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Abstract

Remote sensing techniques are currently the main methods providing elevation

data used to produce Digital Terrain Models (DTM). Terrain attributes (e.g. slope,

orientation, rugosity) derived from DTMs are commonly used as surrogates of spe-

cies or habitat distribution in ecological studies. While DTMs’ errors are known to

propagate to terrain attributes, their impact on ecological analyses is however

rarely documented. This study assessed the impact of data acquisition artefacts on

habitat maps and species distribution models. DTMs of German Bank (off Nova

Scotia, Canada) at five different spatial scales were altered to artificially introduce

different levels of common data acquisition artefacts. These data were used in 615

unsupervised classifications to map potential habitat types based on biophysical

characteristics of the area, and in 615 supervised classifications (MaxEnt) to predict

sea scallop distribution across the area. Differences between maps and models built

from altered data and reference maps and models were assessed. Roll artefacts

decreased map accuracy (up to 14% lower) and artificially increased models’ per-

formances. Impacts from other types of artefacts were not consistent, either

decreasing or increasing accuracy and performance measures. The spatial distribu-

tion of habitats and spatial predictions of sea scallop distributions were always

affected by data quality (i.e. artefacts), spatial scale of the data, and the selection of

variables used in the classifications. This research demonstrates the importance of

these three factors in building a study design, and highlights the need for error

quantification protocols that can assist when maps and models are used in deci-

sion-making, for instance in conservation and management.

Introduction

In the last decades, remote sensing has become the main

method used for collecting elevation data used in the pro-

duction of Digital Terrain Models (DTM). All DTMs

carry a certain level of error (Gessler et al. 2009) caused

by random noise, systematic errors and artefacts (Wise

2000). Artefacts were characterized by Reuter et al.

(2009)) as “distinct erratic features” that are made of

improbable and incorrect values. Artefacts can be found

in DTMs collected from any remote sensing systems

(Fisher and Tate 2006; Sofia et al. 2013) and at all scales.
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Artefacts can be introduced by the interpolation method

used to create the DTM (Sofia et al. 2013), the motion

and location of the acquisition platform (Harrison et al.

2009), timing or log frequency issue in the surveying sys-

tem (Lecours and Devillers 2015) or a lack of or an inap-

propriate correction of ionospheric and atmospheric

conditions (Li and Goldstein 1990). Artefacts can be

problematic as they influence data quality more than

other types of errors like noise and imprecise measure-

ments (Rousseaux 2003) and can be very subtle in the

DTM (Filin 2003), making them “the most significant

errors in a spatial or statistical analysis because they are

not easily detected yet introduce significant bias” (Brown

and Bara 1994).

DTMs are now commonly used in Geographic Informa-

tion Systems (GIS) to derive terrain attributes (e.g. slope,

orientation, rugosity) that can be used as surrogates for

other phenomena in fields like ecology (Bolstad et al. 1998)

and biogeography (Franklin 2013). Artefacts in DTMs were

shown to sometimes propagate to the derived terrain attri-

butes (Sofia et al. 2013; Lecours et al. 2017a) and are likely

to impact subsequent analyses (Arbia et al. 1998; Heuvelink

1998). Mapping and quantifying error propagation

throughout analysis have received some attention in the

geospatial literature (e.g. Fisher and Tate 2006; Wilson

2012) but are rarely performed by DTM users from other

disciplines (van Niel and Austin 2007). Quantifying error

propagation from DTM is especially relevant for the pro-

duction of species distribution models (SDM) and habitat

maps (van Niel et al. 2004; Peters et al. 2009) that often

combine terrain attributes with other environmental data

(Franklin 1995; Guisan and Zimmermann 2000; Williams

et al. 2012; Leempoel et al. 2015). These maps and models

are regularly used to support decision-making in conserva-

tion (Miller 2010; Guisan et al. 2013). However, a lack of

understanding of errors, their propagation and spatial dis-

tribution in maps may result in inaccurate maps and mod-

els that could lead to inappropriate decisions (Beale and

Lennon 2012), and negative impacts on biodiversity or

stakeholders (Beven 2000; Regan et al. 2005; Etnoyer and

Morgan 2007). However, issues related to spatial data error

are often overlooked (but see van Niel et al. 2004 and Livne

and Svoray 2011). To our knowledge, the influence of data

acquisition artefact errors in DTMs has never been assessed

on maps resulting from SDM or habitat mapping exercises.

The objective of this study was to describe the impact

of some common remotely sensed data acquisition arte-

facts on marine habitat maps and SDMs. Our specific

objectives were to (1) quantify the impact of artefacts on

habitat maps accuracy and SDMs performance, to (2)

assess if impacts are dependent on spatial scale, and to

(3) assess if impacts can be attenuated when combining

the affected data with other environmental data of better

quality. Our hypotheses were that artefacts do negatively

affect habitat maps and SDMs, that the impacts are

greater at finer scales, and that the addition of relatively

better quality data reduces the impacts of artefacts on

maps and models.

Materials and Methods

Case study and data

This article explored the impact of DTM artefacts on

habitat maps using a case study from the marine environ-

ment. The marine realm provides an ideal case as it has

been suggested that underwater DTMs, or Digital Bathy-

metric Models (DBM), may be more prone to errors and

artefacts than terrestrial DTMs (Hughes-Clarke et al.

1996; Passalacqua et al. 2015; Lecours et al. 2016a).

DBMs are often the only available datasets used to char-

acterize deep-water environments due to difficulties to

observe and sample other environmental characteristics

(Solan et al. 2003; Robinson et al. 2011). If multibeam

echosounders (MBES) are currently the best technology

enabling the collection of large DBMs (Kenny et al.

2003), most bathymetric surfaces generated from these

systems still contain some artefacts (Hughes-Clarke

2003a; Roman and Singh 2006). Since these artefacts are

often within hydrographic error standards (Hughes-

Clarke 2003a) and appear even when appropriate calibra-

tion and corrections are made (Erikstad et al. 2013), they

are often considered inherent to the data and tend to be

overlooked by DBM end-users.

This article used bathymetric data for German Bank,

off Nova Scotia (Canada), in the eastern Gulf of Maine

(Fig. 1). The surveyed area covers 3650 km2 of the Sco-

tian Shelf and has been extensively studied in previous

works (e.g. DFO, 2006; Brown et al. 2012; Todd et al.

2012; Smith et al. 2017). Bathymetric data were collected

by the Canadian Hydrographic Service (CHS) and were

corrected in post-processing for tide, motion, and sound

velocity. The corrected soundings were used to generate

reference DBMs at five different spatial resolutions: 10 m,

25 m, 50 m, 75 m and 100 m in the bathymetric process-

ing software CARIS HIPS and SIPS v.9.0. These five refer-

ence DBMs were assumed to be free of artefacts, and

following methods described in Lecours et al. (2017a), 10

different amplitudes of heave, pitch, roll and time arte-

facts were artificially introduced in them by altering the

calibration measures of the different surveys (Table 1).

The ten levels of amplitude for each type of artefacts were

derived from the standard deviation (r; Table 1) of the

ship’s recorded range of motion at the time of surveys.

As described in Lecours et al. (2017a), these common

artefacts were selected based on their different theoretical

ª 2017 The Authors. Remote Sensing in Ecology and Conservation published by John Wiley & Sons Ltd on behalf of Zoological Society of London 233

V. Lecours et al. Impacts of Artefacts in Habitat Mapping

 20563485, 2017, 4, D
ow

nloaded from
 https://zslpublications.onlinelibrary.w

iley.com
/doi/10.1002/rse2.49 by U

niversite D
u Q

uebec A
 C

hicout, W
iley O

nline L
ibrary on [27/10/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



impact on data; pitch impacts bathymetric data in both

horizontal and vertical planes, heave impacts them in a

vertical plane, roll affects soundings that are further away

from the nadir in a vertical plane – consequently affecting

areas that overlap between different survey lines – and

time causes a relative shift of adjacent lines in the hori-

zontal plane (see Hughes-Clarke 1997, 2002, 2003a,b; Lur-

ton 2010). Similar artefacts can also be found in other

types of remote sensing like LiDAR (Brown and Bara

1994; Filin 2003; Lichti and Skaloud 2010). The artefacts

were systematically introduced to provide controlled

conditions that enable comparisons of results, as often

performed in evaluations of the impact of error on

analyses (Reuter et al. 2009).

Six terrain attributes that together summarize topo-

graphic variability were derived from the reference and

altered DBMs using the TASSE toolbox for ArcGIS

(Lecours 2015): slope, easterness and northerness, topo-

graphic mean, rugosity and topographic position (see

Lecours et al. 2016b, 2017b). Backscatter data (i.e. acous-

tic reflectance) were simultaneously recorded with the

bathymetric data. The backscatter data were processed

and transformed by Brown et al. (2012) into three deriva-

tive layers that inform on seafloor properties (e.g. surficial

geology, porosity): Q1, Q2 and Q3. Finally, two sets of

ground-truth data from Brown et al. (2012) were used:

(1) 3190 geo-referenced photographs of the seafloor clas-

sified into five habitat types (reef, glacial till, silt and

mud, silt with sediment bed forms, sand with sediment

bed forms and highly abundant sand dollars (Echinarach-

nius parma)), and (2) 4816 geo-referenced sea scallop

observations (Placopecten magellanicus). Details on how

these data were collected and processed and examples of

photographs of the seafloor can be found in DFO (2006)

and Brown et al. (2012).

Habitat Maps and SDMs

Using the 205 sets of bathymetric and terrain attribute sur-

faces (i.e. one set for each of the 10 levels of artefacts, for

the four types of artefacts, at five different resolutions, in

addition to a reference set for each of the five resolutions),

habitat maps and SDMs were produced for three scenarios.

First, maps and models were generated using only the

bathymetry and the six terrain attribute surfaces, thus

Figure 1. Digital bathymetric model of the

German Bank study area.

Table 1. Levels of artefacts introduced in the five reference DBMs.

Standard deviations (r) were derived from the recorded motion at

time of survey.

Level of induced artefact

r 2r 3r 4r 5r

Heave (m) �0.33 �0.66 �0.99 �1.32 �1.65

Pitch (°) �1.65 �3.30 �4.95 �6.60 �8.25

Roll (°) �1.01 �2.02 �3.03 �4.04 �5.05

Time (sec) �0.25 �0.50 �0.75 �1.00 �1.25

A positive pitch indicates that the bow is up and a positive roll means

that the port side is up.
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accounting only for terrain morphology (i.e. hereafter

referred to as “7 layers” scenario). Then, maps and models

were produced using all the available data (bathymetry,

slope, easterness, northerness, topographic mean, rugosity,

topographic position, Q1, Q2 and Q3) (i.e. “10 layers” sce-

nario). The addition of backscatter data in this scenario

was done to address our third hypothesis regarding the

addition of relatively better quality data to the mapping

process. Finally, maps and models were built using only

non-correlated variables (i.e. “8 layers” scenario). On Ger-

man Bank, the steepest areas are also the ones with the

highest rugosity, resulting in a high correlation between the

slope and rugosity data layers. Also, bathymetry is highly

correlated with topographic mean as they are closely

related (see Lecours et al. 2017b). Rugosity and topo-

graphic mean were therefore not used for the last sets of

maps and models. The data for the eight layers scenario

were thus bathymetry, slope, easterness, northerness, topo-

graphic position, Q1, Q2 and Q3. Overall, 615 habitat

maps and 615 SDMs were produced and analysed by using

the 205 sets of data for each of the three scenarios with

both approaches.

The method used to generate habitat maps is based on

the concept of benthoscape (Zajac 2008), a representation

of the biophysical characteristics of an area generated by

adopting a landscape style approach similar to when maps

of landscape features are generated from terrestrial data-

sets. Such approach was used by Brown et al. (2012) to

map features on the seafloor that could be resolved

within the acoustic remotely sensed data, thus not

attempting to delineate seafloor attributes beyond what

the remote sensing techniques were capable of resolving.

This approach segments the different data layers into a

statistically optimum number of classes that are then spa-

tially compared to the geo-referenced photographs and

recombined based on best match with the different habi-

tat types (see Brown et al. 2012). The Modified k-Means

unsupervised classification tool of Whitebox GAT v.3.2

was used to produce these maps, and confusion matrices

were built to calculate the kappa coefficient of agreement

of each map (Boyce et al. 2002).

SDMs were generated based on maximum entropy

(MaxEnt), a common and effective method (Phillips et al.

2006; Monk et al. 2010), that used the sea scallop obser-

vations to segment the environmental data and quantify

sea scallop habitat suitability across the area. SDMs were

computed using the MaxEnt software v.3.3.3k with the

same settings as in Brown et al. (2012). Area under the

curve (AUC) derived from threshold independent receiver

operating curves were also measured to quantify the per-

formance of the models and enable comparisons (Phillips

et al. 2006): AUCTrain was measured to evaluate the good-

ness-of-fit of models to the training data, and AUCTest

was used to evaluate the ability of models to perform well

on an independent dataset (i.e. validation samples) (Fitz-

patrick et al. 2013). These two measures were combined

to compare models’ performance, robustness and general-

izability (Vaughan and Ormerod 2005; Warren and Seifert

2011). AUCDiff–the difference between AUCTrain and

AUCTest–was used to quantify generalizability (i.e.

transportability, transferability): a high value is an indica-

tion that a model over-fitted the training data and does

not replicate well to a different dataset. Details on these

measures can be found in Lecours et al. (2016b). Finally,

correlations between model outputs were calculated to

evaluate spatial similarity of predictions.

Results

Habitat maps

The average kappa coefficients of agreement of all maps

produced with altered data and their standard deviation

are presented in the supporting information (Table S1),

while the individual kappa of the 615 habitat maps are pre-

sented in Figure 2. In general, habitat maps produced

using 10 layers provided the best classifications, followed

by those using eight layers and those built from only seven

layers. However, map accuracy varied less for the scenario

with eight layers (i.e. it was more consistent). Heave was

generally the artefact type that made map accuracy vary the

least, while roll artefacts usually made map accuracy vary

the most. In average (Table S1), only three sets of maps

showed a scale-dependent pattern for which maps pro-

duced from finer-scale data were more impacted by arte-

facts than maps made from broader-scale data. These sets

all belong to the scenario with 10 layers and were maps

impacted by pitch, roll and time. A visual assessment of

the results showed that the presence of artefacts in data

used to produce habitat maps has a noticeable influence on

the spatial distribution of the habitats (cf. Fig. 3). When

matching the total area misclassified because of artefacts–
that is, when comparing the classifications made from

altered data to one made from reference data–to the differ-

ence in kappa coefficient between these maps, results show

that a little difference in kappa coefficient can translate into

large differences in spatial output (cf. Fig. 3C).

Except for maps affected by roll artefacts, the reference

maps did not always produce the best outcome in terms

of accuracy: while all habitat maps impacted by any level

of roll artefact performed worse than the reference maps,

an important number of maps made from altered data

had a higher kappa coefficient than their corresponding

reference maps. This was observed regardless of scale and

scenario. Overall, 47% of the habitat maps altered by

pitch had a higher kappa coefficient than their
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Figure 2. Kappa coefficients of agreement of the 615 habitat maps.
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(A)

(B)

(C)

Figure 3. Examples of habitat maps produced with eight layers at 50 m resolution, overlaid by the ground-truth data. The colour of the ground-

truth data matches the classification’s colour when appropriately classified. (A) shows the reference map that was built with data that were

assumed free of artefacts. (B) shows maps built from data that were impacted by different types of artefacts. (C) shows the spatial distribution of

the change in habitat map classification between the maps from (B) and the map from (A). Red pixels indicate change while grey pixels are those

that were classified as the same habitat type in the two compared classifications.
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corresponding reference map, and that percentage was

higher for time (50%) and heave (55%). No particular

scale-dependent patterns were observed, except for habitat

maps made from seven layers and impacted by pitch, for

which a greater amount of maps performed better than

the reference maps at broader scales.

Species distribution models

Figure 4 shows how the SDMs’ performance and robust-

ness change as artefacts are introduced in the input DBMs

for the eight layers scenario. For all types of artefacts, no

pattern could be observed regarding whether some scales

were more impacted than others, or whether a greater

level of artefact resulted in higher or lower performance

or robustness.

In general, results show that introducing heave artefacts

decreased models’ performance and tend to also decrease

models’ robustness. One major exception was observed to

these patterns: at 75 m resolution, 7 and 10 layers models

performed better than the reference models. The two ref-

erence models in these cases had a higher standard devia-

tion and a lower AUCTest. Overall, about 87% of models

impacted by heave had a lower performance index than

their comparable reference model. About 39% of models

with pitch artefacts had a higher AUCTest than their

respective reference model while 36% of them were more

robust, which resulted in 41% of these models with a

higher performance index than their reference model

(Fig. 4). Roll artefacts boosted model performance, as

87% of models built from altered data had higher

AUCTest measures than the reference models. However,

only 26% of the models impacted by roll artefacts were

more robust than the reference models. The combination

of these two metrics into the performance index indicated

that 56% of models impacted by artefacts had a higher

index than the reference models. In terms of time arte-

facts, 29% of the models that were built from altered data

performed better than the reference models and 11% were

more robust, resulting in 26% of them having a higher

performance index than reference models.

In terms of generalizability, it was difficult to find any

consistent general patterns except for those models

affected by roll: 95% of them showed a greater generaliz-

ability index than the reference models. On the other

end, the presence of heave artefacts decreased the general-

izability in 80% of the cases, compared to 53% of models

affected by pitch and 66% of those affected by time

(Fig. 5).

Regarding spatial outputs, the presence of artefacts

always introduced discrepancies in the distribution of rel-

ative habitat suitability (cf. Figs. 6 and S1). While the

average discrepancies could be globally small (e.g. 2.2%),

they could be locally important (e.g. 58.9%). It is also

interesting to note that a high measure of correlation

between a model impacted by artefacts and its reference
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Figure 4. Change in performance index (ratio of AUCTest on standard deviation) as the level of artefacts in the data changes, for the models

built from eight layers. Models that perform better have a high AUCTest and models that are more robust have a low standard deviation. High-

performance models are often less robust than less performing models: the performance index thus captures the trade-off between performance

and robustness, with higher values of performance index indicating a better trade-off.
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model did not necessarily involve high similarity between

those. For instance, a correlation coefficient of 0.963 still

resulted in 23% of the area for which differences in rela-

tive habitat suitability were >5% (Fig. 6).

In general, models accounting only for topography and

depth (seven layers) were consistently the most affected

by artefacts in comparison to the reference models

(Fig. S1), while those built with uncorrelated variables

(eight layers) were often the least impacted. The ranges in

correlation coefficients (Fig. S1) were usually not very big

for heave artefacts and were in average lower for roll arte-

facts. Overall, roll seemed to have the most impact on the

spatial distribution of relative habitat suitability of sea

scallop. No clear pattern was observed in terms of scale,

although roll artefacts seemed to produce models that

were more similar to the reference ones at coarser scales,

and the extreme scales (10 and 100 m) seemed to be a bit

more impacted by heave, time and pitch than the inter-

mediate scales (25–75 m).

Discussion

Impacts of artefacts on habitat maps and
SDMs

Our first hypothesis was that artefacts in bathymetry

that propagate to terrain attributes would impact habi-

tat maps and SDMs in a negative way. Results show

that this is not always the case. While we were

expecting map accuracy to decrease as a function of

level of artefacts, only maps impacted by roll demon-

strated such relationship. Results show that the other

types of artefacts sometimes artificially increased map

accuracy, although not in a predictable way. A higher

level of artefact did not necessarily result in a better or

worse map or model than a lower level of artefact.

About half of the habitat maps produced with data

altered by heave, pitch and time artefacts performed

better than the reference maps. While these results sug-

gest a random pattern, they may also have been influ-

enced by the approach used to quantify map accuracy.

Since the habitats are represented on maps as clusters

of pixels showing similar characteristics, they share some

characteristics with areal data. Artefacts might thus

influence the boundaries of these “zones” more than

the area inside them. Because the ground-truth data are

points that are more likely to fall within the middle of

a zone than at its boundary, the kappa coefficients of

agreement may not capture the change in boundary. A

spatial assessment of the differences between the differ-

ent habitat maps, as performed for instance in Fig-

ure 3C and in Diesing et al. (2014), could help better

capture the influence of artefacts on the delineation of

the different habitat zones. Considering the amount of

maps produced in this study, this would be computa-

tionally intensive but such an approach should be con-

sidered in future work. These results however yield an

important conclusion regarding the methods commonly
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Figure 5. Change in generalizability index (ratio of AUCTrain on AUCDiff) as the level of artefacts in the data changes, for the models built from

eight layers. Higher values indicate more generalizable or replicable models.
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used in the literature to quantify classification and habi-

tat map accuracy: measures using point data to validate

classifications of zones may be biased by not capturing

the variability of the classifications along zone bound-

aries.

The analysis of SDMs yielded similar conclusions to the

analysis of habitat maps but from different types of arte-

facts. Heave artefacts had generally a negative impact on

the performance of models, with some exceptions (e.g.

75 m resolution models–which may indicate that this par-

ticular scale does not capture the relevant drivers of species

distribution). Some models impacted by pitch and time

performed better than the reference models. Models

impacted by roll artefacts clearly contradicted our hypothe-

sis: the performance of most of these models was

artificially increased by the presence of roll artefacts. This

could be explained by the fact that sea scallops distribution

is driven by rugosity (Brown et al. 2012), and artefacts like

roll and pitch artificially increase the rugosity of an area.

Models produced with data impacted by these artefacts

would thus artificially increase the relative habitat suitabil-

ity of sea scallops across the entire area, resulting in a

higher prediction success when validated against the test

data. The increase in high values of relative habitat suit-

ability was confirmed by visual comparison (cf. Fig. 6) but

also by the high differences in spatial correlation recorded

for pitch and particularly for roll (cf. Fig. S1).

Our second hypothesis stated that the impacts of artefacts

in bathymetry and terrain attributes should be greater at

finer scales. This hypothesis was based on the fact that the

Habitat suitability
Value

High : 1

Low : 0

Differences
Less than 5%

5% to 10%

10% to 15%

15% to 20%

20% to 25%

More than 25%

Heave Pitch

Roll Time

Minimum: 0.0%
Maximum: 58.9%

Mean: 2.2%
Standard deviation: 3.2%

Minimum: 0.0%
Maximum: 63.0%

Mean: 3.4%
Standard deviation: 4.1%

Minimum: 0.0%
Maximum: 74.6%

Mean: 8.6%
Standard deviation: 8.0%

Minimum: 0.0%
Maximum: 58.1%

Mean: 2.2%
Standard deviation: 3.2%

No artefact

Proportion of change >5%: 58%
Correlation with reference map: 0.832

Proportion of change >5%: 11%
Correlation with reference map: 0.980

Proportion of change >5%: 11%
Correlation with reference map: 0.980

Proportion of change >5%: 23%
Correlation with reference map: 0.963

Figure 6. Differences in distribution of relative habitat suitability of sea scallops between models affected by artefacts and a reference model

(top). The scenario represented is the one with eight layers at 50 m resolution. The level of error represented is the highest one (5r, Table 1).
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propagation of artefacts from DTM to terrain attributes was

previously found to be scale-dependent (cf. Lecours et al.

2017a). Results from both unsupervised and supervised clas-

sifications did not confirm, neither did they refute, this

hypothesis as no particular scale-dependent patterns could

be identified. The difference between the scale-dependent

propagation of DTM artefacts in terrain attributes and the

scale-independent propagation of these artefacts in habitat

maps and SDMs may be explained by the integration of a

biological/ecological context. The presence of artefacts in

finer-scale data may not result in a poor habitat classification

if these data and the scales at which they were collected and

analysed do not have an ecological meaning or do not match

the ecological scale of the phenomenon being studied, thus

being unsuitable regardless of their quality.

Finally, our third hypothesis was that the addition of rela-

tively better quality data would reduce the impacts of arte-

facts on maps and models. Results suggest that this

hypothesis is true for the habitat maps, as maps built with

the relatively good quality backscatter data were generally

more accurate. It however remains unclear whether this

improvement was caused by the quality of the data or their

nature (i.e. backscatter), which in this particular case was

known to be ecologically relevant (Brown et al. 2012). The

latter option is the most likely, considering results from

Lecours et al. (2016b) that showed that maps and models of

the same area produced only with backscatter and depth

data performed very well. Further work is thus required to

validate or invalidate this hypothesis with more certainty. In

addition, results showed that the range in measures of accu-

racy was more stable when uncorrelated data were used,

which could be an indication that a better choice in input

variable has the potential to stabilize and attenuate the

impacts of artefacts.

Spatial errors in ecology: comparisons with
other studies

In terms of data quality, the ecological literature has been

oriented mostly towards measurement uncertainty, and

the work performed on errors has largely focused on the

positional accuracy of species observations (e.g. Moudr�y

and �S�ımov�a 2012). The impact of DTM artefacts has been

studied before in a geomorphology and geomorphometry

context (e.g. Bonin and Rousseaux 2005) but rarely in

ecology. Of note is the work by van Niel et al. (2004) and

van Niel and Austin (2007) that studied the effect of error

in DTM on terrain attributes and predictive vegetation

modelling. Despite different approaches and types of error

studied, these studies and the current one yielded similar

conclusions regarding the fact that errors do propagate

throughout analyses, and affect distribution models

although not in an easily predictable way. In another

ecological study that looked at uncertainty and error

propagation, Livne and Svoray (2011) identified the need

to focus on assessing the behaviour of ecological models

to spatial errors at different spatial resolutions. While this

was addressed in the current study, results did not indi-

cate any scale-dependent pattern.

In the marine environment, researchers are aware of

artefacts as they are often, although not always (e.g. Luci-

eer et al. 2012), acknowledged (e.g. Blondel and G�omez

Sichi 2009). When acknowledged, their implications for

the ecological analysis being performed are often not dis-

cussed (e.g. Kostylev et al. 2001). The presence of artefacts

in MBES data sometimes prevents their use or the use of

their derived terrain attributes in ecological applications

(e.g. Clements et al. 2010). When such data are still used,

artefacts have been linked to habitat misclassifications

(e.g. Micallef et al. 2012; Costa and Battista 2013), to

noise in results from unsupervised classifications (e.g. Gal-

parsoro et al. 2015), and to difficulties associated with

identification of seabed features (e.g., Dolan and Lucieer

2014), among other consequences. As part of their seabed

mapping guidelines, the Norwegian Hydrographic Service

indicated that “seabed features shall not be camouflaged

by artefacts and artefacts must not appear as seabed fea-

tures” (NHS, 2013), and that artefacts in the processed

bathymetry “shall be kept at an insignificant level not dis-

turbing the seabed image” (NHS, 2013). However, no

procedures are indicated to assist in making decisions

regarding how to deal with artefacts when they cannot be

removed. This overview of the literature reflects the lack

of understanding of how artefacts impact ecological anal-

yses and interpretations, and the lack of knowledge on

how to respond to the presence of artefacts. The work by

Zieger et al. (2009) is however noteworthy as they used

terrain attributes and seafloor classification to identify

artefacts in flat areas before correcting for the misclassifi-

cations caused by artefacts. Such methods may however

be inefficient in more complex areas as the classifications

may be unable to distinguish which bathymetric patterns

are artefacts and which are actual natural features.

While this study has focused on artefacts in multibeam

bathymetric data, backscatter data are also often impacted

by artefacts (e.g. Collier and Brown 2005; Che Hasan

et al. 2012). Like for bathymetric data, some of these arte-

facts can be removed in post-processing (e.g. De Falco

et al. 2010; Lamarche et al. 2011) but a complete removal

is not always achieved. Backscatter data with artefacts

have been widely used (e.g. Rattray et al. 2009; Roberts

et al. 2009) as they may still yield useful observations.

Other times however, they are judged unusable for the

mapping or modelling exercise (e.g. Holmes et al. 2008).

It has been recognized that there is a broad misunder-

standing of backscatter within the end user community

ª 2017 The Authors. Remote Sensing in Ecology and Conservation published by John Wiley & Sons Ltd on behalf of Zoological Society of London 241

V. Lecours et al. Impacts of Artefacts in Habitat Mapping

 20563485, 2017, 4, D
ow

nloaded from
 https://zslpublications.onlinelibrary.w

iley.com
/doi/10.1002/rse2.49 by U

niversite D
u Q

uebec A
 C

hicout, W
iley O

nline L
ibrary on [27/10/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



(Lurton and Lamarche 2015). In this study, backscatter

data were used to evaluate the impact of adding relatively

better quality data to poor quality data within the same

analysis. As done with bathymetry in this study, future

work should evaluate the impacts of artefacts in backscat-

ter data on habitat maps and SDMs. It is to be expected

that like for bathymetry and terrain attributes, artefacts in

backscatter data will have a greater impact if sediment

properties are ecologically relevant to the species, area or

problem studied. For instance, Copeland et al. (2013)

noted that artefacts in the backscatter data resulted in an

apparent striping pattern in their habitat classifications.

Implications for ecological applications

The results of this study have critical implications for eco-

logical studies that use DTMs and their derived terrain

attributes in their applications, which is a common

practice (Bouchet et al. 2015; Lecours et al. 2016a). The

use of environmental variables such as terrain attributes

has been shown to improve predictions accuracy in SDMs

(Dobrowski et al. 2008). However, this study showed that

when artefact errors are present in DTMs, there is a trade-

off between the improved prediction that would be gained

from including the DTM and its derived terrain attributes

and the risk to produce inaccurate predictions. Results

showed that such predictions are not necessarily revealed

as lower or absence of predictions, but can be important

inflation in predictions. For instance, artefacts may alter

the quantification of species-environment relationships by

artificially increasing the importance of rugosity in habitat

characterization. When rugosity is known to be a surro-

gate of a particular species distribution, this leads to an

overestimation of the suitable habitat for that species.

Studies that include any assessment of data quality are

rare (van Niel and Austin 2007). The current study high-

lighted the sensitivity of maps and models to the observa-

tional scale and spatial errors like artefacts. Many calls have

been made in the literature for the quantification of uncer-

tainty and error propagation throughout ecological analy-

ses (e.g. Guisan et al. 2006; Lecours et al. 2015), and tools

have been proposed to deal with uncertainty (e.g. the Data

Uncertainty Engine by Brown and Heuvelink 2007) but not

with errors. The ecological community that makes use of

GIS tools and remote sensing techniques is usually aware of

this need but such protocol are not yet implemented in any

workflow. As stated by Li et al. (2012): “there are user com-

munities who may be aware of spatial data quality issues

but may not have at their disposal techniques and tools for

data quality assurance.” Such tools, associated with proper

standards, protocols and metadata, are becoming crucial to

enable a proper incorporation of error modelling in the dif-

ferent applications workflow. This will eventually lead to

results and interpretation that are grounded on solid foun-

dations, and more informed decisions. While it is impossi-

ble to avoid error and uncertainty in ecological analyses, it

is also important that practitioners stop avoiding it. An

acknowledgement of errors like artefacts and a discussion

on their potential impact on analyses will increase the

chances to make more informed decisions when these

data and analyses are used in contexts like conservation

planning.

Conclusions

DTMs and terrain attributes are now commonly used in

ecological studies. Despite an awareness of the presence of

errors like artefacts in these data, their quality is rarely

assessed, acknowledged or discussed. The goal of this

study was to develop evidence linking the presence of

artefacts in DTMs with the accuracy of analyses per-

formed in ecological applications. Results demonstrated

that artefacts do impact habitat maps and SDMs,

although not in a predictable way. Roll artefacts showed

the most predictable influence, decreasing the accuracy of

habitat maps and artificially increasing the performance

and generalizability of SDMs. Other types of artefacts

sometimes increased map accuracy and model perfor-

mance and generalizability or decreased them. These con-

clusions may however change if different data were used;

perhaps that with higher-resolution data (e.g. 0.5–2 m),

the relative magnitude of the artefacts would be more

important and produce a much larger and consistent

effect. Results showed that the importance of the impacts

of artefacts on ecological applications strongly depend on

whether or not the methods are grounded in ecological

relevance, particularly in terms of the choice of variables

and the spatial scale of the data. While the influence of

errors on an analysis depends on the type and require-

ments of the analysis (Friedl et al., 2001), results gained

in this study are transposable to other applications that

use remotely sensed data like LiDAR-derived DTMs and

encounter similar artefacts. This study also highlighted

requirements for error quantification tools to become

widely available to scientists and practitioners with a wide

range of background and expertise. This will improve

standards and protocols and lead to more quality-aware

decisions in contexts like conservation.
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