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Abstract

This paper studies the properties of a stochastic optimization model
for the short-term hydropower generation and reduction problem with
uncertain inflows. The price of energy is not considered. The uncertainty
of the inflows is represented using scenario trees. Backward reduction
and neural gas methods are used to generate and reduce a full scenario
tree. The objective of this work is to evaluate the impact of scenario
tree generation and reduction methods on the solution of the optimiza-
tion. First, statistical tests are done where the expected volume, the
variance and the standard deviation of each scenario tree are calculated
and compared. Second, operational tests are realized, where the sce-
nario trees are used as input to the stochastic programming model and
the value of the objective function and solution are evaluated and com-
pared. The model are tested on a 14 forecasted days and for a 10 days
rolling-horizon for two powerhouses with five turbines each located in
the Saguenay-Lac-St-Jean region of the province of Québec in Canada.

Keywords: Stochastic optimization, scenario tree generation, backward
reduction, neural gas.
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Nomenclature
Sets
ie€{1,2,.,S} indexes of the set of scenarios.
n € {1,2,..,N;} indexes of the set of nodes for each scenario 1.
ce{l,2,.,C indexes of the set of powerhouses.
1ef{1,2,.,U0°} indexes of the set of powerhouses upstream of each powerhouse c.
jed{1,2,..,J:} indexes of the set of turbines associated to the node n and powerhouse c.
be{1,2,.,B°} indexes of the set of combinations of each powerhouse c.
ked{1,2,.., Kf} indexes of the set of efficiency points associated to powerhouse ¢ and combination b.
Parameters
P, power output of powerhouse ¢ at node n and point k (MW).
Qn water discharge of powerhouse ¢ at node n and point k (m?/s).
s probability of scenario i for powerhouse c.
& inflow of powerhouse ¢ at node n (m?/s).
B conversion factor from (m?3/s) to (hm>/h).
0°¢ estimated energy losses from maximum storage (M W) at powerhouse c.
€ start-up penalty of turbine (MW at powerhouse c.
NP oo maximum number of start-ups for powerhouse c.
T aw maximum volume of reservoir ¢ (hm?).
VS initial volume of reservoir ¢ (hm?).
Vinal final volume of reservoir ¢ (hm?).
At the duration of the stage (h).

c _ 1 if the turbine j of powerhouse c at the point k is activated at node n.
nk,j 0 otherwise.

Decision variables

c 1 if the point k is chosen at node n for powerhouse c.
Yen = 0 otherwise.

c 1 if the turbine 5 of powerhouse c is started at node n.
25 = .

J.n 0 otherwise.

v volume of the reservoir of powerhouse ¢ at node n (hm?).

c

n
. 3

dy  water spillage at powerhouse ¢ and node n (m”/s).

1 Introduction

In hydropower management, the uncertainty of the inflows is a major issue in
the decision-making process. The producers are required to define a schedule
that allows them to produce more energy under uncertainty. Stochastic short-
term hydropower models are used to solve this problem. The aim of these
models is to optimally dispatch the amount of water available in the reservoirs
between the turbines by considering uncertain inflows. Therefore, the amount
of the water discharge, the turbines in operation and the volume of the
reservoirs are defined. Different research papers have looked into stochastic
short-term hydropower models. Usually, the short-term optimization model
is considered as deterministic [8, 11, 21]. An overview on mathematical pro-
gramming approaches for the deterministic short-term hydropower problem
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is presented in [23]. In [7], the authors assume that the inflows and the prices
are known as previously forecasted. All the cited works are based on the fact
that there is no new information arriving over time, and decisions are made
in advance for the whole planning horizon. In contrast, in stochastic models,
new information about uncertain data arrives as time evolves along the plan-
ning horizon which allows the producers to plan and operate hydropower in
an optimal way [24]. In this regard, the purpose of this work is to develop a
stochastic short-term hydropower optimization model giving more realistic
production plan.

To solve stochastic short-term hydropower problems, a multistage stochastic
programming model can be used [22, 27]. For such models, the decisions
are taken at the beginning of the horizon before knowing the realization of
uncertainty. These decisions are adjusted once the uncertainties are known
[16]. Usually, uncertainty is represented by scenario trees. Each path of the
tree represent a scenario and each scenario has a probability. The nodes in
the scenarios represent the values of inflows into the reservoir system at
each stage. The scenario tree serve as input to the stochastic programming
model. Implementing a scenario tree with a large number of scenarios requires
many resources (memory capacity, computational time). Therefore, several
approaches for generating and reducing scenario trees are proposed. These
approaches define different methods that allow to determine the fewest num-
ber of scenarios that can be used in the stochastic programming model and
preserved the most information from the initial distribution.

An overview of methods for scenario tree generation is presented in [13]. The
moment matching methods are used in [6, 18]. This method aims to match
some specific statistical properties of the scenario tree and historical data
series. Statistical properties are chosen by the users according to their needs.
In [26], the first four moments (variance, mean, kurtosis and skewness) are
matched in order to create a discrete distribution of the uncertain parameter.
By contrast, in [12], the results show that the moment matching may lead to
strange approximations and may not be able to match the target distribution.
The Monte Carlo method can also be used to generate the scenario trees
[15, 20].

Clustering methods are proposed in several studies in order to recover the
structure of the scenario tree by applying a cluster analysis. k-means cluster-
ing is used in [5] where the sum of distances from all objects in that cluster
is minimized. In [22], the k-means method is used to minimize the nested
distance between the stochastic process of historical inflow data and the
multistage stochastic process represented in the scenario tree. Four clustering
methods (conditional clustering, progressive clustering, node clustering and
neural gas) are analyzed and compared in [14]. Conditional clustering is used
to build the tree by sampling scenarios from the distribution probability, and
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fitting them at the best position in the tree. Node clustering is used to reduce
the size of the tree by joining the closest node available and the algorithm
stops where the maximum number of the node is achieved. Progressive clus-
tering aims to cluster the series and to take the centroids as the values of
the scenarios to represent the series. Neural gas is a soft competitive learning
method used to update the value of the nodes in the scenario tree in such a
manner that the distance between the scenario tree and the observed series is
reduced gradually. The comparison between these methods has shown that
the neural gas outperforms other clustering methods when applied to the case
of hydro inflows. Neural gas is used in several papers to generate a scenario
tree for hydro inflows data [10, 17, 27].

Another method proposed in the literature to generate and to reduce the
size of the scenario tree by preserving as much information as possible is the
backward reduction method [24]. This method aims at iteratively selecting
scenarios to delete from a full scenario tree in a way that the probability distri-
bution distance between the reduced and the full scenario trees is minimized.
In [9], backward reduction is used to reduce the size of the scenario tree in
order to reduce the computation time in the case of hydropower. This method
is considered the state-of-the-art and is implemented in Scenred/GAMS [3].
Many other approaches have used backward reduction on the basis that the
statistical information is maintained in the best possible way [10, 25].

All the cited works make progress towards solving the problem. Since several
methods are proposed in this paper, we carry out a study of the impact of
the choice of the generation and reduction methods on the solution. Two
different methods are chosen: neural gas and backward reduction. The choice
of the methods is based on two criteria: the performance of the method
based on the literature and the ease of implementation. The reduced scenario
trees obtained by each method are used as input to the stochastic model.
The results are compared to determine if the choice of the generation and
reduction method has an impact on the solution of the optimization problem.
A multistage stochastic model is developed in order to maximize the energy
production. Since hydropower production functions are nonconvex and non-
linear, different approximation and linearization techniques are proposed,
and the production function is modelled in many different ways. Therefore,
instead of approximating the hydropower production functions and discretiz-
ing the water discharge in order to find the best value that maximizes the
energy produced, the best values are already known in operational reality.
These values can be determined using the efficiency curves of water discharge
for each possible combination of active turbines and it is at these points
that the maximum of power produced is reached. The model selects one of
these points to maximize the energy production. Since, different combinations
can be selected from one period to another, a maximum number of turbine
changes is imposed and the turbine start-ups are penalized with a fixed cost.
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This new approach was proposed and tested on a deterministic model in [8].
The results show that the proposed model allows to produce more energy
than the energy obtained from the real operational decisions. Moreover, using
the efficiency points decreases the number of parameters and variables and
makes the problem easier to solve. The use of the efficiency curves is an inno-
vative method that allows the producer to implement directly the optimized
solution since it is obtained on the efficiency points and therefore agrees with
how the engineers want to operate the powerhouses. Since our objective is to
find a solution that reflects the operational reality, this deterministic model is
adopted and updated to consider uncertain inflows.

The proposed model is tested on a real hydroelectric system owned by

Rio Tinto in the Saguenay region of the province of Québec in Canada. In
this province, the market is regulated by Hydro-Québec, a public company
responsible for the generation, transmission and distribution of electricity. As
a result, all producers must buy and sell to them and negotiate fixed price
contracts every year. This means that Rio Tinto canno’t bid on the spot
market and must transact through Hydro-Québec.
Rio Tinto is a company that produces aluminium in the Saguenay region.
They own a hydroelectric system that provides 90% of its energy needs. The
remaining energy needs are purchased at a known price from Hydro-Québec.
Therefore, the primary objective of the optimization is to maximize energy
production with the available water in the reservoirs. Hence, it is crucial to
consider the uncertainty of inflows in the development of the model. The
energy prices are not considered, but the proposed formulation could be
extended to consider uncertain prices.

The paper is organized as follows. Section 2 presents the methods used
to generate and to reduce a full scenario tree. The methodology and the
hydropower optimization model are presented in Section 3. Numerical results
are discussed in Section 4 and concluding remarks are presented in Section 5.

2 Scenario tree generation and reduction

In this Section,we present two the methods of scenario tree generation and
reduction to study the impact of the choice of the tree reduction method on
the solution of the optimization problem.

2.1 Backward reduction

Backward reduction aims to define a sub-scenario tree ¢; for ¢ € {1,...,5*}\I
with probability 7 by deleting scenarios from a full scenario tree & for s €
{1,...,5*} with probability P in a way that the probability distance between
the reduced and the full trees is minimized [9]. The problem that has to be
solved is to find the set I of deleted scenarios in terms of a given probability
distance between P and 7. In the context of stochastic power management
models [10], the Kantorovich distance D(P, ) is used and calculated by Eq.(1)
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and Eq.(2):
D(P.m) = psmin Or (&, &) (1)
sel
Or(6,&) =Y Il & & | (2)
teT

where py is the probability of the assessed scenario, I C {1,...,5*} is the set
of deleted scenarios and Cr is the function that measures the distance between
two scenarios &, s € {1,...,5%} and &, i € {1,...,5"}\I on the time horizon
t € T. In order for the reader to grasp the link between the tree methodology
and the notation for the mathematical model. Each scenario is represented by
a node, leading to multiple nodes per period as presented in Fig 1 .

The idea is to compare the Kantorovich distance of the reduced tree and the
full one on {1,..,t},t =T,T—1,...,2,1, and to delete scenarios if the reduced
tree is still close enough to the full one with a given accuracy e, as shown in
Eq.(3). This accuracy is defined as the reduction percentage. It specifies the
desired reduction in terms of the suitably measured distance between the full
and the reduced scenario trees. For example, if the reduction percentage is
10%, it means that the distance between the reduced and the full trees is less
than 10%, and that, the reduced tree retains 90% of the information contained
in the full tree. The probability m; of the preserved scenario &;, i ¢ I is equal
to the sum of its former probability p; and of the probabilities p; of deleted
scenarios that are closest to it, as shown in Eq.(4) and Eq.(5):

> pemin Cr(&, &) <& (3)
sel il
m=pit P ps Vigl (4)
s€l(i)
where
IG)={sel :i=1i(s)}, i(s) € argmin Cp (&, &) Vs eI (5)
igl

Fig. 1 Backward reduction method [10]



HSPC 2022, Olso, Norway

Fig. 1 shows an example of the strategy used to reduce the scenario tree
with backward reduction method. At each time horizon ¢, the distance is
calculated (solid line in blue color), one scenario is deleted (dashed line - - in
red color) and the probability of this scenario will be added to the preserved
one (dashed-dot line -..- in green color).

The advantage of the backward reduction method is that the implementation
can be done directly using Scenred2/GAMS [3].

2.2 Neural Gas

Neural gas is a soft competitive learning method used to update the value of
the nodes in the scenario tree in such a manner that the distance between the
scenario tree and the observed series is reduced gradually [17]. The desired
number of scenarios S is defined as a parameter. Neural gas extracts several
representative sequences from forecasted streamflow series H as different
scenarios to form a streamflow scenario tree &;, ¢ = 1,...,S5. The neural gas
algorithm works as follows:

(1) The nodal value of each scenario in the scenario tree is randomly selected
from historical streamflow series H at each stage t, ¢t € T. The selection is
done by Eq.(6):

Eit = tlrand(),t Vi € S, VieT (6)

(2) A new entire series H,, from forecasted streamflow series is randomly
selected and the Euclidean distance d;, between this series and all the
scenarios in the tree is calculated by Eq.(7):

di;w = Z H H’wt - £it || (7)
teT
(3) The distances are sorted in array D in an ascending order and an array O
is generated to record the distance rank of each scenario Eq.(8):

O = order (D) (8)

(4) The values of each node in the scenario tree is updated at each iteration r
according to their order in the array O using Eq.(9),(10),(11), and (12):

EF =&+ e(r)-ha(0:)-(Hu, — &,) ©
e(r) = co.(eg/eg)"/ e (10
ha(0;) = e~ (@A) (11

A= Xo-(Ag/Ao) e (12
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where €y and ey are step size parameters. Ao and Ay are the adaptation
parameters. O; is the distance rank of the scenario i. 7,4, is the maximum
number of iterations. The value of these parameters can be determined by
fine-tuning for each case. In this study, the choice of the values of these
parameters is based on the most commonly used values in the literature
[14][17][27][19]. Accordingly, we set step size parameters ey=0.5 and €;=0.05
and adaptation parameters A\g=10 and A;=0.01. The maximum number of
iterations 7,,4,,=1000.

(5) Steps 2 to 4 are repeated until 7,4, is reached.
(6) The probability of the scenarios m; is calculated as the proportion of the
series randomly chosen whose closest scenario is the scenario 4 as for Eq.(13):

T, = Count{l/ S [1,L],l/ | di,l’ = ‘IIHHS](di/’l,)}/L (13)
i €1,
where m; is the probability of the scenario ¢ and Count{.} is a counting
function.

2.3 Implementation
2.3.1 Construction

We implemented the Backward reduction and neural gas methods to reduce
a full scenario tree (initial tree) with S* scenarios. The probabilities of the
scenarios of the full tree are equal because our aim is to analyze the impact
of the choice of the scenario trees generation methods on the decision-making.
The backward reduction is used with different reduction percentages. In this
work, the reduction percentage are 10%, 20% and 30%. With more than 30%
of reduction, the number of scenarios is very small (less than 5 scenario). For
this reason, in order to obtain a meaningful results, the maximum reduction
percentage is 30%. For each reduction percentage, a reduced scenario tree is
obtained using the backward reduction method, as explained in Section 2.1.
The number of scenarios of each reduced tree is used to define the desired
number of scenarios in the neural gas method as explained in Section 2.2. For
example, if the full tree has 10 scenarios, and backward reduction with 10%
leads a reduced tree with 7 scenarios, then, the desired number of scenarios
in neural gas is set to 7. We recall that the percentage of reduction specifies
the desired reduction in terms of the relative distance between the initial and
reduced scenario trees.

2.3.2 Tests

The reduced scenario trees obtained from both methods have undergone two
tests: statistical and operational tests. In statistical tests, the expected vol-
ume (E), the variance (V) and the standard deviation (SD) of each scenario
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tree are calculated as follows:

E:Zﬂ'ix Z gn (14)

€S neN;
V=>mx() &-E) (15)
€S neN;
SD=VV (16)

where S are the number of the scenarios of each reduced tree, 7; is the proba-
bility of each scenario ¢ € S and &,, are the values of the inflows at each node
n € N;.

In operational tests, the reduced scenario trees obtained from both back-
ward reduction and neural gas are used as input to the stochastic programming
model and the total energy produced is calculated. Theses tests are used to
evaluate the impact of each method on the solution.

3 Stochastic multistage mixed integer linear
model

In this Section, a stochastic model is developed based on a new formulation
that is tested on a deterministic model in [8]. This formulation uses the effi-
ciency points of water discharge at the maximum storage, and it is at these
points that the maximum of power produced is reached. Using the efficiency
points decreases the number of parameters and variables and makes the prob-
lem easier to solve. Therefore, a pair of points of maximum efficiency for water
discharge and the power produced are determined as shown in Fig 2. These
points corresponding to the maximum efficiency of water discharge and the
adjacent points of this maximum with 4= ¢ (m?3/s) where ( are integer param-
eters. The choice of these parameters depends on the management of the
powerhouses. A pair of points of maximum efficiency for water discharge and
the power produced are determined for each combination of active turbines.
Table 1 gives an example of the sixteen possible combinations with 5 avail-
able turbines. The minimum number of the active turbines (here 3 turbines)
is required due to the physical constraints of the powerhouse.

Table 1 Combinations of 5 available turbines

3 active turbines | 4 active turbines | 5 active turbines

123 124 1234 12345
125 134 1235
135 145 1245
234 235 1345

245 345 2345
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The objective of the problem is to select a pair of points of maximum
efficiency for water discharge and power produced and find the best combina-
tions of active turbines in order to maximize the energy produced. The model
can select different combinations from one period to another. However, in
practice, it is recommended to have a limited number of start-ups. For that,
a maximum number of turbine changes is imposed and the turbine startups
are penalized with a fixed cost.

Since the efficiency points are determined at the maximum storage and the
reservoir is not always full, a correction of produced power is done. The prob-
lem is formulated as a Mixed Integer Linear Programming problem (MILP)
to find the best operation point that maximizes total energy production and
the turbines in operation while penalizing start-ups. The objective function
of the MILP is composed of three terms. The first term computes the power
output at each efficiency point for each combination and at each stage. The
second term makes a correction between the power produced at the current
volume and the maximum storage since the efficiency points are determined
at the maximum storage. The third term of the objective function allows to
reduce the number of changes by penalizing unit start-ups. This formulation
is updated and reformulated as a stochastic multistage mixed integer linear
model to consider uncertain inflows.

0.3 ; T T - . 100
LN
’ \
0.29 ' \ . 20
/ S N
— . " " “s
H_Q 0.28 3 Turbines 4 Turbines 5 Turbines AR 80
E N
5 \ =
€027 Y 57
z N\ H
3 \ o
8 \
Hozr N 60
A\
# efficiency point \
025 '\— 50 /l
i . 3Turbines 4Turbines 5 Turbines
0.24 - ! - - : 40
300 400 500 600 700 800 900 300 400 500 600 700 800 900
Water discharge (m%s) Water discharge (m¥s)

Fig. 2 The efficiency curves

3.1 Mathematical model

In this Section, we present the proposed stochastic multistage mixed integer
model. The uncertain inflows are provided from the scenario tree. The variables
are yg ,, which allow the model to select the efficiency point k for a given water
discharge and power produced, the volume and the turbines in operation,
for each node and powerhouse in the scenario tree. The decision variables
are partitioned into stages in a way that decisions made for one stage are
not affected by the information for the following stages. The objective is to
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maximize energy production in stage 0 and expected energy production in
future stages:

glva)z{ZZ D Piox o= Y 0% (Vg —v5) = D> " x o+

ceC beBe keKy ceC ceC jed

C C C C C C
E :ﬂ-iXAtx[§ : E E : E Pk,nx yk,n_i E 0 Vma:c_ n)]_
i€S ceC neN; beBe kEK}f ceC neEN;

SN e x g, (17)

ceCneN; jeJ
Subject to:

Up1 = Uy + A X [(€ X B) — qunkkanxﬁ) (dy, x B)+

beB keK

ST (dha X Yk xB) +(dy x B)] VeeC,¥neN;,Vies

leUc beB¢ kek{')

(18)

Z Zyi,nHXAsz,k,j— Z ZyanAnk:j— Jn

bEBe kEK} beBe keKg
Ycee C ,Vne N; ,Vie S ,Vjeld (19)

beBe ke K¢

Z Z Z 250 S NSw Veel (21)
i€S neN; jeJ

Vo <08 <VE . VeeO,¥ne N, Vie S (22)

vy =05, Yeel (23)

(24)

(25)

1 VeeC,¥ne N,Vies (20)

VN, 2 Vfine VCECVIES
Yhms Uk %5n € B Ve C,Vn e N;, Vi€ S,Vbe B,
Vk e Ky, Vle U*
dé.d v € Rt VYeeC,Vne N;,VieS,VleUe. (26)

Constraints (18) ensure water balance at the plants. Constraints (19) are the
link between start-up variables and the chosen combination considering the
set of points. Constraints (20) force the model to choose only one operating
efficiency point at each node for each powerhouse. A maximum number of start-
ups Ny is imposed with constraints (21). Constraints (22) are the bounds on
reservoir volumes, and constraints (23)-(24) specify initial and final volumes.
Finally, constraints (25) define the binary variables and (26) the real variables.
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3.2 Case study

The proposed model is tested with real data from the Saguenay-Lac-St-Jean
hydroelectric system owned by Rio Tinto. For the purpose of this paper, two
powerhouses Chute-Du-Diable (CD) and Chute-Savane (CS) are considered.
These powerhouses are in series and both have 5 turbines. The planning horizon
of the rolling-horizon is about 10 days. For every day of the rolling-horizon,
the forecasts of inflows are provided. The distribution of these inflows allows
to build a full scenario tree, the forecast is for 14 days. For day 1 of the rolling-
horizon, predictions are for days 1 to 14, for day 2 of the rolling-horizon,
predictions are for days 2 to 15, and so on. The full scenario trees are reduced
using backward reduction and neural gas . The model is updated according
to the management of the powerhouses at Rio Tinto. To schedule hydropower
production, Rio Tinto aims to obtain hourly decisions. For this reason, the
stochastic multistage mixed integer model is updated as follows:

e Stage 0 : the decisions are taken hourly (decisions for hour 1 and decisions
for the next hours).
¢ Following stage : the decisions are taken daily (decisions for everyday).

1h  23h
D2 D3 D4 D14
v Vol [ 16
ha— | | | Volume
| : | | | | 7 ¥ Turbine combination
1 v’ Water discharge
1
: ¥ Volume considering the actual realization of the inflows
! UPDRTE
(a) Decisions forday 1 (hour 1)
th _22h D2 D3 D4 D14 ¥ Volume =
— | | | ’ ¥ Turbine combination
! I I 1 [ v Water discharge
1
1
1
: ¥ Volume considering the actual realization of the inflows
UPDATE

(b) Decisions for day 1 (hour 2)
D2 I D3 | D4 | D15
| [ [

v The forecast is updated and a new scenario tree is generated

UPDATE v Volume considering the actual realization of the inflows

(c) Decisions for day 2

Fig. 3 The methodology according to the management of the powerhouses

For example, for day 1 of the rolling-horizon:

® Stage 0 : the decisions are taken for hour 1 and decisions for the next 23
hours as shown in Fig 3-a.
® Following stage : the decisions are taken for day 2 to 14, one stage per day.
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Only the solutions for the volume, the water discharge, the produced power
and the combination of active turbines for the first hour of the first-stage are
retained. After that, the volume of the reservoir is updated considering the
actual realization of the inflow as shown in Fig 3-a. Thereafter, the decisions
are taken as follows:

e Stage 0 : the decisions are taken for hour 1 and decisions for the next 22
hours as shown in Fig 3-b
® Following stage : the decisions are taken for day 2 to 14, one stage per day.

The same process is repeated until the end of the day. At the beginning of
the day 2, the forecast is updated. The scenario tree is generated for the
corresponding day as shown in Fig 3-c and new decisions are taken:

e Stage 0 : the decisions are taken for hour 1 and decisions for the next 23
hours.
e Following stage : the decisions are taken for day 3 to 15, one stage per day.

The process is repeated during the planning horizon. Therefore, the objective
is to maximize the total energy production over the whole rolling-horizon, by
evaluating the energy production for the first hour of the first stage of each
day in the rolling-horizon and penalizing turbine startups.

4 Numerical results

This Section details the results on which two methods of generation and reduc-
tion are compared. First, the construction of the reduced scenario trees for
each method is done. For backward reduction method, the scenario trees are
obtained using Scenred2/GAMS [3], and for the neural gas, the scenario trees
are obtaining by solving the algorithm using Python [4]. Second, two tests
are made, statistical and operational tests. For statistical tests, the variance,
the expected volume and the standard deviation of each scenario tree are cal-
culated to determine the effect of the choice of the reduction method on the
preservation of the mathematical aspects. For the operational tests the pro-
duced energy obtained from each scenario tree is calculated by the stochastic
multistage mixed integer linear model. The formulation is solved using the
servers of compute Canada [2] and Xpress solver accessed via Python [1]. The
model is tested using 4 data sets (July, September, October and December)
from the year 2021, for two powerhouses from a real world system. Finally the
results obtained from backward and gas neural methods are compared in order
to define the impact of the choice of the method on the objective function and
solution.

4.1 Reduction of the scenario tree

For every day of the rolling-horizon, the forecasts of inflows are provided. The
distribution of these inflows allows to build a full scenario tree with N scenarios
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and the reduced scenario trees are determined on a daily basis, the forecast is
for 14 days.

Inflaw (m ]Js\,
2
8

Day
December

Fig. 4 The full scenario trees for the first day in the rolling horizon for July, September,
October and December

Fig 4 shows an example of the full scenario trees obtained on the first day
for the 4 test cases.For example, for July, a full scenario tree with 57 sce-
narios is obtained, for September 57 scenarios, for October 56 scenarios and
for December 38 scenarios for the powerhouse CD. These full scenario trees
are reduced using backward and neural gas. For example, for October, with
10% of reduction, the number of scenarios is 31, with 20% of reduction the
number of scenarios is 17 and with 30% of reduction the number of scenarios
is 10. Recall that the percentage of reduction specifies the desired reduction
in terms of the distance between the initial and reduced scenario trees.

Fig 5 and Fig 6 illustrate the difference between the full scenario tree and
the reduced scenario trees with 10%, 20% and 30% of reduction for October
with the two methods. The final number of the scenarios of both methods is
the same, but the structure of the scenario tree is different. As explained in
Section 2.1, backward reduction aims to delete scenarios from a full scenario
tree in a way that the probability distribution distance between the reduced
and the full scenario trees is minimized. Neural gas aim to update the value
of the nodes in the scenario tree in such a manner that the distance between
the scenario tree and the observed series is reduced gradually. For this reason,
the structure of the scenario trees are different. After determining the reduced
scenario trees for the 4 test cases (July, September, October and December),
statistical tests are made for each scenario tree to determine if the choice of the
method has an impact on the characteristic of the scenario tree (the expected
volume, the variance and the standard deviation). Moreover, operational tests
are made to define the impact of each method on the solution.
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Fig. 5 An example of the full and the reduced scenario trees with 10%, 20% and 30% of
reduction with backward reduction
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Fig. 6 An example of the full and the reduced scenario trees with 10%, 20% and 30% of
reduction with neural gas
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4.2 Statistical tests

In this Section, the expected volume, the variance and standard deviation of
each scenario tree are calculated during the 10 days of the rolling-horizon for
the 4 test cases as explained in Section 2.3.2 in order to determine the effect
of the choice of the reduction method on the preservation of the mathemati-
cal aspects. The results obtained from the full scenario tree and the reduced
scenario trees of each method are compared for the 4 test cases for the power-
houses CD and CS. The results show that for all the test cases:

(1) For the backward reduction, the expected volume is preserved when the
scenario tree is reduced since the difference presents slight variations. The vari-
ance and standard deviation are preserved until 20% of reduction. With 30% of
reduction, the variance and standard deviation are not preserved. For example,
Table A1 illustrates the results obtained in detail for July for the powerhouse
CD. For the expected volume, the mean difference between the full scenario
tree and the reduced scenario tree is 0.132% with 10% of reduction and 0.683%
with 30% of reduction. For the variance, the mean difference between the full
scenario tree and the reduced scenario tree is 0.676% with 10% of reduction
and 32.117 % with 30% of reduction as shown in Table A1l and Fig 7.
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Fig. 7 An example of the statistical tests for backward reduction for powerhouse CD

(2) For the neural gas, the results show that the expected volume is pre-
served, but not the variance nor the standard deviation when the scenario tree
is reduced. For example, for July, the mean difference between the variance
of the full tree and all the reduced scenario tree is important from 10% of
reduction as shown Fig 8 and Table Al. This can cause loss in the diversity.
All clustering and moment matching methods suffer from the same problem.
[27]. For September, October and December, the same observations hold. For
backward reduction, the expected volume is preserved, the variance and the
standard deviation are preserved until 20% of reduction. For neural gas, the
expected volume is preserved, but not the variance nor the standard deviation.
Due to the large size of data, only the detailed results for July are reported in
this Section.
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Fig. 8 An example of the statistical tests for neural gas for powerhouse CD

4.3 Operational tests

The present Section describes in more details the impact of the choice of the
reduction method on the objective function (total energy produced) and on
the solution of the optimization problem.

4.3.1 Impact on the total energy production

We calculated the energy produced throughout the 10 days rolling-horizon for
each scenario tree for the two methods. The decisions are taken each hour, so
240 decisions are available for the 10 days.

Table 2 Total energy production for 4 test cases

July 2021 (GWh)

Reduction  Full tree Backward Neural gas Diff-B -NG(%)
10% 82.6001 82.6986 82.5570 +0.17
20% 82.6001 82.6805 82.3650 +0.38
30% 82.6001 82.6917 82.3263 +0.44
September 2021 (GWh)
Reduction  Full tree Backward Neural gas  Diff-B -NG(%)
10% 78.2898 78.4234 78.2783 +0.185
20% 78.2898 78.6051 78.6000 +0.006
30% 78.2898 76.3866 78.4427 -2.692
October 2021 (GWh)
Reduction  Full tree  Backward Neural gas  Diff-B -NG(%)
10% 72.6595 72.6545 72.5864 +0.094
20% 72.6595 72.6125 72.5867 +0.036
30% 72.6595 72.5515 72.5299 +0.030
December 2021 (GWh)
Reduction  Full tree Backward Neural gas  Difl-B -NG(%)
10% 91.8711 92.045 92.045 0.000
20% 91.8711 86.0004 91.9312 -6.896
30% 91.8711 92.0818 91.7845 +0.323
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Table 2 illustrates the difference of the total energy produced between
the two methods (Diff-B-NG) for the 4 test cases. A positive value indicates
that backward reduction produces more energy than the neural gas and a
negative value indicates the opposite. The results show that, in most cases,
the backward reduction method produces more energy than neural gas. The
highest differences are observed in December with 20% and in September with
30%. In these cases, the neural gas scenario trees produce more energy than
those of the backward method. This is due to the fact that for backward
reduction, the maximal number of start-ups is quickly reached compared to
the neural gas.

For example, Fig 9 indicates the produced power and the turbines in oper-
ation for the powerhouse (CS) for both methods. The backward reduction
solutions are presented in dashed line and the neural gas solutions in solid
line. For backward reduction, the maximum number of the startups (2 start-
ups) is reached at hour 65 (solid point). The model requires the activation of
4 turbines during the rest of the planning horizon. However, until this hour,
the number of start-ups proposed by neural gas is less than 2 ( dashed point),
so the model is allowed to propose another start-up. For this reason, at hour
135, the neural gas solution proposes to switch from 4 to 5 active turbines
and therefor in these cases neural gas produced more energy than backward
reduction. However, in practice, it is recommended to have a limited number of
start-ups since the frequent start-ups cause maintenance costs and decreasing
the life time of the turbines.
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Fig. 9 Maximum number of start-ups

Let us compare the total energy produced from the full tree and the reduced
scenario trees of each reduction method in order to define their impact on the
objective function. Table 2 reports the values of the total energy produced
obtained from the full scenario tree and the reduced scenario trees of each
method for the 4 test cases. The results show that, except for the cases where
the maximum number of the start-ups is reached, the total energy produced
from the full tree and the reduced trees are close. In September and December
the results obtained with neural gas are closer to the total energy obtained from
the full tree. For the months of July and October, the total energy produced
with backward reduction is closer to the total energy from the full scenario
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tree. To get further insights, a study of the impact of each method on the
solution of the optimization problem is done in the next Section.

4.3.2 Impact on the solutions of the optimization problem

In this Section, the solutions obtained from the full and the reduced scenario
trees derived by both methods are compared. The cases of December with
20% of reduction and September with 30% (where the maximum number
of the start-ups is reached) are not considered in the analysis of the results
because the differences are very high compared to the other cases. Therefore,
they are considered as extreme cases.

The results show that for all the test cases: (1) the solutions proposed from
the different methods are broadly similar when the reduction is 10%. (2) For
the months of July and October, beyond 20% of reduction, the solutions are
different and (3) for the month of December and September the differences in
the solutions are huge with 30% of reduction. According to the Table 2 and
except for the cases where the maximum number of the start-ups is reached,
the highest difference (40.44%) is observed in July and the lowest one (0.00%)
is observed in December. In this Section, the results from December and July
are detailed.
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Fig. 10 Comparison of the solutions for backward reduction, neural gas and the full tree
for December with 10% of reduction

Let us start with December. Fig 10 and 11 illustrate the proposed solu-
tions: the power produced in (MW), the amount of water discharge in (m?/s),
the volume of the reservoir in (hm?) and the number of turbines in operation
for backward reduction (solid line), neural gas (dashed line) and for the full
tree (dotted line) for two powerhouses CD and CS. As shown in Fig 10, the
solutions proposed with 10% of reduction from two methods and from the full
tree are broadly similar. This similarity is due to the fact that, for December,
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the expected volume of the reservoir of the full and the reduced scenario trees
during the rolling-horizon are quite similar, as shown in Fig 12 for both pow-
erhouses CD and CS. On the other hand, the results show that from 30% of
reduction, the solutions exhibit a small difference. There is a time lag between
the proposed solutions of each method as can be seen in Fig 11. This is due
to the loss of the information with 30% of reduction.
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Fig. 11 Comparison of the solutions for backward reduction, neural gas and the full tree
for December with 30% of reduction

cD

10500 T 650 cs -
== = “Full tree == = “Full tree
——— 10% Backward ST gool | 10%Bacware g
10000 10% Neural gas / - 10% Neural gas #
/ 550
9500 /
= / . 500
@ / @
o / i
¥ 9000 T % 450 /
2 2 /
T 5
= 400
8500
/ 350
8000 /
A 300
—
7500 250
0 50 100 150 200 240 0 50 100 150 200 240

hour during 10 day hour during 10 day

Fig. 12 The expected volume of the reservoir for the full tree, backward reduction and
neural gas with 10% of reduction

For the month of July, an analysis of the results for the powerhouses CD
and CS shows that the total energy produced by backward reduction with all
the reduction percentage is higher than energy produced by neural gas and the
full tree. Let us analyse the solution obtained with 20% of reduction since in
this case the highest difference between the two methods is detected. Fig 13 and
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14 illustrate the proposed solutions for the two powerhouses. The left figures
indicate that the produced power and the amount of the water discharge of the
full tree and the reduced tree are different. This difference is due to the fact
that the expected volume of the reservoir presents slight variations compared
to December as shown in the right of Fig 13 and Fig 14. This is due to the
variability of inflow scenarios in this month. For example, Fig 4 indicates that
the variation in July is greater than in December.
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Fig. 13 Comparison of the solutions for backward reduction, neural gas and the full tree
for the powerhouse CD for July with 20% of reduction (left figure) and the expected volume
of the reservoir for each method (right figure)

=== Full cs
rl Backward 20% cs
380 T T T T T T T T
5220 Neural Gas 207% R == Fultee "
g1 | [ _1 20% Backward A
160 . [E— _l . . 360 20% Neural gas -1\
0 50 100 150 200 240 \
@ \.
g T 1
& |
5 d00 ! . \
5700 - | SO DU \
] [ [ 5
= 9 50 100 150 200 0 &
e s P s T 8
e (I v &
E]
%6 \
0 50 100 150 200 240
5 T T — e
] | Pl
fas | | !
; i
[ | %0 . . . . .
) 50 100 150 200 240 0 50 100 150 200 240
hour during 10 day hour during 10 day

Fig. 14 Comparison of the solutions for backward reduction, neural gas and the full tree
for the powerhouse CS for July with 20% of reduction (left figure) and the expected volume
of the reservoir for each method (right figure)



HSPC 2022, Olso, Norway

22

4.4 Computational time

The average time to determine the reduced scenario trees are quite similar for
both methods. The obtained reduced scenario tree for each method for the
powerhouse CD and CS is used as an input to the stochastic programming
model.
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Fig. 15 Comparison of the average computational time for the full scenario tree and the
reduced scenario trees

In order to define the impact of the choice of the generation and the reduced
method on the solution, the average time to optimize a single day in the rolling-
horizon procedure for each scenario tree for each method is calculated and
illustrated in Fig 15. The results show that the computational time decreases
with the number of scenarios. Since, a decision is made at each node of the
scenario tree, the number of variables is reduced with the reduction of the
number of the scenarios and as a consequence the computing time is reduced.
However, the results show that optimizing with neural gas is faster than back-
ward reduction and the full scenario tree. For example, in July, optimizing
with a full scenario tree takes 50 min, with a reduced scenario tree with 20% of
reduction, by backward reduction takes 8 min, and by the neural gas method
takes 5 min.

4.5 Solution Quality Assessment

In this Section, the solutions obtained from the scenario tree reduction from
each method are compared to the solution obtained from the median scenario
of the inflows from the full tree in order to define the interest of using a



HSPC 2022, Olso, Norway

23

stochastic model. In addition, a comparison between the stochastic and the
deterministic models with the real realizations of the inflows is done in order
to assess the quality of the solution.

4.5.1 Stochastic vs median scenario

In order to assess the interest of using a stochastic model, we compare the
solutions obtained from the scenario tree generation methods and the median
scenario of the inflows. Every day, the median scenario is determined and the
problem is solved in a deterministic way. The solutions obtained by backward
reduction, neural gas and by the full scenario tree are compared to a rolling
median.

As shown in Fig 16, the scenario tree methods produce more energy than
the median scenario for all the test cases (except for the cases where the
maximum number of the start-ups is reached). However, for December and
September, the energy produced with stochastic methods is close to the
energy produced with median scenario compared to July and October. In
December and September, the expected volume of the reservoir of the median
scenario is close to the expected volume of the stochastic method compared
to the July and October.
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Fig. 16 Total energy produced for stochastic methods vs median method

For example, Fig 17 shows a comparison between the expected volume
of the reservoir of the median scenario (with a solid line) and the stochastic
method (with a dash line). The results show that the expected volume in
December is closer to the expected volume for the median scenario compared
to July for the powerhouse CS.
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Fig. 17 A comparison between the expected volume of the reservoir of the median scenario
and the stochastic method

For the computational time, optimizing with the median scenario is faster
than the stochastic methods. The average time to optimize a single day in the
rolling-horizon procedure is less than 1 min.

4.5.2 Stochastic vs Deterministic methods

In this Section, we compare the stochastic model and the deterministic one
with the real realizations of the inflows in order to assess the quality of the solu-
tions. Table 3 shows the difference between the deterministic and the stochastic
models using the full tree (Diff-F-D), backward reduction (Diff-B-D) and neu-
ral gas (Diff-NG-D). The results show that the scenario tree generation method
is consistent, as the difference between the energy produced of the stochastic
and the deterministic models present slight variations. For example, for the
December test case, with 10% of reduction, the difference between the deter-
ministic model and both backward reduction and neural gas is only 0.01%.

Table 3 The difference of the total energy production between the stochastic methods
and the deterministic one

July 2021 (%) September 2021 (%)
Reduction Diff-B-D Diff-NG-D Diff-F-D Diff-B-D Diff-NG-D Diff-F-D
10% 0.61 0.44 0.56 0.62 0.44 0.61
20% 0.84 0.46 0.56 0.21 0.21 0.61
30% 0.89 0.45 0.56 0.41 3.02 0.61
October 2021 (%) December 2021 (%)
10% 0.62 0.53 0.52 0.01 0.01 0.31
20% 0.62 0.57 0.52 0.24 6.68 0.31
30% 0.70 0.67 0.52 0.40 0.08 0.31

Fig 18 illustrates the proposed decisions from the deterministic model and the
stochastic methods (the full tree, backward reduction and neural gas) with
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10% of reduction for the powerhouses CD and CS more precisely : the pro-
duced power, the water discharge, the volume of the reservoir and the number
of turbines in operation.

As shown in Fig 18, the solution provided by the stochastic and deterministic
methods have different strategies, which is not surprising. For example, for the
deterministic solutions, the reservoir of the powerhouse CD is filled then low-
ered and filled again. This is due to the fact that, the amount of the inflows
that will occur at the next period is known exactly, so the deterministic model
has more liberty to vary the reservoir volumes and that is why a micro-cycle
trend can be observed.
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Fig. 18 A comparison between the deterministic and the stochastic solution

5 Discussions and conclusion

This paper presents a stochastic short-term hydropower model for optimiz-
ing energy production. The uncertainty of the inflows is represented using the
scenario trees. The backward reduction and neural gas methods are used to
generate and reduce a full scenario tree. The objective is to determine the
impact of the choice of method on the results of the objective function, the
solution and the computational time. For this purpose, we carry out statistical
tests to determine the impact of the choice of the generation methods on the
preservation of the expected volume, the variance and the standard deviation
when the scenario tree is reduced. We also carry out operational tests, where
the scenario trees are used as input to the stochastic programming model.
The total energy produced and the proposed solution with different reduced
trees of each method are evaluated and compared to determine the impact of
the choice of the methods on the solution. In addition, the proposed model
is compared to the median scenario in order to define the interest of the use
of the stochastic model and compared to the deterministic one with the real
realizations of the inflows in order to assess the quality of the solution. The
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results show that, for statistical tests, neural gas preserves the expected
volume, but not the variance nor the standard deviation when the scenario
tree is reduced. By contrast, the backward reduction preserves the expected
volume, the variance and the standard deviation until 20% of reduction. For
operational tests, the results show that, (1) the solutions proposed from
the different methods are broadly similar when the reduction is 10%. (2) For
December and September, where the variability of inflow scenarios is not very
high and the expected volume provided from the different scenario tree is close,
the solutions of both reductions and from the median scenario are close. (3)
For July and October, where the variability of inflow scenarios is very high,
backward reduction produces more energy than neural gas and the solution
proposed with backward reduction is close to the solution of the full scenario
tree. (4) Optimizing with the neural gas method is faster than backward reduc-
tion and the median scenario is faster than both.

In conclusion, if the variability of inflow scenarios is high and the expected vol-
ume between the scenario trees is different, it is recommended to use a method
that preserves the variation when the scenario tree is reduced, even though
the computational time can be a little longer. Otherwise, any of the methods
can be used, but the reduction should not be very important in order to be
close to reality. If the variability of inflow scenarios is very low, the median sce-
nario can be used since it is faster and the results obtained from the stochastic
method and from the median scenario are close.
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