, R. Mateescu, SEQ.OPEN: A tool for efficient trace-based
verification, in: S. Graf, L. Mounier (Eds.), Model Checking Software,
11th International SPIN Workshop, Barcelona, Spain, April 1-3, 2004.
Proceedings, in: Vol. 2989 of Lecture Notes in Computer Science, Springer,
2004, pp. 151–157, http://dx.doi.org/10.1007/978-3-540-24732-6_11.

[74] T. Agarwal, Finite state machine: Mealy state machine and moore state
machine, 2020.

[75] F.A. Siddique, T.J.T. II, N. Brunelle, K. Skadron, Deterministic vs. non de-
terministic finite automata in automata processing, CoRR abs/2210.10077.
http://dx.doi.org/10.48550/arXiv.2210.10077. arXiv:2210.10077.

[76] M.O. Rabin, Probabilistic automata, Inf. Control 6 (3) (1963) 230–245,
http://dx.doi.org/10.1016/S0019-9958(63)90290-0.

[77] S. Konur, A survey on temporal logics for specifying and verifying real-
time systems, Front. Comput. Sci. 7 (3) (2013) 370–403, http://dx.doi.org/
10.1007/s11704-013-2195-2.

[78] R. Alur, D.L. Dill, A theory of timed automata, Theoret. Comput. Sci. 126
(2) (1994) 183–235, http://dx.doi.org/10.1016/0304-3975(94)90010-8.

[79] C. Baier, J. Katoen, Principles of Model Checking, MIT Press, 2008.
[80] P. Cerný, T.A. Henzinger, A. Radhakrishna, Quantitative simulation games,

in: Z. Manna, D.A. Peled (Eds.), Time for Verification, Essays in Memory of
Amir Pnueli, in: Vol. 6200 of Lecture Notes in Computer Science, Springer,
2010, pp. 42–60, http://dx.doi.org/10.1007/978-3-642-13754-9_3.

[81] R. Khoury, S. Hallé, Tally keeping-LTL: An LTL semantics for quantitative
evaluation of LTL specifications, in: 2018 IEEE International Conference on
Information Reuse and Integration, IRI 2018, Salt Lake City, UT, USA, July
6-9, 2018, 2018, pp. 495–502, http://dx.doi.org/10.1109/IRI.2018.00079.

[82] R. Koymans, Specifying real-time properties with metric temporal
logic, Real Time Syst. 2 (4) (1990) 255–299, http://dx.doi.org/10.1007/
BF01995674.

[83] B. D’Angelo, S. Sankaranarayanan, C. Sánchez, W. Robinson, B. Finkbeiner,
H.B. Sipma, S. Mehrotra, Z. Manna, LOLA: Runtime monitoring of
synchronous systems, in: 12th International Symposium on Temporal
Representation and Reasoning, TIME 2005, 23-25 2005, Burlington, Ver-
mont, USA, IEEE Computer Society, 2005, pp. 166–174, http://dx.doi.org/
10.1109/TIME.2005.26.

[84] L. Convent, S. Hungerecker, M. Leucker, T. Scheffel, M. Schmitz, D. Thoma,
Tessla: Temporal stream-based specification language, in: T. Massoni,
M.R. Mousavi (Eds.), Formal Methods: Foundations and Applications -
21st Brazilian Symposium, SBMF 2018, Salvador, Brazil, November 26-30,
2018. Proceedings, in: Vol. 11254 of Lecture Notes in Computer Science,
Springer, 2018, pp. 144–162, http://dx.doi.org/10.1007/978-3-030-03044-
5_10.

[85] L. Franceschini, RML: Runtime Monitoring Language (Ph.D. thesis), Uni-
versity of Genoa, Italy, 2020, http://dx.doi.org/10.15167/franceschini-
luca_phd2020-03-19, http://hdl.handle.net/11567/1001856.

[86] D. Ancona, L. Franceschini, A. Ferrando, V. Mascardi, RML: Theory and
practice of a domain specific language for runtime verification, Sci.
Comput. Program. 205 (2021) 102610, http://dx.doi.org/10.1016/j.scico.
2021.102610.

[87] C. Colombo, G.J. Pace, G. Schneider, Dynamic event-based runtime mon-
itoring of real-time and contextual properties, in: D.D. Cofer, A. Fantechi
(Eds.), Formal Methods for Industrial Critical Systems, 13th International
Workshop, FMICS 2008, L’Aquila, Italy, September 15-16, 2008. Revised
Selected Papers, in: Vol. 5596 of Lecture Notes in Computer Science,
Springer, 2008, pp. 135–149, http://dx.doi.org/10.1007/978-3-642-03240-

0_13.

26
[88] C. Colombo, G.J. Pace, G. Schneider, LARVA — safer monitoring of real-time
Java programs (tool paper), in: D.V. Hung, P. Krishnan (Eds.), Seventh IEEE
International Conference on Software Engineering and Formal Methods,
SEFM 2009, Hanoi, Vietnam, 23-27, 2009, IEEE Computer Society, 2009,
pp. 33–37, http://dx.doi.org/10.1109/SEFM.2009.13.

[89] C. Colombo, G.J. Pace, Runtime verification using LARVA, in: G. Reger,
K. Havelund (Eds.), RV-CuBES 2017. An International Workshop on
Competitions, Usability, Benchmarks, Evaluation, and Standardisation for
Runtime Verification Tools, September 15, 2017, Seattle, WA, USA, 3
of Kalpa Publications in Computing, EasyChair, 2017, pp. 55–63, http:
//dx.doi.org/10.29007/n7td.

[90] P.O. Meredith, D. Jin, D. Griffith, F. Chen, G. Rosu, An overview of the
MOP runtime verification framework, Int. J. Softw. Tools Technol. Transf.
14 (3) (2012) 249–289, http://dx.doi.org/10.1007/s10009-011-0198-6.

[91] G. Reger, H.C. Cruz, D.E. Rydeheard, Marq: Monitoring at runtime with
QEA, in: C. Baier, C. Tinelli (Eds.), Tools and Algorithms for the Construc-
tion and Analysis of Systems - 21st International Conference, TACAS 2015,
Held as Part of the European Joint Conferences on Theory and Practice
of Software, ETAPS 2015, London, UK, April 11-18, 2015. Proceedings,
in: Vol. 9035 of Lecture Notes in Computer Science, Springer, 2015, pp.
596–610, http://dx.doi.org/10.1007/978-3-662-46681-0_55.

[92] H. Barringer, A. Goldberg, K. Havelund, K. Sen, Rule-based runtime
verification, in: B. Steffen, G. Levi (Eds.), Verification, Model Checking,
and Abstract Interpretation, 5th International Conference, VMCAI 2004,
Venice, Italy, January 11-13, 2004. Proceedings, in: Vol. 2937 of Lecture
Notes in Computer Science, Springer, 2004, pp. 44–57, http://dx.doi.org/
10.1007/978-3-540-24622-0_5.

[93] A. Goldberg, K. Havelund, Automated runtime verification with eagle, in:
U. Ultes-Nitsche, J.C. Augusto, J. Barjis (Eds.), Modelling, Simulation, Veri-
fication and Validation of Enterprise Information Systems, Proceedings of
the 3rd International Workshop on Modelling, Simulation, Verification
and Validation of Enterprise Information Systems, MSVVEIS 2005, in
conjunction with ICEIS 2005, Miami, FL, USA, 2005, INSTICC Press, 2005.

[94] I. Aktug, K. Naliuka, Conspec - A formal language for policy specification,
Sci. Comput. Program. 74 (1–2) (2008) 2–12, http://dx.doi.org/10.1016/j.
scico.2008.09.004.

[95] R.S. Sandhu, P. Samarati, Access control: Principle and practice, IEEE
Commun. Mag. 32 (9) (1994) 40–48.

[96] M. Mammass, F. Ghadi, An overview on access control models, Int. J.
Appl. Evol. Comput. 6 (4) (2015) 28–38, http://dx.doi.org/10.4018/IJAEC.
2015100103.

[97] G. Ahn, Discretionary access control, in: L. Liu, M.T. Özsu (Eds.), En-
cyclopedia of Database Systems, Second Edition, Springer, 2018, http:
//dx.doi.org/10.1007/978-1-4614-8265-9_135.

[98] N. Li, Discretionary access control, in: H.C.A. van Tilborg, S. Jajodia (Eds.),
Encyclopedia of Cryptography and Security, Second Ed., Springer, 2011,
pp. 353–356, http://dx.doi.org/10.1007/978-1-4419-5906-5_798.

[99] S.D.C. di Vimercati, Discretionary access control policies (DAC), in: H.C.A.
van Tilborg, S. Jajodia (Eds.), Encyclopedia of Cryptography and Security,
Second Ed., Springer, 2011, pp. 356–358, http://dx.doi.org/10.1007/978-
1-4419-5906-5_817.

[100] S.D.C. di Vimercati, P. Samarati, Mandatory access control policy (MAC),
in: H.C.A. van Tilborg, S. Jajodia (Eds.), Encyclopedia of Cryptography and
Security, Second Ed, Springer, 2011, p. 758, http://dx.doi.org/10.1007/978-
1-4419-5906-5_822.

[101] B.M. Thuraisingham, Mandatory access control, in: L. Liu, M.T. Özsu
(Eds.), Encyclopedia of Database Systems, Second Ed., Springer, 2018,
http://dx.doi.org/10.1007/978-1-4614-8265-9_214.

[102] S.J. Upadhyaya, Mandatory access control, in: H.C.A. van Tilborg, S. Jajodia
(Eds.), Encyclopedia of Cryptography and Security, Second Ed., Springer,
2011, pp. 756–758, http://dx.doi.org/10.1007/978-1-4419-5906-5_784.

[103] Y. Zhang, J.B.D. Joshi, Role-based access control, in: L. Liu, M.T. Özsu
(Eds.), Encyclopedia of Database Systems, Second Ed., Springer, 2018,
http://dx.doi.org/10.1007/978-1-4614-8265-9_320.

[104] V. Alturi, D.F. Ferraiolo, Role-based access control, in: H.C.A. van Tilborg,
S. Jajodia (Eds.), Encyclopedia of Cryptography and Security, Second Ed.,
Springer, 2011, pp. 1053–1055, http://dx.doi.org/10.1007/978-1-4419-
5906-5_829.

[105] I. Clark, Role-based access control, in: R. Herold (Ed.), Encyclopedia of
Information Assurance, Taylor & Francis, 2011, http://dx.doi.org/10.1081/
E-EIA-120046311.

[106] A. Estes, Access control matrix, in: H.C.A. van Tilborg, S. Jajodia (Eds.),
Encyclopedia of Cryptography and Security, Second Ed., Springer, 2011,
pp. 12–13, http://dx.doi.org/10.1007/978-1-4419-5906-5_771.

[107] H.C.A. van Tilborg, S. Jajodia (Eds.), Rule-based access control, in: Encyclo-
pedia of Cryptography and Security, Second Ed., Springer, 2011, p. 1072,
http://dx.doi.org/10.1007/978-1-4419-5906-5_1312.

[108] V.C. Hu, D.R. Kuhn, D.F. Ferraiolo, J. Voas, Attribute-based access control,

Computer 48 (2) (2015) 85–88.

http://dx.doi.org/10.1109/ASE.2019.00065
http://dx.doi.org/10.1109/ASE.2019.00065
http://dx.doi.org/10.1109/ASE.2019.00065
http://dx.doi.org/10.1145/3183440.3183460
http://dx.doi.org/10.1145/3183440.3183460
http://dx.doi.org/10.1145/3183440.3183460
http://arxiv.org/abs/1905.11953
http://dx.doi.org/10.1145/3180155.3180190
http://dx.doi.org/10.1145/3180155.3180190
http://dx.doi.org/10.1145/3180155.3180190
http://dx.doi.org/10.1007/978-3-540-31980-1_36
http://dx.doi.org/10.1007/978-3-540-24732-6_11
http://refhub.elsevier.com/S1574-0137(23)00061-8/sb74
http://refhub.elsevier.com/S1574-0137(23)00061-8/sb74
http://refhub.elsevier.com/S1574-0137(23)00061-8/sb74
http://dx.doi.org/10.48550/arXiv.2210.10077
http://arxiv.org/abs/2210.10077
http://dx.doi.org/10.1016/S0019-9958(63)90290-0
http://dx.doi.org/10.1007/s11704-013-2195-2
http://dx.doi.org/10.1007/s11704-013-2195-2
http://dx.doi.org/10.1007/s11704-013-2195-2
http://dx.doi.org/10.1016/0304-3975(94)90010-8
http://refhub.elsevier.com/S1574-0137(23)00061-8/sb79
http://dx.doi.org/10.1007/978-3-642-13754-9_3
http://dx.doi.org/10.1109/IRI.2018.00079
http://dx.doi.org/10.1007/BF01995674
http://dx.doi.org/10.1007/BF01995674
http://dx.doi.org/10.1007/BF01995674
http://dx.doi.org/10.1109/TIME.2005.26
http://dx.doi.org/10.1109/TIME.2005.26
http://dx.doi.org/10.1109/TIME.2005.26
http://dx.doi.org/10.1007/978-3-030-03044-5_10
http://dx.doi.org/10.1007/978-3-030-03044-5_10
http://dx.doi.org/10.1007/978-3-030-03044-5_10
http://dx.doi.org/10.15167/franceschini-luca_phd2020-03-19
http://dx.doi.org/10.15167/franceschini-luca_phd2020-03-19
http://dx.doi.org/10.15167/franceschini-luca_phd2020-03-19
http://hdl.handle.net/11567/1001856
http://dx.doi.org/10.1016/j.scico.2021.102610
http://dx.doi.org/10.1016/j.scico.2021.102610
http://dx.doi.org/10.1016/j.scico.2021.102610
http://dx.doi.org/10.1007/978-3-642-03240-0_13
http://dx.doi.org/10.1007/978-3-642-03240-0_13
http://dx.doi.org/10.1007/978-3-642-03240-0_13
http://dx.doi.org/10.1109/SEFM.2009.13
http://dx.doi.org/10.29007/n7td
http://dx.doi.org/10.29007/n7td
http://dx.doi.org/10.29007/n7td
http://dx.doi.org/10.1007/s10009-011-0198-6
http://dx.doi.org/10.1007/978-3-662-46681-0_55
http://dx.doi.org/10.1007/978-3-540-24622-0_5
http://dx.doi.org/10.1007/978-3-540-24622-0_5
http://dx.doi.org/10.1007/978-3-540-24622-0_5
http://refhub.elsevier.com/S1574-0137(23)00061-8/sb93
http://refhub.elsevier.com/S1574-0137(23)00061-8/sb93
http://refhub.elsevier.com/S1574-0137(23)00061-8/sb93
http://refhub.elsevier.com/S1574-0137(23)00061-8/sb93
http://refhub.elsevier.com/S1574-0137(23)00061-8/sb93
http://refhub.elsevier.com/S1574-0137(23)00061-8/sb93
http://refhub.elsevier.com/S1574-0137(23)00061-8/sb93
http://refhub.elsevier.com/S1574-0137(23)00061-8/sb93
http://refhub.elsevier.com/S1574-0137(23)00061-8/sb93
http://refhub.elsevier.com/S1574-0137(23)00061-8/sb93
http://refhub.elsevier.com/S1574-0137(23)00061-8/sb93
http://dx.doi.org/10.1016/j.scico.2008.09.004
http://dx.doi.org/10.1016/j.scico.2008.09.004
http://dx.doi.org/10.1016/j.scico.2008.09.004
http://refhub.elsevier.com/S1574-0137(23)00061-8/sb95
http://refhub.elsevier.com/S1574-0137(23)00061-8/sb95
http://refhub.elsevier.com/S1574-0137(23)00061-8/sb95
http://dx.doi.org/10.4018/IJAEC.2015100103
http://dx.doi.org/10.4018/IJAEC.2015100103
http://dx.doi.org/10.4018/IJAEC.2015100103
http://dx.doi.org/10.1007/978-1-4614-8265-9_135
http://dx.doi.org/10.1007/978-1-4614-8265-9_135
http://dx.doi.org/10.1007/978-1-4614-8265-9_135
http://dx.doi.org/10.1007/978-1-4419-5906-5_798
http://dx.doi.org/10.1007/978-1-4419-5906-5_817
http://dx.doi.org/10.1007/978-1-4419-5906-5_817
http://dx.doi.org/10.1007/978-1-4419-5906-5_817
http://dx.doi.org/10.1007/978-1-4419-5906-5_822
http://dx.doi.org/10.1007/978-1-4419-5906-5_822
http://dx.doi.org/10.1007/978-1-4419-5906-5_822
http://dx.doi.org/10.1007/978-1-4614-8265-9_214
http://dx.doi.org/10.1007/978-1-4419-5906-5_784
http://dx.doi.org/10.1007/978-1-4614-8265-9_320
http://dx.doi.org/10.1007/978-1-4419-5906-5_829
http://dx.doi.org/10.1007/978-1-4419-5906-5_829
http://dx.doi.org/10.1007/978-1-4419-5906-5_829
http://dx.doi.org/10.1081/E-EIA-120046311
http://dx.doi.org/10.1081/E-EIA-120046311
http://dx.doi.org/10.1081/E-EIA-120046311
http://dx.doi.org/10.1007/978-1-4419-5906-5_771
http://dx.doi.org/10.1007/978-1-4419-5906-5_1312
http://refhub.elsevier.com/S1574-0137(23)00061-8/sb108
http://refhub.elsevier.com/S1574-0137(23)00061-8/sb108
http://refhub.elsevier.com/S1574-0137(23)00061-8/sb108

R. Taleb, S. Hallé and R. Khoury Computer Science Review 50 (2023) 100594
[109] L. Bouganim, Y. Guo, Database encryption, in: H.C.A. van Tilborg, S. Jajodia
(Eds.), Encyclopedia of Cryptography and Security, Second Ed., Springer,
2011, pp. 307–312, http://dx.doi.org/10.1007/978-1-4419-5906-5_677.

[110] G. Cormode, D. Srivastava, Anonymized data: Generation, models, usage,
in: F. Li, M.M. Moro, S. Ghandeharizadeh, J.R. Haritsa, G. Weikum, M.J.
Carey, F. Casati, E.Y. Chang, I. Manolescu, S. Mehrotra, U. Dayal, V.J.
Tsotras (Eds.), Proceedings of the 26th International Conference on Data
Engineering, ICDE 2010, March 1-6, 2010. Long Beach, California, USA,
IEEE Computer Society, 2010, pp. 1211–1212, http://dx.doi.org/10.1109/
ICDE.2010.5447721.

[111] J.F. Marques, J. Bernardino, Analysis of data anonymization techniques,
in: D. Aveiro, J.L.G. Dietz, J. Filipe (Eds.), Proceedings of the 12th Interna-
tional Joint Conference on Knowledge Discovery, Knowledge Engineering
and Knowledge Management, IC3K 2020, Volume 2: KEOD, Budapest,
Hungary, November 2-4, 2020. SCITEPRESS, 2020, pp. 235–241, http:
//dx.doi.org/10.5220/0010142302350241.

[112] R.L. Wilson, P.A. Rosen, Protecting data through perturbation techniques:
The impact on knowledge discovery in databases, J. Database Manage. 14
(2) (2003) 14–26, http://dx.doi.org/10.4018/jdm.2003040102.

[113] K. Chen, L. Liu, Privacy preserving data classification with rotation pertur-
bation, in: Proceedings of the 5th IEEE International Conference on Data
Mining, ICDM 2005, 27-30 2005, Houston, Texas, USA, IEEE Computer
Society, 2005, pp. 589–592, http://dx.doi.org/10.1109/ICDM.2005.121.

[114] K. Chen, L. Liu, Geometric data perturbation for privacy preserving
outsourced data mining, Knowl. Inf. Syst. 29 (3) (2011) 657–695, http:
//dx.doi.org/10.1007/s10115-010-0362-4.

[115] T. Revathi, D. Ramaraj, Challenges and methods of data perturbation
techniques, 2017.

[116] N. Patel, S. Patel, A study on data perturbation techniques in privacy
preserving data mining, 2016.

[117] S.R.M. Oliveira, O.R. Zaïane, Privacy preserving clustering by data
transformation, J. Inf. Data Manag. 1 (1) (2010) 37–52.

[118] N. Tatbul, Load shedding, in: L. Liu, M.T. Özsu (Eds.), Encyclopedia of
Database Systems, Second Ed., Springer, 2018, http://dx.doi.org/10.1007/
978-1-4614-8265-9_211.

[119] C. Olston, J. Jiang, J. Widom, Adaptive filters for continuous queries
over distributed data streams, in: A.Y. Halevy, Z.G. Ives, A. Doan (Eds.),
Proceedings of the 2003 ACM SIGMOD International Conference on
Management of Data, San Diego, California, USA, June 9-12, 2003., ACM,
2003, pp. 563–574, http://dx.doi.org/10.1145/872757.872825.

[120] N. Tatbul, U. Çetintemel, S.B. Zdonik, M. Cherniack, M. Stonebraker, Load
shedding in a data stream manager, in: J.C. Freytag, P.C. Lockemann, S.
Abiteboul, M.J. Carey, P.G. Selinger, A. Heuer (Eds.), Proceedings of 29th
International Conference on Very Large Data Bases, VLDB 2003, Berlin,
Germany, September 9-12, 2003. Morgan Kaufmann, 2003, pp. 309–320,
http://dx.doi.org/10.1016/B978-012722442-8/50035-5.

[121] S. Mehta, V. Pandit, A survey on sampling techniques and applications, in:
P.S. Kumar, S. Parthasarathy, S. Godbole (Eds.), Proceedings of the 16th
International Conference on Management of Data, 2010, Allied Publishers,
Nagpur, India, 2010, p. 11.

[122] B. Bonakdarpour, S. Navabpour, S. Fischmeister, Sampling-based runtime
verification, in: M.J. Butler, W. Schulte (Eds.), FM 2011: Formal Methods
- 17th International Symposium on Formal Methods, Limerick, Ireland,
June 20-24, 2011. Proceedings, in: Vol. 6664 of Lecture Notes in Computer
Science, Springer, 2011, pp. 88–102, http://dx.doi.org/10.1007/978-3-642-
21437-0_9.

[123] M. Arnold, M.T. Vechev, E. Yahav, QVM: An efficient runtime for detecting
defects in deployed systems, ACM Trans. Softw. Eng. Methodol. 21 (1)
(2011) 2:1–2:35, http://dx.doi.org/10.1145/2063239.2063241.

[124] X. Huang, J. Seyster, S. Callanan, K. Dixit, R. Grosu, S.A. Smolka, S.D. Stoller,
E. Zadok, Software monitoring with controllable overhead, Int. J. Softw.
Tools Technol. Transf. 14 (3) (2012) 327–347, http://dx.doi.org/10.1007/
s10009-010-0184-4.

[125] L. Fei, S.P. Midkiff, Artemis: Practical runtime monitoring of applications
for execution anomalies, in: M.I. Schwartzbach, T. Ball (Eds.), Proceedings
of the ACM SIGPLAN 2006 Conference on Programming Language Design
and Implementation, Ottawa, Ontario, Canada, June 11-14, 2006, ACM,
2006, pp. 84–95, http://dx.doi.org/10.1145/1133981.1133992.

[126] D. Yuan, S. Park, P. Huang, Y. Liu, M.M. Lee, X. Tang, Y. Zhou, S. Savage, Be
conservative: Enhancing failure diagnosis with proactive logging, in: 10th
USENIX Symposium on Operating Systems Design and Implementation,
OSDI 2012, Hollywood, CA, USA, October 8-10, 2012, 2012, pp. 293–306.

[127] H. Li, W. Shang, A.E. Hassan, Which log level should developers choose for
a new logging statement? Empir. Softw. Eng. 22 (4) (2017) 1684–1716,
http://dx.doi.org/10.1007/s10664-016-9456-2.

[128] Hongbin Liu, Mingzhi Huang, Iman Janghorban, Payam Ghorbannezhad,
Chang Kyoo Yoo, Faulty sensor detection, identification and reconstruc-
tion of indoor air quality measurements in a subway station, in: ICCAS

2011-2011 11th International Conference on Control, Automation and

27
Systems, International Conference on Control, Automation and Systems,
2011, pp. 323–328.

[129] M. Tiger, F. Heintz, Internat. J. Approx. Reason. 119 (2020) 325–352.
[130] A. Francalanza, J.A. Pérez, C. Sánchez, Runtime verification for decen-

tralised and distributed systems, in: E. Bartocci, Y. Falcone (Eds.), Lectures
on Runtime Verification - Introductory and Advanced Topics, in: Vol.
10457 of Lecture Notes in Computer Science, Springer, 2018, pp. 176–210,
http://dx.doi.org/10.1007/978-3-319-75632-5_6.

[131] G. Audrito, F. Damiani, V. Stolz, G. Torta, M. Viroli, Distributed runtime
verification by past-ctl and the field calculus, J. Syst. Softw. 187 (2022)
111251, http://dx.doi.org/10.1016/j.jss.2022.111251.

[132] G. Audrito, R. Casadei, F. Damiani, V. Stolz, M. Viroli, Adaptive distributed
monitors of spatial properties for cyber–physical systems, J. Syst. Softw.
175 (2021) 110908, http://dx.doi.org/10.1016/j.jss.2021.110908.

[133] Z. Manna, A. Pnueli, The temporal logic of reactive and concurrent
systems - specification, Springer, 1992, http://dx.doi.org/10.1007/978-1-
4612-0931-7.

[134] H. Kallwies, M. Leucker, C. Sánchez, T. Scheffel, Anticipatory recurrent
monitoring with uncertainty and assumptions, in: T. Dang, V. Stolz
(Eds.), Runtime Verification - 22nd International Conference, RV 2022,
Tbilisi, Georgia, September 28-30, 2022. Proceedings, in: Lecture Notes
in Computer Science, vol. 13498, Springer, 2022, pp. 181–199, http:
//dx.doi.org/10.1007/978-3-031-17196-3_10.

[135] H. Kallwies, M. Leucker, C. Sánchez, Symbolic runtime verification for
monitoring under uncertainties and assumptions, in: A. Bouajjani, L.
Holík, Z. Wu (Eds.), Automated Technology for Verification and Analysis
- 20th International Symposium, ATVA 2022, Virtual Event, October 25-
28, 2022. Proceedings, in: 13505 of Lecture Notes in Computer Science,
Springer, 2022, pp. 117–134, http://dx.doi.org/10.1007/978-3-031-19992-
9_8.

[136] D. Basin, F. Klaedtke, S. Müller, E. Zălinescu, Monitoring metric first-
order temporal properties, Vol. 62, no. 2. http://dx.doi.org/10.
1145/2699444.

[137] K.G. Larsen, Proof systems for satisfiability in Hennessy-Milner logic
with recursion, Theoret. Comput. Sci. 72 (2& 3) (1990) 265–288, http:
//dx.doi.org/10.1016/0304-3975(90)90038-J.

[138] J. Li, J. Lee, L. Liao, A novel algorithm for training hidden Markov models
with positive and negative examples, in: T. Park, Y. Cho, X. Hu, I. Yoo,
H.G. Woo, J. Wang, J.C. Facelli, S. Nam, M. Kang (Eds.), IEEE International
Conference on Bioinformatics and Biomedicine, BIBM 2020, Virtual Event,
South Korea, December 16-19, 2020, IEEE, 2020, pp. 305–310, http:
//dx.doi.org/10.1109/BIBM49941.2020.9313477.

[139] L.R. Rabiner, A tutorial on hidden Markov models and selected appli-
cations in speech recognition, Proc. IEEE 77 (2) (1989) 257–286, http:
//dx.doi.org/10.1109/5.18626.

[140] A. Tavanaei, A.S. Maida, Training a hidden Markov model with a Bayesian
spiking neural network, J. Signal Process. Syst. 90 (2) (2018) 211–220,
http://dx.doi.org/10.1007/s11265-016-1153-2.

[141] H. Franco, A.J. Serralheiro, A new discriminative training algorithm for
hidden Markov models, in: The First International Conference on Spoken
Language Processing, ICSLP 1990, Kobe, Japan, November 18-22, 1990.
ISCA, 1990.

[142] G. Zhou, C. Yang, P. Lu, X. Chen, Runtime verification in uncertain
environment based on probabilistic model learning, Math.
Biosci. Eng. 19 (12) (2022) 13607–13627, http://dx.doi.org/10.3934/mbe.
2022635.

[143] C. Sammut, G.I. Webb (Eds.), Baum-Welch algorithm, in: Encyclopedia of
Machine Learning and Data Mining, Springer, 2017, p. 99, http://dx.doi.
org/10.1007/978-1-4899-7687-1_59.

[144] R. Taleb, S. Hallé, R. Khoury, A modular runtime enforcement model using
multi-traces, in: E. Aïmeur, M. Laurent, R. Yaich, B. Dupont, J. García-
Alfaro (Eds.), Foundations and Practice of Security - 14th International
Symposium, FPS 2021, Paris, France, December 7-10, 2021. Revised
Selected Papers, in: Vol. 13291 of Lecture Notes in Computer Science,
Springer, 2021, pp. 283–302, http://dx.doi.org/10.1007/978-3-031-08147-
7_19.

[145] R. Taleb, R. Khoury, S. Hallé, A modular pipeline for enforcement of
security properties at runtime, Ann. Telecommun. (2023) http://dx.doi.
org/10.1007/s12243-023-00952-z, in press.

[146] E. Bartocci, R. Grosu, A. Karmarkar, S.A. Smolka, S.D. Stoller, E. Zadok,
J. Seyster, Adaptive runtime verification, in: S. Qadeer, S. Tasiran (Eds.),
Runtime Verification, Third International Conference, RV 2012, Istanbul,
Turkey, September 25-28, 2012. Revised Selected Papers, in: Vol. 7687
of Lecture Notes in Computer Science, Springer, 2012, pp. 168–182,
http://dx.doi.org/10.1007/978-3-642-35632-2_18.

[147] N. Alechina, M. Dastani, B. Logan, Norm approximation for imperfect
monitors, in: A.L.C. Bazzan, M.N. Huhns, A. Lomuscio, P. Scerri (Eds.),
International conference on Autonomous Agents and Multi-Agent Sys-
tems, AAMAS ’14, Paris, France, May 5-9, 2014. IFAAMAS/ACM, 2014, pp.
117–124.

http://dx.doi.org/10.1007/978-1-4419-5906-5_677
http://dx.doi.org/10.1109/ICDE.2010.5447721
http://dx.doi.org/10.1109/ICDE.2010.5447721
http://dx.doi.org/10.1109/ICDE.2010.5447721
http://dx.doi.org/10.5220/0010142302350241
http://dx.doi.org/10.5220/0010142302350241
http://dx.doi.org/10.5220/0010142302350241
http://dx.doi.org/10.4018/jdm.2003040102
http://dx.doi.org/10.1109/ICDM.2005.121
http://dx.doi.org/10.1007/s10115-010-0362-4
http://dx.doi.org/10.1007/s10115-010-0362-4
http://dx.doi.org/10.1007/s10115-010-0362-4
http://refhub.elsevier.com/S1574-0137(23)00061-8/sb115
http://refhub.elsevier.com/S1574-0137(23)00061-8/sb115
http://refhub.elsevier.com/S1574-0137(23)00061-8/sb115
http://refhub.elsevier.com/S1574-0137(23)00061-8/sb116
http://refhub.elsevier.com/S1574-0137(23)00061-8/sb116
http://refhub.elsevier.com/S1574-0137(23)00061-8/sb116
http://refhub.elsevier.com/S1574-0137(23)00061-8/sb117
http://refhub.elsevier.com/S1574-0137(23)00061-8/sb117
http://refhub.elsevier.com/S1574-0137(23)00061-8/sb117
http://dx.doi.org/10.1007/978-1-4614-8265-9_211
http://dx.doi.org/10.1007/978-1-4614-8265-9_211
http://dx.doi.org/10.1007/978-1-4614-8265-9_211
http://dx.doi.org/10.1145/872757.872825
http://dx.doi.org/10.1016/B978-012722442-8/50035-5
http://refhub.elsevier.com/S1574-0137(23)00061-8/sb121
http://refhub.elsevier.com/S1574-0137(23)00061-8/sb121
http://refhub.elsevier.com/S1574-0137(23)00061-8/sb121
http://refhub.elsevier.com/S1574-0137(23)00061-8/sb121
http://refhub.elsevier.com/S1574-0137(23)00061-8/sb121
http://refhub.elsevier.com/S1574-0137(23)00061-8/sb121
http://refhub.elsevier.com/S1574-0137(23)00061-8/sb121
http://dx.doi.org/10.1007/978-3-642-21437-0_9
http://dx.doi.org/10.1007/978-3-642-21437-0_9
http://dx.doi.org/10.1007/978-3-642-21437-0_9
http://dx.doi.org/10.1145/2063239.2063241
http://dx.doi.org/10.1007/s10009-010-0184-4
http://dx.doi.org/10.1007/s10009-010-0184-4
http://dx.doi.org/10.1007/s10009-010-0184-4
http://dx.doi.org/10.1145/1133981.1133992
http://refhub.elsevier.com/S1574-0137(23)00061-8/sb126
http://refhub.elsevier.com/S1574-0137(23)00061-8/sb126
http://refhub.elsevier.com/S1574-0137(23)00061-8/sb126
http://refhub.elsevier.com/S1574-0137(23)00061-8/sb126
http://refhub.elsevier.com/S1574-0137(23)00061-8/sb126
http://refhub.elsevier.com/S1574-0137(23)00061-8/sb126
http://refhub.elsevier.com/S1574-0137(23)00061-8/sb126
http://dx.doi.org/10.1007/s10664-016-9456-2
http://refhub.elsevier.com/S1574-0137(23)00061-8/sb128
http://refhub.elsevier.com/S1574-0137(23)00061-8/sb128
http://refhub.elsevier.com/S1574-0137(23)00061-8/sb128
http://refhub.elsevier.com/S1574-0137(23)00061-8/sb128
http://refhub.elsevier.com/S1574-0137(23)00061-8/sb128
http://refhub.elsevier.com/S1574-0137(23)00061-8/sb128
http://refhub.elsevier.com/S1574-0137(23)00061-8/sb128
http://refhub.elsevier.com/S1574-0137(23)00061-8/sb128
http://refhub.elsevier.com/S1574-0137(23)00061-8/sb128
http://refhub.elsevier.com/S1574-0137(23)00061-8/sb128
http://refhub.elsevier.com/S1574-0137(23)00061-8/sb128
http://refhub.elsevier.com/S1574-0137(23)00061-8/sb129
http://dx.doi.org/10.1007/978-3-319-75632-5_6
http://dx.doi.org/10.1016/j.jss.2022.111251
http://dx.doi.org/10.1016/j.jss.2021.110908
http://dx.doi.org/10.1007/978-1-4612-0931-7
http://dx.doi.org/10.1007/978-1-4612-0931-7
http://dx.doi.org/10.1007/978-1-4612-0931-7
http://dx.doi.org/10.1007/978-3-031-17196-3_10
http://dx.doi.org/10.1007/978-3-031-17196-3_10
http://dx.doi.org/10.1007/978-3-031-17196-3_10
http://dx.doi.org/10.1007/978-3-031-19992-9_8
http://dx.doi.org/10.1007/978-3-031-19992-9_8
http://dx.doi.org/10.1007/978-3-031-19992-9_8
http://dx.doi.org/10.1145/2699444
http://dx.doi.org/10.1145/2699444
http://dx.doi.org/10.1145/2699444
http://dx.doi.org/10.1016/0304-3975(90)90038-J
http://dx.doi.org/10.1016/0304-3975(90)90038-J
http://dx.doi.org/10.1016/0304-3975(90)90038-J
http://dx.doi.org/10.1109/BIBM49941.2020.9313477
http://dx.doi.org/10.1109/BIBM49941.2020.9313477
http://dx.doi.org/10.1109/BIBM49941.2020.9313477
http://dx.doi.org/10.1109/5.18626
http://dx.doi.org/10.1109/5.18626
http://dx.doi.org/10.1109/5.18626
http://dx.doi.org/10.1007/s11265-016-1153-2
http://refhub.elsevier.com/S1574-0137(23)00061-8/sb141
http://refhub.elsevier.com/S1574-0137(23)00061-8/sb141
http://refhub.elsevier.com/S1574-0137(23)00061-8/sb141
http://refhub.elsevier.com/S1574-0137(23)00061-8/sb141
http://refhub.elsevier.com/S1574-0137(23)00061-8/sb141
http://refhub.elsevier.com/S1574-0137(23)00061-8/sb141
http://refhub.elsevier.com/S1574-0137(23)00061-8/sb141
http://dx.doi.org/10.3934/mbe.2022635
http://dx.doi.org/10.3934/mbe.2022635
http://dx.doi.org/10.3934/mbe.2022635
http://dx.doi.org/10.1007/978-1-4899-7687-1_59
http://dx.doi.org/10.1007/978-1-4899-7687-1_59
http://dx.doi.org/10.1007/978-1-4899-7687-1_59
http://dx.doi.org/10.1007/978-3-031-08147-7_19
http://dx.doi.org/10.1007/978-3-031-08147-7_19
http://dx.doi.org/10.1007/978-3-031-08147-7_19
http://dx.doi.org/10.1007/s12243-023-00952-z
http://dx.doi.org/10.1007/s12243-023-00952-z
http://dx.doi.org/10.1007/s12243-023-00952-z
http://dx.doi.org/10.1007/978-3-642-35632-2_18
http://refhub.elsevier.com/S1574-0137(23)00061-8/sb147
http://refhub.elsevier.com/S1574-0137(23)00061-8/sb147
http://refhub.elsevier.com/S1574-0137(23)00061-8/sb147
http://refhub.elsevier.com/S1574-0137(23)00061-8/sb147
http://refhub.elsevier.com/S1574-0137(23)00061-8/sb147
http://refhub.elsevier.com/S1574-0137(23)00061-8/sb147
http://refhub.elsevier.com/S1574-0137(23)00061-8/sb147
http://refhub.elsevier.com/S1574-0137(23)00061-8/sb147
http://refhub.elsevier.com/S1574-0137(23)00061-8/sb147

	Uncertainty in runtime verification: A survey
	Introduction
	Overview of Runtime Verification
	Stages of the RV
	Synthesizing the RV Monitor from a Property
	System Instrumentation
	Analyzing System Execution

	Events and Event Types
	Atomic Symbols
	CSV Events
	XML and JSON Events
	Events as Predicates
	Snapshots

	Specification Languages
	Regular Expressions
	Finite-State Automata
	LTL: Linear Temporal Logic DBLP:conf/focs/Pnueli77
	MTL: Metric Temporal Logic
	LOLA: Logic Of Linear Arithmetic
	TeSSLa: Temporal Stream-Based Specification Language
	Other Specification Languages

	Incomplete and Uncertain Sources of Events
	Mechanisms of Data Restriction
	Causes of Data Restrictions
	Intentional Causes
	Non-Intentional Causes
	Effects of Data Restrictions

	RV Approaches to Data Restrictions
	Abstraction-based Solutions
	Taleb DBLP:conf/icse/TalebKH21: RV Under Access Restrictions
	Leucker DBLP:journals/jlp/LeuckerS09: RV for Timed Event Streams with Partial Information
	Wang DBLP:conf/rv/WangASL11: RV of Traces under Recording Uncertainty

	Using Language-based Solutions
	Joshi DBLP:conf/sac/JoshiTF17: RV of LTL on lossy traces
	Basin DBLP:conf/rv/BasinKMZ12: Monitoring Compliance Policies over Incomplete and Disagreeing Logs
	Basin DBLP:conf/rv/BasinKMZ14: On Real-Time Monitoring with Imprecise Timestamps
	Basin DBLP:conf/cav/BasinKZ17: RV of Temporal Properties over Out-of-Order Data Streams
	Ferrando DBLP:conf/sefm/FerrandoM22: RV with Imperfect Information through Indistinguishability Relations
	Aceto DBLP:conf/fsttcs/AcetoAFI17: Monitoring for Silent Actions

	Statistical-based Solutions
	Stoller : RV with State Estimation (RVSE)
	Kalajdzic DBLP:conf/rv/KalajdzicBSSG13: RV with Particle Filtering (RVPF)
	Wilcox DBLP:conf/rv/WilcoxW10: RV of Stochastic, Faulty Systems

	Synthesis
	Events and Uncertainty Representation
	Different Forms of Verdicts
	Soundness, Completeness and Monotonicity
	Comparison Based on Specification Language
	Comparison Based on Evaluation Methods

	Conclusion and Future Work
	Declaration of competing interest
	Data availability
	References

