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Species occurrences inherently include positional error. Such error can be problematic 
for species distribution models (SDMs), especially those based on fine-resolution envi-
ronmental data. It has been suggested that there could be a link between the influence 
of positional error and the width of the species ecological niche. Although positional 
errors in species occurrence data may imply serious limitations, especially for model-
ling species with narrow ecological niche, it has never been thoroughly explored. We 
used a virtual species approach to assess the effects of the positional error on fine-scale 
SDMs for species with environmental niches of different widths. We simulated three 
virtual species with varying niche breadth, from specialist to generalist. The true dis-
tribution of these virtual species was then altered by introducing different levels of 
positional error (from 5 to 500 m). We built generalized linear models and MaxEnt 
models using the distribution of the three virtual species (unaltered and altered) and a 
combination of environmental data at 5 m resolution. The models’ performance and 
niche overlap were compared to assess the effect of positional error with varying niche 
breadth in the geographical and environmental space. The positional error negatively 
impacted performance and niche overlap metrics. The amplitude of the influence of 
positional error depended on the species niche, with models for specialist species being 
more affected than those for generalist species. The positional error had the same effect 
on both modelling techniques. Finally, increasing sample size did not mitigate the 
negative influence of positional error. We showed that fine-scale SDMs are consider-
ably affected by positional error, even when such error is low. Therefore, where new 
surveys are undertaken, we recommend paying attention to data collection techniques 
to minimize the positional error in occurrence data and thus to avoid its negative effect 
on SDMs, especially when studying specialist species.
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Introduction

Studying relationships between species and their environ-
ment is fundamental for understanding Earth’s biodiversity. 
Species distribution models (SDMs) are a common tool used 
to study these relationships. They use species occurrence data 
and environmental data to produce a set of rules explain-
ing the environmental space where species were collected 
or observed (Ferrier et al. 2017). All applications of SDMs, 
however, assume that species occurrence data are largely free 
of spatial error. Nonetheless, all spatial data inherently con-
tain some level and type of spatial errors. These errors can be, 
for example, related to the use of inadequate spatial resolu-
tion (Gottschalk et al. 2011, Šímová et al. 2019), low sample 
size (Wisz et al. 2008, Moudrý et al. 2017), biased sampling 
(Hijmans 2012, Ranc et al. 2016) or occurrences with posi-
tional error (Graham et al. 2008, Osborne and Leitão 2009, 
Mitchell et al. 2017). Data quality (both for species occur-
rences and environmental variables) is currently considered 
a major factor limiting SDM accuracy (Araújo et al. 2019) 
and demonstrating, quantifying and understanding the con-
sequences of these errors is therefore critical.

It is often assumed that the negative effects of positional 
error (i.e. inaccurate location of species occurrences) is mini-
mal or mainly associated with relatively older datasets that are 
often georeferenced from textual descriptions of their loca-
tions (which may cause errors of up to hundreds of meters, 
Wieczorek et al. 2004). However, it is also necessary to con-
sider positional errors inherent to data georeferenced using 
modern global navigation satellite systems (GNSS). The 
positional error of GNSS data may be caused by the use of 
outdated technology, by poor satellite signal reception (e.g. 
because of inappropriate site conditions), or by data process-
ing (e.g. conversion between coordinate systems or round-
ing of coordinate values). Moreover, species occurrence data 
often represent the position of the observer and not the actual 
position of the species (Zhang  et  al. 2018). Additionally, 
where the marine environment is concerned, species data are 
often acquired using underwater cameras, in which case the 
positional error can be affected for example by the camera 
depth; the deeper the camera is, the greater is the positional 
error (Rattray et al. 2014, Mitchell et al. 2017). Therefore, 
even though the accuracy of standard GNSS is usually below 
30 m (Frair et al. 2010), the errors associated with such data 
may be much larger.

In addition, performance of SDMs is complicated by 
various spatial (e.g. prevalence or range size) and ecologi-
cal (e.g. niche breadth) characteristics of the studied spe-
cies (Luoto  et  al. 2005, Bulluck  et  al. 2006, McPherson 
and Jetz 2007, Evangelista et al. 2008, Chefaoui et al. 2011, 
Connor et al. 2018). It has been hypothesized that range size 
is positively correlated with niche breadth (i.e. the range of 
environments that the species can inhabit), in other words 
that species able to tolerate a wider range of conditions are 
typically more widespread (Brown 1984, Gaston et al. 1997, 
Arribas  et  al. 2012, Boulangeat  et  al. 2012). The niche 

breadth–range size relationship is one of the possible mecha-
nisms explaining commonness and rarity. Modelling rare spe-
cies (i.e. species with small geographical ranges) is particularly 
problematic and novel approaches have been adopted for this 
purpose (Breiner et al. 2015) to overcome the common prob-
lem of a low number of occurrences available for modelling 
that may not be sufficient to completely describe the spe-
cies niche. Similar effects can be caused by a low positional 
accuracy of the occurrences (Johnson and Gillingham 2008, 
Fernandez et al. 2009, Osborne and Leitão 2009).

Although the magnitude of the niche breadth–range size 
relationship is still under debate, a recent meta-analysis of 64 
studies found a significant positive relationship between the 
range size and niche breadth (Slatyer et al. 2013). Such a syn-
ergic relationship can increase the already high vulnerability 
of specialist species to environmental changes. In addition, 
Slatyer  et  al. (2013) suggested that specialist species might 
be particularly vulnerable to any environmental change 
due to synergistic effects of a narrow niche and small range 
size. Specialist species are of high conservation concern, and 
SDMs might be the only tractable means of estimating their 
distribution and reaction to environmental change. However, 
confounding effects of inaccurate data on modelling species 
that utilize a narrow niche breadth (i.e. specialist) versus 
species that utilize a wide niche breadth (i.e. generalist) are 
unknown (Connor et al. 2018).

It is intuitive that positional error of a given magnitude 
might have a greater effect on specialist than generalist spe-
cies, as it is more likely that occurrences get incorrectly shifted 
into cells representing an unsuitable environment, i.e. envi-
ronment that is outside of the species’ environmental niche. 
This, however, has never been thoroughly explored because it 
is extremely difficult, if not impossible, to estimate the true 
responses of a real species to the environment and, conse-
quently, to be able to fully understand the true suitability of 
an area for the species in question.

In this study, we focused on Light Detection and Ranging 
(LiDAR)-derived variables that are being more and more 
often combined with species distribution data of unknown 
positional accuracy to study species–environment relation-
ships at fine scales. Studies published so far have used real 
species to test the effect of positional error. However, real 
species distribution data are usually affected by a complex 
set of other uncertainties (e.g. sampling bias, incompleteness, 
inaccuracies). As a consequence, the isolation and identifica-
tion of the effects of positional error can be very challeng-
ing, if not impossible. This is likely one of the reasons why 
little consensus exists on how the effect of positional error 
manifests in SDMs (Naimi et al. 2011, Mitchell et al. 2017). 
For example, Graham et al. (2008) concluded that SDMs are 
robust to positional error while others argued that positional 
errors reduce models’ performance (Johnson and Gillingham 
2008, Fernandez et al. 2009, Osborne and Leitão 2009).

Another aspect may be that positional errors of species 
occurrences were studied using relatively coarse environ-
mental data (but see Mitchell  et  al. 2017). Positional error 
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considered in prior studies ranged from 50 m up to 50 km 
(Table 1). While such error results in a shift over several cells 
in a coarse-resolution SDM (e.g. 1 × 1 km), it will cause a 
much greater shift in a fine-resolution SDM (e.g. 10 × 10 m). 
Therefore, with the increasing availability of fine-scale data, 
additional studies are needed (Osborne and Leitão 2009); it 
can be expected that SDMs at fine scales would be more sen-
sitive to positional error.

To ensure the full knowledge of the exact ecological 
and geographical characteristics of the species and to avoid 
unknown complexities associated with real data, we used a 
virtual species approach to test the effect of the positional 
error in species occurrences on fine-scale SDMs in the con-
text of species niche breadth (i.e. specialist versus generalist 
species). We generated three virtual species that differed in 
characteristics related to the geographic distribution of the 
species, i.e. prevalence and relative occurrence area (ROA); 
the proportion of the total study area occupied by the species 
(Lobo 2008).

The virtual species approach allowed us to control the 
experiment and to isolate the effects of positional error 
(Zurell et al. 2010). This approach is increasingly used to eval-
uate the effects of data inaccuracies on model performance 
(Barbet-Massin et al. 2012, Václavík and Meentemeyer 2012, 
Qiao et  al. 2015, Ranc et  al. 2016, Fernandes  et  al. 2018, 
Leroy et  al. 2018, Moudrý et  al. 2018, Gábor  et  al. 2019, 
Meynard et al. 2019), but has yet to be adopted for the study 
of positional error. In particular, we tested whether: 1) SDMs 
for specialist species are more affected by positional error than 
those for generalist species; 2) it is possible to compensate the 
assumed negative effect of a positional error with a higher 
sample size; and 3) the positional error has different effects 
when using a parametric (e.g. generalized linear model) ver-
sus a nonparametric (e.g. MaxEnt) modelling technique.

Material and methods

LiDAR data acquisition, processing and variable 
selection

Discrete LiDAR data were collected in Krkonose Mountains 
National Park (KRNAP), Czech Republic (Supplementary 
material Appendix 1 Fig. A1) in 2012 using a small-footprint 
airborne LiDAR system (RIEGL LMS Q-680i). The average 
point density was approximately six points per square meter. 
The LiDAR point cloud was automatically classified into 
ground, vegetation, building, wire and transmission tower 
classes in the ENVI LiDAR software (ver. 5.3) and LAStools 
(ver. 171215). The terrain data points were used to produce 
a digital terrain model (DTM), and the vegetation data 
points were used to produce a canopy height model (CHM) 
(Khosravipour  et  al. 2016). Both models were generated 
from the point cloud at a 0.5 m resolution and subsequently 
resampled to 5 m cell resolution for the analysis to improve 
processing time. A topographic wetness index (TWI) was 
derived from the DTM based on the equation

TWI ln
As

tan
=






β

where As is the specific catchment area and tan β is the local 
slope in radians (Beven and Kirkby 1979). To calculate the 
specific catchment area, we used the multiple flow routing 
algorithm of Quinn et al. (1991), recommended by Kopecký 
and Čížková (2010), using SAGA-GIS (Conrad 2003).

The selection of these three variables (DTM, CHM, 
TWI) was motivated by the need to simulate a realistic sit-
uation that includes variables with various levels of spatial 

Table 1. Overview of prior studies focused on the influence of positional error in species occurrence data on SDMs.

Species  
data

Environmental  
data

Resolution of input 
environmental data  
(pixel size) Range of shifting occurrences 

Graham et al. 2008 observed categorical, 
continuous 

100 × 100 m 0–5 km 0–50 pixels

Johnson and  
Gillingham 2008

observed categorical 30 × 30 m 50–1000 m (over 50 m) 1–34 pixels

Osborne and  
Leitão 2009

observed continuous 1 × 1 km 0–1, 2–3, 4–5, 0–5 km 0–1, 2–3, 
4–5, 0–5 
pixels

Fernandez et al. 2009 observed continuous 1 × 1 km 5–10–25–50 km 1–5, 1–10, 
1–25, 
1–50 
pixels

Naimi et al. 2011 artificial continuous artificial data x 1–30 (over 1 
pixel)

Mitchell et al. 2017 observed continuous 2.5 × 2.5 m 5–25–50–20–400 m 1–2, 1–12, 
1–80, 
1–160 
pixels
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autocorrelation (Supplementary material Appendix 2 Fig. 
A2). CHM describes a horizontal structural variability of the 
vegetation and is known to affect species richness (Lefsky et al. 
2002). For example, higher vegetation was found to be related 
to higher bird species richness (Davies and Asner 2014). TWI 
is a surrogate for soil moisture, an environmental variable 
that affects the vegetation composition and that has been pre-
viously used to predict bird occurrences (Besnard et al. 2013, 
Reif et al. 2018). The relationships between CHM and TWI 
on the one side and bird distribution and richness on the 
other side make our study relatable to applications with real 
species; our virtual species could theoretically be birds with 
specific habitat requirements in terms of terrain characteristic 
and vegetation structure. We also used the DTM as a sur-
rogate for climatic variables and to restrict our virtual species 
to certain altitudes (Coops et al. 2010, Vogeler et al. 2014).

Simulating virtual species with different niche 
breadths

Virtual species were generated with the virtualspecies pack-
age (Leroy et al. 2016) in the statistical software R v.3.4.4 (R 
Development Core Team). The process involved three steps: 
a) generating the true distribution of the virtual species’ envi-
ronmental suitability, b) converting the environmental suit-
ability into presences and absences and c) sampling species 
occurrences for further analysis and modelling.

Applying the formatFunctions function in R, we defined 
the species–environment relationships using normal distribu-
tion curves. To simulate species with different niche breadth, 
prevalence and ROA, we used the same means and varied 
standard deviations of the used environmental variables 
(Supplementary material Appendix 3 Table B1). Specifically, 
we simulated three distinct virtual species with varying ROAs 
and prevalence that represent realistic scenarios of species’ 
extent of occurrence in the study area. The species with low 
ROA (4%) represents a specialist with low species prevalence 
(0.04), narrow niche breadth and small geographical range. 
The species with medium ROA (12%) may be described as an 
intermediate species (species prevalence = 0.12) with a wider 
niche breadth and medium geographical range. Finally, the 
species with high ROA (52%) can be perceived as a general-
ist with high species prevalence (0.47), wide niche breadth 
and wide geographical range (Futuyma and Moreno 1988, 
Devictor  et  al. 2010, Franklin 2010, Peers  et  al. 2012). 
Subsequently, we multiplied individual species’ responses to 
environmental variables in order to acquire an environmental 
suitability raster (function generateSpFromFun). We opted 
for multiplication of the variables to assume irreplaceability 
of environmental conditions (i.e. we assumed that unsuitabil-
ity of one condition causes a low probability of occurrence 
even though remaining conditions are in species’ range of 
suitable values).

As noted in several studies (Meynard and Kaplan 2012, 
2013, Moudrý 2015, Meynard et al. 2019), an appropriate 
setting of the whole simulation with respect to the research 
questions is crucial for obtaining reliable results. In addition, 

Meynard  et  al. (2019) highlighted that simulation studies 
based on the threshold approach fail in appropriately separat-
ing factors such as prevalence and niche breadth. Therefore, 
due to these concerns, we adopted a probabilistic simulation 
approach (logistic function with α = −0.05 and β = 0.3) to 
convert the environmental suitability rasters into probabili-
ties of occurrences that were subsequently used to sample 
binary presence/absence rasters (function convertToPA). To 
sample species occurrences (function sampleOccurrences), 
we randomly generated, using a uniform random distribu-
tion, both presence-only and presence/absence data. Both 
types of occurrence datasets were generated in order to test 
different modelling techniques (cf. section Model fitting and 
evaluation). To test whether it is possible to compensate the 
assumed negative effect of positional error with a higher sam-
ple size, we generated four different sample sizes. Specifically, 
30, 100, 500 and 1000 species presences were generated, 
complemented for the purpose of GLM modelling by twice 
as many absences.

Simulating positional error in species occurrences

It is generally assumed that the magnitude of the positional 
error in species occurrence varies based on the source of the 
error. The positional error associated with GNSS points (e.g. 
species occurrences) may range from a few centimetres up to 
several metres. Furthermore, in some species such as birds or 
big predators, it is usually impossible to record their accu-
rate position and such data are shifted by tens or hundreds 
of meters. An even greater shift is sometimes observed in 
museum databases. Therefore, to evaluate the range of pos-
sible magnitudes of the positional error, we simulated the 
positional error by shifting the sampled locations (i.e. pres-
ences and, in case of GLM, also absences) in a random direc-
tion according to six scenarios that corresponded to different 
distances ranging from 5–10 m up to 100–500 m. The error 
in the focal virtual species locations was 5–10 m for S1 sce-
nario, 10–15 m for S2, 15–20 m for S3, 20–50 m for S4, 
50–100 m for S5 and 100–500 m for S6 (Supplementary 
material Appendix 4 Table C1). Scenarios S1–S4 simulated 
realistic degrees of error if using modern monitoring tech-
nologies like GNSS, while scenarios S5–S6 simulated more 
extreme positional errors that could be associated with spe-
cies observations recorded without GNSS, species difficult to 
pinpoint properly such as birds or big predators, or occur-
rences from museum databases. If the shifting of the original 
data points resulted in the points falling outside the study 
area, we recalculated the shift until the new coordinates were 
located within the boundaries of the study area. We provide a 
script of how we simulated virtual species and shifting occur-
rences in Supplementary material Appendix 2.

Model fitting and evaluation

We selected generalized linear models (GLM; Nelder and 
Baker 1972, Oksanen and Minchin 2002) as a presence/
absence method and MaxEnt (Phillips  et  al. 2006) as a 
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presence-background method that are often adopted in 
ecological studies (Moudrý and Šímová 2013, Linda  et  al. 
2016, Malavasi et al. 2018, Gábor et al. 2019, Watts et al. 
2019). In addition, Graham et al. (2008) showed that these 
two approaches were among the better performing model-
ling techniques when the data was affected by positional 
errors. Models were built in the statistical software R using 
the ‘dismo’ (ver. 1.1.4) and ‘glm2’ (ver. 1.2.1) packages. The 
GLM was run with a logit–link function and binomial distri-
bution. The quadratic terms of the three environmental vari-
ables were included because of the known normal distribution 
curves of the response function. To enable the comparison 
of individual SDMs, we needed to maintain the param-
eters of MaxEnt unchanged, as done in many prior studies 
(Franklin et al. 2014, Fourcade et al. 2014, Holloway et al. 
2016, Ranc et al. 2016, Tingley et al. 2018, Ye et al. 2018). 
The default settings established by Phillips et al. (2009) were 
used with randomly drawn background data generated from 
the binary map of the true occurrences of the virtual spe-
cies. The same three environmental variables (DTM, CHM 
and TWI) used in the process of generating virtual species 
were used in the SDMs. Fivefold cross-validation where the 
data were randomly divided into fifths was used to evaluate 
the models. Four fifths of the data were used to train the 
model and the remaining one fifth was used to assess the 
performance. Control models without positional error were 
calculated for all three species with different niche breadth, 
prevalence and ROA and for both modelling techniques, 
allowing an easy comparison of the effect of positional error 
on model performance.

The area under the receiver operating characteristic curve 
(AUC) (Fielding and Bell 1997, Jiménez-Valverde 2012) and 
the true-skill statistic (TSS) (Allouche et al. 2006) were used 
to assess model performance (i.e. discrimination accuracy). 
AUC is widely used in ecological studies as a single threshold-
independent measure of model performance (Václavík and 
Meentemeyer 2012, Mitchell et al. 2017). The AUC ranges 
from 0 to 1 where a score of 1 indicates perfect discrimi-
nation, a score of 0.5 indicates random performance and 
values lower than 0.5 indicate a worse than random perfor-
mance. TSS is a frequently used threshold dependent metric 
(Cianfrani et al. 2018, Eaton et al. 2018) taking both omis-
sion and commission errors into account. It ranges from −1 
to +1 where +1 indicates perfect agreement and values of zero 
or less indicate random performance (Allouche et al. 2006).

To quantify differences between the true probability of 
occurrence of virtual species and the predicted distribution 
inferred from the models in geographical space, their niche 
overlap was compared using the I measure (Warren  et  al. 
2008, Rödder and Engler 2011) and Spearman’s rank cor-
relation. The I ranges between 0 (no overlap) and 1 (perfect 
overlap). Following Rödder and Engler (2011), we used the 
following classes to interpret the results: no or very limited 
overlap (0–0.2), low overlap (0.2–0.4), moderate overlap 
(0.4–0.6), high overlap (0.6–0.8) and very high overlap (0.8–
1.0). Spearman’s rank correlation ranges between −1 and +1, 
where −1 indicates that species responses to the environment 

are exactly negatively correlated (opposite) and +1 indicates 
perfectly positively correlated overlap (identical). The closer 
the values are to zero, the lower is the niche overlap.

The magnitude of the negative effect of the positional error 
on SDMs is dependent on the size of the positional error 
and distribution of species’ suitable environment in the geo-
graphical space (Naimi et al. 2011). The positional data may 
be shifted in the geographical space and even a relatively low 
positional error in geographical space can have a profound 
effect on environmental niche estimates in environmental 
space and vice versa. Furthermore, we expected this would be 
related to the species niche breadth. Therefore, we were also 
interested in how the positional error is manifested in the 
environmental space and measured the niche overlap in the 
environmental space as well. We used I and Spearman’s rank 
correlation implemented in ENMTools 0.2 (Warren  et  al. 
2019a, b) to estimate overlap in the environmental space 
between models fitted with accurate occurrences without any 
positional error (hereafter unaltered models) and models fit-
ted with shifted occurrences (i.e. scenarios S1–S6).

We ran the entire process from species generation to 
model evaluation 30 times (Fig. 1). In addition, we used the 
analysis of variance (ANOVA) to assess the strength of the 
individual effects of the positional error, sample size, ROA 
and modelling technique, including all possible interactions. 
We compared the relative importance of individual predictors 
based on their contribution to the overall explained variation 
(R2). Instead of formal testing, we plotted the effects (and 
their confidence intervals) of all predictors combinations and 
evaluated them qualitatively. Because both AUC and TSS 
values were highly heteroscedastic (e.g. the ratio between 
maximum and minimum standard deviation across all fac-
tors combinations was 22 resp. 19 for AUC resp. TSS), we 
used robust variance–covariance matrix estimator suggested 
by MacKinnon and White (1985) for computation of confi-
dence intervals. This was done using an R package ‘sandwich’ 
(Zeileis 2006).

Results

Unaltered models

Both performance metrics (AUC and TSS) largely followed 
the same pattern and highlighted excellent model perfor-
mance for all, i.e. specialist, intermediate and generalist, spe-
cies (AUC ranged from 0.91 up to 0.97 for MaxEnt models 
and from 0.80 up to 0.85 for GLM models). The only excep-
tion were the MaxEnt models for generalist species where 
AUC achieved only good performance (mean AUC 0.73). 
MaxEnt models were more successful in modelling special-
ist and intermediate species while GLM models were more 
accurate for the generalist species (Fig. 2).

Models achieved high or very high niche overlaps in geo-
graphical space according to both I and Spearman’s rank 
correlation. In general, the niche overlap decreased in the fol-
lowing order: generalist, specialists and intermediate species, 
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Figure 1. General modelling process. (i) We first acquired and processed LiDAR data and selected three fine-scale environmental predictors: 
DTM, CHM and TWI. (ii) We simulated virtual species with different niche breadths (ROA) by defining their response to environmental 
gradients for each environmental variable. (iii) We multiplied those variables to generate environmental suitability (‘true’ distribution of 
virtual species). (iv) We translated the probability of species occurrence to a presence–absence raster. (v) We sampled occurrences based on 
the presence–absence raster. (vi) We simulated the positional error in species occurrences. (vii) We generated SDMs with accurate as well as 
shifted occurrences, evaluated their performances (AUC, TSS) and assessed the niche overlap (I, Spearman’s rank correlation) in the geo-
graphical and environmental space.
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Figure 2. Resulting AUC (A) and TSS (B) scores according to different species niche breadth (specialist, intermediate, generalist), positional 
error (S0, unaltered models; S1, 5–10 m; S2, 10–15 m; S3, 15–20 m; S4 20–50 m, S5, 50–100 m; S6, 100–500 m) and sample size (number 
of presences = 30, 100, 500, 1000; note that for GLM models twice as many absences compared to presences were generated). Black colour 
shows results for GLM models while grey shows results for MaxEnt models.
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except for the Spearman’s rank correlation for specialists 
modelled by MaxEnt that achieved very high correlation. 
Comparison of modelling techniques showed that MaxEnt 
models achieved a higher niche overlap than GLM for all spe-
cies with the most obvious differences in specialist species. An 
increase in the sample size of unaltered models led to none or 
negligible increase in niche overlap (Fig. 3).

Effect of positional error on models of species with 
different niche breadth

Results show, independently of the modelling technique, 
a clear trend of the positional error worsening model per-
formance (both AUC and TSS). The highest drop is evi-
dent between unaltered models and models affected by the 
smallest simulated positional error (5–10 m). Increasing 
the positional error further led to additional decrease in 
model performances; however, this decrease was mini-
mal (positional error 10–50 m). Even the extreme cases 
of positional error (50–100 and 100–500 m) led to a rela-
tively low decrease in models’ performances in contrast 
to the drop caused by the 5–10 m error. For example, in 
the case of MaxEnt models for intermediate species, AUC 
dropped on average from 0.91 (unaltered models) to 0.79 
for the positional error of magnitude inherent to any occur-
rence data (i.e. up to 10 m), and to 0.71 in the case of the 
extreme positional error (100–500 m), respectively (Fig. 2). 
Nevertheless, the magnitude of the negative effect of posi-
tional error varied according to the species niche breadth. 
For both GLM and MaxEnt models the drop between unal-
tered models and the smallest simulated positional error 
(5–10 m) was higher for specialist and intermediate species 
(AUC dropped on average about 0.12) than for generalist 
species (AUC dropped on average about 0.05).

The results showed that the positional error in the occur-
rence data reduced the niche overlap in both the geographical 
and environmental space of both GLM and MaxEnt models. 
Niche overlap decreased gradually with the increasing posi-
tional error with an especially significant decrease in mod-
els’ niche overlap at the extreme case of the positional error 
(100–500 m) (Fig. 3, 4). However, the effect of the positional 
error on the niche overlap varied depending on species’ niche 
breadth. Decrease in the niche overlap was higher for spe-
cialist and intermediate species than for generalist species, 
especially in the geographical space. For example, in case of 
MaxEnt models, Spearman’s rank correlation was reduced 
from 0.98 to 0.58 for the specialist and from 0.83 to 0.70 
for the generalist species, respectively (Fig. 3). However, 
the effect of the positional error was not that evident from 
I, especially for the generalist species in geographical space. 
For example, the decrease for generalist species and MaxEnt 
models was on average only from 0.96 to 0.9 and the GLM 
models appeared as not being affected at all.

Finally, independently of the validation metric, results 
showed that increasing the sample size cannot compensate for 
the effect of positional error (Fig. 2–4). On the contrary, it is 
evident that a combination of low sample size of 30 samples 

with positional error led to erratic behaviour and generally 
low performance of the models.

Comparison of the relative importance of individual 
predictors (R2)

The results show that the positional error and modelling tech-
nique had the highest relative importance (R2) for the model 
performance (AUC, TSS). The relative importance of the 
sample size and niche breadth was much smaller and mutu-
ally comparable (Table 2). According to the niche overlap in 
geographical space assessed by I (model predictions), niche 
breadth had the greatest effect, followed by the positional 
error, modelling technique and sample size, the importance 
of which was almost negligible. In contrast, according to cor-
relations, the modelling technique and positional error had 
the highest relative importance (R2) followed by the niche 
breadth and by sample size, the importance of which was 
minimal. When assessing relative importance for niche over-
lap in the environmental space, the modelling technique and 
positional error showed the highest contribution followed 
by the niche breadth and by sample size, the importance of 
which was almost negligible, just like in the above metrics. 
All those factors significantly affected SDMs performance 
and predictions (p-value < 0.05).

Discussion

In this study, we focused on the effect of positional error in 
species occurrences on fine-scale SDMs. We simulated species 
with different levels of niche breadth to assess whether there 
was a link between the width of the environmental niche and 
the effect of the size of positional error. Our results showed 
that introducing positional error into species occurrence 
data led to a decrease in model performance and prediction 
accuracy in both the geographical and environmental space. 
However, the effect of the positional error varied with species 
niche breadth. The same positional error had a greater impact 
on specialist (low ROA and prevalence, narrow breadth of 
niche) than on generalist (high ROA and prevalence, wide 
breadth of niche) species. This is likely because in case of 
specialist species, occurrences could be easily shifted to inap-
propriate environments outside of the species’ environmental 
niche. This could also explain the inconsistent conclusions of 
previous studies (Graham et al. 2008, Fernandez et al. 2009).

Higher sample sizes slightly improved unaltered models’ 
accuracy; the results however showed that increasing the sam-
ple size could not compensate for the effect of positional error 
on models’ accuracy (Fig. 2–4). On the other hand, low sam-
ple sizes of positionally inaccurate data were especially prob-
lematic for modelling. These results are in general agreement 
with the study by Mitchell et al. (2017) who investigated the 
influence of sample size (ranging from 100 samples to 400) 
in conjunction with the positional error; their results showed 
that models based on smaller sample sizes were more affected 
by a positional error than those with higher numbers of spe-
cies occurrences. However, it is difficult to conclude whether 
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Figure 3. Resulting I (A) and Spearman’s rank correlation (B) scores of niche overlap in geographical space according to different species niche 
breadth (specialist, intermediate, generalist), positional error (S0, unaltered models; S1, 5–10 m; S2, 10–15 m; S3, 15–20 m; S4, 20–50 m, 
S5, 50–100 m; S6, 100–500 m) and sample sizes (number of presences = 30, 100, 500, 1000; note that for GLM models twice as many 
absences compared to presences were generated). Black colour shows results for GLM models while grey shows results for MaxEnt models.

 16000587, 2020, 2, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/ecog.04687 by U

niversite D
u Q

uebec A
 C

hicout, W
iley O

nline L
ibrary on [27/10/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



265

Figure 4. Resulting I (A) and Spearman’s rank correlation (B) scores of niche overlap in the environmental space according to different spe-
cies niche breadth (specialist, intermediate, generalist), positional error and sample size (number of presences = 30, 100, 500, 1000; note 
that for GLM models, twice as many absences as presences were generated). Also note that here we show the niche overlap between unal-
tered models and models affected by a specified positional error (and not a comparison with simulated probability of occurrences as in Fig. 
3). Thus, for example, S1 shows a comparison of niche overlap between unaltered models and models affected with positional error in the 
range of 5–10 m. Black colour shows results for GLM models while grey shows results for MaxEnt models.
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or not 100 records with positional error of 10 m are better 
or worse for modelling at the scale of 5 m than 500 records 
with positional error 25 m. For example, Moudrý and Šímová 
(2012) suggested that the spatial resolution of the environ-
mental data should be coarser than the biggest positional error 
of the occurrence data and Naimi et al. (2011) showed that the 
effect of positional error is reduced by spatial autocorrelation 
in environmental variables. However, the trade-off between 
the scale and positional error has not been thoroughly studied.

The degree of decrease between unaltered and altered mod-
els (i.e. those with positional error) differed among adopted 
validation metrics and assuming a sufficiently large sample 
size, AUC and TSS provided clear evidence of decreasing 
model quality. The ability of evaluation metrics to identify the 
magnitude of error caused by positional inaccuracies was pre-
viously discussed by Osborne and Leitão (2009). Interestingly, 
they found that the use of AUC for the error quantification 
in models affected by positional error was limited as AUC 
did not decrease when compared to the control models. We 
hypothesize that this contradiction results from confounding 
effects of real data used in their study (i.e. they did not use 
virtual species). In Osborne and Leitão (2009), the model-
ling algorithms were allowed to choose the best combination 
of environmental variables from a set of twelve variables for 
scenarios with different levels of positional error. Indeed, they 
showed that positional error led to alteration of the variables 
selected by the modelling algorithm. The selected variables 
however often failed to represent the conditions pertinent to 
the species during habitat selection. In contrast, here we used 
the same variables throughout, both to generate the virtual 
species and to model their distribution. Hence, our modelling 
approaches (GLM, MaxEnt) did not have the option to select 
variables that would provide a closer fit to the altered occur-
rence data but that were lacking ecological relevance and as a 
result did not lead to spurious increase in AUC and TSS val-
ues. We suggest that the effect of positional error on selection 
of environmental variables should be further investigated.

The effects discussed above raise serious concerns as it is 
possible that the use of positionally inaccurate data com-
bined with an arbitrary selection of environmental variables 
that may lack ecological relevance results in seemingly accu-
rate but entirely wrong models. For instance, Fourcade et al. 
(2018) successfully fitted SDMs with non-ecological vari-
ables such as paintings to demonstrate this point. While 
Osborne and Leitão (2009) and Mitchell et al. (2017) sug-
gested that useful predictions can still be generated from data 
affected by positional error, they warned that the ecological 

interpretation of such data and predictions was dangerous. 
Our results support the importance of assessing data in terms 
of fitness-for-use (Lecours 2017). Fitness-for-use is the con-
cept of determining whether or not a dataset is of sufficient 
quality for a particular purpose (Goodchild 2006). Spatial 
scale is intrinsically linked to such assessment of fitness-for-
use (Lecours  et  al. 2017) as data accuracy is dependent on 
the spatial resolution of the environmental data. As indicated 
by Moudrý and Šímová (2012), the spatial resolution of the 
environmental data should always be coarser than the largest 
positional error associated with occurrence data.

In line with previous work (Van Niel and Austin 2007, 
Rocchini  et  al. 2011, Lecours  et  al. 2017), we believe that 
attempts to predict species distributions with data of unknown 
accuracy are potentially dangerous and as such, we highlight 
the necessity of quantifying the positional accuracy of data. If 
such assessment is limited by metadata availability, for exam-
ple in case of historical data, we recommend to at least approx-
imate the positional accuracy based on known information 
such as the collection methodology or the number of deci-
mals recorded with coordinates. With a proper fitness-for-use 
assessment that includes data quality and scale, the resolution 
of environmental variables can be coarsened before they are 
integrated into a modelling exercise to minimize the adverse 
effects of the positional error of species occurrences. However, 
we are aware that this may involve altering the spatial resolu-
tion of data to a level that is no longer eligible for potentially 
optimal resolution(s), i.e. the scale at which species respond 
to the environment (Lecours et al. 2015, Moudrý et al. 2019). 
As demonstrated in Lecours  et  al. (2017), there is a trade-
off between spatial scale and data quality that needs to be 
evaluated as a part of the fitness-for-use assessment. While 
no experiments are currently available to help quantify which 
is more important for successful modelling (whether it is the 
data quality or scale), we suggest that pre-analyses be per-
formed to test whether keeping a finer resolution is more 
important than minimizing positional error, or vice-versa. For 
new surveys, we suggest paying a close attention to measure-
ment techniques to minimize positional error, for instance by 
using differential GNSS, especially for species with a narrow 
ecological niche as our results show that the positional error 
of species occurrence data has a profound effect on results of 
SDMs. Finally, we advocate for additional studies focused on 
the influence of positional error using more complex virtual 
species (e.g. with a higher number of environmental variables 
or with more complex response curves) to improve SDM use 
in ecology, macroecology and biogeography.

Table 2. Comparison of the relative importance of individual factors (R2, %) for ANOVA of performance metrics (AUC, TSS) and niche over-
lap in the geographical and environmental spaces (I, correlation).

Factor AUC TSS
I geographical  

space
Correlation  

geographical space
I environmental  

space
Correlation 

environmental space

ROA 4 4.14 75 11.2 9.7 1.7
Sample size 1.1 1.78 0.1 1 0.2 0.4
Modelling technique 18.7 21.35 8 24.7 45.4 21.5
Positional error 25.4 24.58 8.4 27.5 13.2 18.3
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Conclusions

In this study, we explored how positional error in spe-
cies occurrences affects fine-scale SDMs. We showed that 
the influence of positional error on SDMs differed accord-
ing to the width of species’ ecological niches and this effect 
was evident in both geographical and environmental space. 
The effect of the positional error on generalist species was 
much smaller than the effect on specialist species, which were 
affected the most. In addition, our results show that the neg-
ative effects of positionally inaccurate data entering SDMs 
cannot be mitigated by increasing the sample size. Therefore, 
a take away message of our study is that improving positional 
accuracy of data appears to be more effective than increas-
ing sample size. We suggest that it is critical to evaluate the 
quality of data with respect to the spatial resolution of the 
environmental variables and to select occurrences with a low 
positional error (note that a low positional error can be even 
1km if the spatial resolution of environmental variables is of 
similar size). Future research should be focused on the influ-
ence of positional error using more complex virtual species 
(e.g. with a higher number of environmental variables or with 
more complex response curves) and on how positional accu-
racy errors may affect the selection of variables in modelling 
species distribution to improve its future application in ecol-
ogy, macroecology and biogeography.
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