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Résumé 

La découverte de nouveaux variants a vu son rythme diminuer dans les dernières 

années dans les études sur l’épilepsie, malgré l’utilisation de cohortes de très grandes tailles. 

Conséquemment, la majorité de l’héritabilité reste inexpliquée. Les variants rares non-

codants ont été largement ignorés dans les études sur l’épilepsie, même si ces variants 

peuvent avoir un impact significatif sur l’expression des gènes. Nous avons accès au 

séquençage du génome complet (WGS) de 247 patients épileptiques et 377 témoins. Pour 

déterminer l’impact fonctionnel des variants non-codants, ExPecto, un algorithme 

d’apprentissage profond a été utilisé pour prédire le changement d’expression dans des tissus 

cérébraux. Nous avons comparé le fardeau des variants rares non-codants délétères des cas 

et des témoins. Les variants rares non-codants hautement délétères étaient significativement 

enrichis pour l’épilepsie génétique généralisée (GGE), mais pas pour l’épilepsie focale non-

acquise (NAFE) ou pour tous les cas d’épilepsie comparés aux contrôles. Cette étude a permis 

de démontrer que les variants rares non-codants délétères sont associés à l’épilepsie, plus 

spécifiquement pour les patients GGE. De plus grande cohortes de WGS en épilepsie seront 

requises pour investiguer ces effets avec une plus grande résolution. Néanmoins, nous avons 

démontré l’importance d’étudier les régions non-codantes en épilepsie, une maladie où les 

nouvelles découvertes sont rares. 

Abstract 

The discovery of new variants has slowed down in recent years in epilepsy studies, 

despite the use of very large cohorts. Consequently, most of the heritability is still 

unexplained. Rare non-coding variants have been largely ignored in studies on epilepsy, 

although non-coding single nucleotide variants can have a significant impact on gene 

expression. We had access to whole genome sequencing (WGS) from 247 epilepsy patients 

and 377 controls. To assess the functional impact of non-coding variants, ExPecto, a deep 

learning algorithm was used to predict expression change in brain tissues. We compared the 

burden of rare non-coding deleterious variants between cases and controls. Rare non-coding 

highly deleterious variants were significantly enriched with Genetic Generalized Epilepsy 

(GGE), but not with Non-Acquired Focal Epilepsy (NAFE) or all epilepsy cases when 

compared with controls. In this study, we showed that rare non-coding deleterious variants 

are associated with epilepsy, specifically with GGE. Larger WGS epilepsy cohort will be 

needed to investigate those effects at a greater resolution. Nevertheless, we demonstrated the 

importance of studying non-coding regions in epilepsy, a disease where new discoveries are 

scarce.
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Foreword 

The goal of this study was to investigate the role of non-coding genomic regions in 

the etiology of epilepsy. I strived to overcome the challenge of assessing the functional 

impact of non-coding variants. To do so I used deep learning as a tool to predict the effect of 

such variants, thus prioritizing variants of greater importance. Doing so suggested an 

important impact of those regions in the disease. Moreover, the method that was used is easily 

transposable to other studies no matter the trait of interest. The limitations of this study reside 

in the fact that the predictions made with deep learning are not experimentally validated since 

brain tissue from the patients are unavailable. However, this could be partly addressed by 

using cellular models from epileptic mice. Another limitation is the fact that the sample size 

is relatively small, which limits the resolution of new discoveries. 
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Epilepsy 

Epidemiology 

Epilepsy is a neurological disorder, for which there are several subtypes with large 

phenotypic variability, but a common symptom to all epilepsies are spontaneous unprovoked 

seizures1. Overall, around 3% of the population will be affected by epilepsy at some point in 

their lifetime2,3. Indeed, epilepsy is a disease with no particular age of onset and symptoms 

can eventually stop or last a lifetime. For many patients the affliction will be a burden for 

their entire life. Epilepsy’s consequences have many ramifications. The disease has a 

significant impact on the life of those affected by it. People affected by the disease have a 

higher mortality, extensive medication, frequent medical consultations and some cannot 

drive to name a few of the consequences of epilepsy4. Some of these consequences have 

major social and economic repercussions, such as a high cost associated with medication and 

medical care as well as frequent absence from work. Epilepsy is ranked as the third 

neurological disease that has the highest disability-adjusted life years as of 2017 after 

Alzheimer and chronic migraine5,6. Moreover, epilepsy can be a fatal illness and affected 

individuals have a two to threefold increase in their mortality rate compared to healthy 

individuals7,8. 

Overall, the prevalence of epilepsy is 6.38 per 1000 people and the incidence is 61.44 

per 100 000 people every year9. Additionally, between 20 to 30% of patients have drug-

resistant epilepsy10,11. Those patients don’t respond to anti-seizure drugs and suffer even 

more from their condition. It may take longer for them to be treated as they have to try a large 

spectrum of drugs, sometimes in combinations to find a solution. If all of this doesn’t work, 

they must resort to surgery, neuromodulation and/or vagal nerve stimulation12. This makes 
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treating drug-resistant epilepsy a gruesome process for the patients, their loved ones and the 

health care providers. 

Disease pathophysiology 

A seizure is a sudden and uncontrolled burst of electrical activity in the brain. This is 

caused by a specific type of cell, the neuron. Neurons are cells that can fire electric signals 

along an elongated arm called an axon13. The signal can be propagated by the opening of ion 

channels, proteins that can allow specific charged molecules to go through when they are 

opened. Ion channels only open when there is a shift in the surrounding electric charges, thus 

contributing to the propagation of the electric signal through the axon14. Neurons can send 

signals to each other by releasing chemicals at junction points called synapse. Those 

chemicals, called neurotransmitters, are released by the presynaptic neuron, and quickly bind 

to specific receptors on the postsynaptic neuron15. Different neurotransmitters will have 

different effects on the postsynaptic neuron. Some neurotransmitters will have an excitatory 

effect (excitatory conductance), others will have an inhibitory effect (inhibitory 

conductance)16. A postsynaptic neuron can receive inputs from multiple presynaptic neurons, 

where their combined effect will determine if the postsynaptic neuron also fires an electric 

signal or not. 

The mechanism by which seizures are usually provoked is an imbalance between 

excitatory and inhibitory conductance17. This has been confirmed by using pharmaceutical 

agents. Such an imbalance is not permanently present in epilepsy patients, thus showing that 

a more complex mechanism is responsible for triggering seizures. The reason for this is that 

most patients rarely experience seizures (<1% of brain activity except for the most severe 

cases) which means that most of the time there is no such imbalance in their brain18. 
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Furthermore, there are hundreds of genes associated with the disease, most of which are not 

directly related to neuronal excitation or inhibition, which implies that multiple indirect, 

complex and subtle molecular mechanisms are behind epileptic seizures potentially in 

parallel and interacting with each other17. As of today, there are several hypotheses as to how 

genetic variation can lead to rare spontaneous imbalance of activity in the brain and it remains 

a certain challenge in the field. Especially since a hypothesis could be true for a specific 

subtype of epilepsy, but not another. 

Disease phenotype 

Classification of different epilepsy phenotypes is made in accordance with the 

International League Against Epilepsy (ILAE) guidelines. It is generally made according to 

the type of seizure, for example focal or generalized and how the brain might be affected, 

such as developmental abnormalities1,19. For the present work, two types of epilepsy are of 

interest, Non-Acquired Focal Epilepsy (NAFE) and Genetic Generalized Epilepsy (GGE). 

Those types were selected because they are the most common type of epilepsy and are not 

caused by brain lesions or other external factors, thus showing stronger heritability20,21. 

NAFE is a focal epilepsy meaning that seizures originate from a network of neurons 

in only one hemisphere of the brain22. NAFE is a common type of epilepsy that is classified 

as non-acquired, which implies that the disorder is not caused by an acquired factor like a 

trauma, an infection, or a stroke. To diagnose a patient with NAFE, they must have had at 

least two unprovoked seizures occurring over 24 hours apart in the 6 months prior to the 

beginning of treatment and they must have a brain Magnetic Resonance Imaging (MRI) that 

shows no sign of epileptic lesion as per the current classification by the ILAE22. 
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GGE is a generalized epilepsy, therefore seizures spread to networks of neurons in 

both cerebral hemispheres. As its name implies, GGE is a form of epilepsy with a genetic 

cause. Patients have GGE if their clinical and electroencephalography characteristics are in 

line with the ILAE syndrome definition. For the current project, patients were diagnosed 

according to the 1989 ILAE guideline (latest guideline at the start of recruitment)23. An MRI 

of the brain is not required for diagnosis. 

Other characteristics may help to refine the diagnosis to a more specific type of 

epilepsy, such as length of seizures, frequency of seizures, the time at which seizures occur, 

etc. This procedure is called fine phenotyping and although it has been done for some 

individuals in our cohort, this information will not be used to further stratify the sample as it 

would create groups too small to have enough statistical power. Namely, some of the patients 

in this study have Jeavons syndrome, an idiopathic generalized type of reflex epilepsy with 

childhood onset, a specific seizure manifestation, striking light sensitivity and the possibility 

of tonic-clonic seizures24. Those patients fall into the broader category of GGE and will be 

included in this group. 

Genetics in epilepsy 

Around 2% of epilepsy are monogenic, which means that they follow either recessive 

or dominant Mendelian transmission. For instance cortical dysplasia-focal epilepsy25 is a 

recessive form of the disease whereas autosomal dominant nocturnal frontal lobe epilepsy26 

is a dominant form of the disease. The remaining 98% of genetic epilepsies are complex 

traits2. Those traits are defined as traits for which a plethora of genomic regions are associated 

with the phenotype, often involving interactions and multiple biological pathways27,28. For 

this reason, it is possible that variants that affect a gene that is seemingly unrelated to the trait 
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of interest can indeed play a role in the expression of the phenotype through a myriad of 

biological interactions29. 

In recent years, the main focus of genomic research in epilepsy has been on genome-

wide association studies (GWAS). A GWAS is a statistical approach that is used to test if 

there is an association between every individual variant and the phenotype of interest30. 

Traditionally, GWAS are performed with genotype data of a case-control cohort. This model 

often restricts findings to common variants. In epilepsy GWAS have historically been the 

main tool to make new discoveries2,3,11,31–34.  

The ILAE is a leader in GWAS for epilepsy. Over the past decade they conducted 

three meta-analyses, which allowed them to discover most of the newly associated loci and 

genes3,11,33. The first of those studies was published in 20143. They combined data from 12 

cohorts for a total of 8 696 cases and 26 157 controls, which was by far the greatest sample 

size ever assembled for epilepsy at the time, surpassing the 3 445 cases and 6 935 controls 

of a 2010 study35. In the end, this meta-analysis associated two loci with all epilepsy. The 

first at 2q24.3 centered in SCN1A a gene already associated with monogenic forms of the 

disease (Table 1). The other at 4p15.1 which overlapped with PCDH7 a gene never associated 

with epilepsy before. They also identified a locus specific to GGE located at 2p16.1 which 

contained VRK2 and FANCL. VRK2 had already been suggested as a risk gene for epilepsy 

and it was the first time that FANCL was associated with the disease. ILAE second meta-

analysis was published in 201833. In this study, the sample size was of 15 212 cases and 

29 677 controls. When combining all epilepsy cases together they identified a new 

association at 16q12.1 and replicated the associations of the previous study. Additionally, 

they were able to show that the 2q24.3 locus contains a second independent signal. This locus 
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was also the only significant signal among NAFE patients. GGE only analysis revealed 11 

significant loci, out of which 7 were associated with epilepsy for the first time. All the 

significant loci were mapped to 146 genes, every gene was attributed a score based on a 

variety of criteria to identify candidate risk genes. 21 genes were targeted as likely risk genes 

for epilepsy. Finally, the most recent meta-analysis of the ILAE was published in 2022 and 

is still in a preprint state11. This time the sample size has grown to 29 944 cases and 52 538 

controls. Four loci were significantly associated to all epilepsies, two of which are novel 

associations. Of all their previous associations only the 2q24.3 locus was replicated in this 

study. No locus reached significance for NAFE cases. For GGE, 22 loci were significantly 

associated with the condition, 13 of which are novel. By using a similar method as in their 

previous GWAS, they mapped 282 genes to the significant loci and used a prioritization 

method to identify 29 candidate genes for epilepsy. This time they conducted a 

transcriptome-wide association study (TWAS). TWAS are a family of analysis that aim to 

combine GWAS data with expression mapping studies (like the Genotype-Tissue Expression 

project (GTEx)36 and the Encyclopedia of DNA Elements (ENCODE)37) to investigate 

potential regulatory mechanisms that could be caused by non-coding SNVs38. By using a 

TWAS method named FUSION39 the ILAE identified 27 genes that are associated with 

epilepsy and differential expression in the brain. Out of those 27, 19 were outside of the 

associated GWAS loci. Next, with a method named SMR40 they demonstrated a potentially 

causal link between brain expression of RMI1 and all epilepsy. For GGE they showed a 

potentially causal link for RMI1 CDK5RAP3 and TVP23B. Finally, they estimated that the 

required sample size to identify enough SNV to account for 90% of SNV based heritability 

in GGE would be of around 2.5 million cases. To create such a cohort would be highly 
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impractical, not only would it require an astronomical funding, but it would also mean that 

almost 4% of the worldwide epilepsy population would have to be recruited41. 

Table 1. List of loci associated with epilepsy from major GWAS. 

Locus Phenotype Gene Reference 

2q24.3 All SCN1A ILAE consortium on complex epilepsies 

2014. 

All and NAFE SCN3A, SCN2A, 

TTC21B and SCN1A 

ILAE consortium on complex epilepsies 

2018. 

All and GGE SCN1A ILAE consortium on complex epilepsies 

2022. 

All SCN1A and TTC21B Song et al. 2021. 

4p15.1 All PCDH7 ILAE consortium on complex epilepsies 

2014. 

2p16.1 GGE VRK2 and FANCL ILAE consortium on complex epilepsies 

2014. 

All and GGE FANCL and BCL11A ILAE consortium on complex epilepsies 

2018. 

All and GGE BCL11A ILAE consortium on complex epilepsies 

2022. 

16q12.1 All HEATR3 and BRD7 ILAE consortium on complex epilepsies 

2018. 

2p24.1 GGE None ILAE consortium on complex epilepsies 

2018. 

2q32.3 GGE STAT4 ILAE consortium on complex epilepsies 

2018. 
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4p15.1 GGE PCDH7 ILAE consortium on complex epilepsies 

2018. 

GGE PCDH7 ILAE consortium on complex epilepsies 

2022. 

4p12 GGE GABRA2 ILAE consortium on complex epilepsies 

2018. 

5q22.3 GGE KCNN2 ILAE consortium on complex epilepsies 

2018. 

GGE KCNN2 ILAE consortium on complex epilepsies 

2022. 

6p22.3 GGE ATXN1 ILAE consortium on complex epilepsies 

2018. 

6q22.33 GGE None ILAE consortium on complex epilepsies 

2018. 

GGE PTPRK ILAE consortium on complex epilepsies 

2022. 

17q21.32 GGE PNPO ILAE consortium on complex epilepsies 

2018. 

GGE CDK5RAP3 ILAE consortium on complex epilepsies 

2022. 

21q22.11 GGE GRIK1 ILAE consortium on complex epilepsies 

2018. 

GGE GRIK1 ILAE consortium on complex epilepsies 

2022. 

9q21.13 All RORB ILAE consortium on complex epilepsies 

2022. 
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10q24.32 All and GGE KCNIP2 ILAE consortium on complex epilepsies 

2022. 

1q43 GGE RYR2 and CHRM3 ILAE consortium on complex epilepsies 

2022. 

2q12.1 GGE POU3F3 ILAE consortium on complex epilepsies 

2022. 

2q32.2 GGE GLS ILAE consortium on complex epilepsies 

2022. 

3p22.3 GGE STAC ILAE consortium on complex epilepsies 

2022. 

3p21.31 GGE CACNA2D2 ILAE consortium on complex epilepsies 

2022. 

5q31.2 GGE SPOCK1 ILAE consortium on complex epilepsies 

2022. 

7p14.1 GGE SUGCT ILAE consortium on complex epilepsies 

2022. 

9q21.32 GGE RMI1 ILAE consortium on complex epilepsies 

2022. 

12q13.13 GGE SCN8A ILAE consortium on complex epilepsies 

2022. 

16p13.3 GGE RBFOX1 ILAE consortium on complex epilepsies 

2022. 

17p13.1 GGE ARHGEF15 ILAE consortium on complex epilepsies 

2022. 

19p13.3 GGE AP3D1 ILAE consortium on complex epilepsies 

2022. 
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21q21.1 GGE TMPRSS15 ILAE consortium on complex epilepsies 

2022. 

22q13.32 GGE FAM19A5 ILAE consortium on complex epilepsies 

2022. 

7q21.11 All GRM3 Song et al. 2021. 

8p23.1 All TNKS Song et al. 2021. 

 

Another notable GWAS was conducted by Song et al.31 in 2021. They did a meta-

analysis based on data from the 2018 ILAE GWAS33, UK biobank42, Japanese population43 

and FINNGEN44 for a total of 26 352 cases and 774 517 controls. They discovered three 

significant risk loci. One at 2q24.3 which was identified in every ILAE GWAS. They also 

had significant association at 7q21.11 and 8p23.1, both novel associations. Risk genes in 

those regions include GRM3 and TNKS. A TWAS was also conducted and significant 

association between brain expression regulation of TNKS, TTC21B and RP11-375N15.2 and 

epilepsy was detected.  

Rare genetic variations have also been studied in epilepsy. However, this was only 

done for coding regions through whole exome sequencing (WES). Notably, a study by Feng 

et al.32 conducted in 2019 screened the WES of 9 170 cases and 8 436 controls. Although 

this study did not discover any new risk loci or genes, they showed that epilepsy patients had 

an enrichment of ultra-rare deleterious variants based on pLI score45. In the end this study 

showed that rare coding variants are likely to be risks factor for the disease, and that to deepen 

our understanding of epilepsy there is a need to investigate more than common variants.  
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There is a need for cohorts to be as large as possible to allow new discoveries, 

reaching as much as tens of thousands of individuals. However, even with large cohorts new 

discoveries are scarce, and studies tend to mostly replicate previous findings. This is 

especially surprising since the heritability of epilepsy is high, estimated at around 80% in a 

twin study46, yet our current knowledge allows us to explain about 32% of the heritability in 

GGE and 9% in NAFE33. Indeed, a large proportion of the heritability remains unexplained 

by common variants and coding variants. Despite this, rare non-coding variants have never 

been studied in epilepsy. Similarly, asthma has an estimated heritability of around 70%47,48 

and a SNP-based heritability estimated from the UK Biobank GWAS of 14%49. The same 

pattern is encountered where a lot of common variants of small effects are associated with 

the disease, leading to a lack of power to detect those variants50. However, efforts have been 

made to use WGS to study rare non-coding SNV and those efforts were successful51–53. Such 

studies have yet to be performed in epilepsy.   

Finally, throughout most genetic studies of epilepsy GGE and NAFE are analyzed 

separately. The reason for this is that those syndromes seem to have drastically different 

underlying genetic mechanisms. Indeed, most genes associated to epilepsy are specific to 

either GGE or NAFE with little overlap between the phenotype3,11,31–33,54–56. Furthermore, as 

mentioned above a greater proportion of the heritability is explained for GGE and in most 

studies more new discoveries were made for GGE than NAFE. Because of this, it is thought 

that GGE have a greater genetic burden2,3,11,33,57. 

Non-coding regions and their functional impact 

The human genome can be divided in two parts, coding, and non-coding regions. 

Coding regions are the sequences that compose the exons and that have the potential to be 
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transcribed and translated into protein. Those regions compose a little less than 2% of the 

genome. The rest is called non-coding DNA and those regions will never be translated into 

protein. Historically, non-coding regions were largely ignored, even earning the title of ‘Junk 

DNA’ as they were regarded as having no importance58. However, in the last decade more 

and more studies showed the functional impact that those regions can have on gene 

expression level, thus having a non-negligible role on phenotype determination27–29. 

Even though non-coding single nucleotide variants (SNV) don’t alter the structure of 

protein they can impact gene expression through multiple mechanisms. A change of the 

sequence in a transcription factor binding region can alter the affinity of the transcription 

factor, therefore increasing or decreasing gene transcription depending on the change in 

affinity. A change in non-coding sequence can also impact the histone marks that will be 

bound to the histones, which will affect the availability of the DNA to the transcription 

complex, hence altering gene expression. Those are a couple of examples from a large 

number of ways in which non-coding variants can have a functional impact on gene 

expression27,28,36,37,59,60. Studies on psychiatric disorders have already demonstrated an 

enrichment of both de novo mutations and inherited variants. For example, in autism 

spectrum disorder most WGS studies looked at de novo mutations in regulatory regions, 

while a couple of studies were able to show enrichment in inherited variants61–64. In 

developmental disorder de novo mutations were also enriched in regulatory regions65. In 

schizophrenia, the sequencing of open chromatin regions (ATAC-seq) led to the 

identification of regulatory risk variants66. The effects of non-coding regulatory variants have 

also been studied and demonstrated in traits unrelated to the nervous system, like 

cardiovascular disease67–69, arthritis70,71, plasma protein levels72 and height73. 
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The effect of many non-coding variants on gene expression have been quantified. In 

the last decade multiple large-scale projects like GTEx36 and ENCODE37 have identified and 

quantified the tissue specific effect of thousands of expression Quantitative Trait Loci 

(eQTL) on gene expression. An eQTL is a SNV that influences gene expression. A property 

of eQTLs is that their expression change effects are tissue specific. This is because of the 

natural variation between the different tissues in transcription factors, histone marks, 

epigenetic signature, etc. More specifically this means that the same eQTL can have a 

drastically different impact in the brain cortex, than in muscle tissue, which is why tissue 

specificity is a crucial feature to consider when studying eQTLs. 

Finally, studying non-coding regions is a notable challenge due to the gargantuan size 

of those regions coupled with the fact that it is harder to predict the pathogenicity of non-

coding SNV. As opposed to coding variants, where it is easy to see if the variant will cause 

a missense or a loss of function, finding eQTLs requires large tissue collection effort, which 

makes it especially hard to work with neurological disorders, since brain tissue is primarily 

available post-mortem74. 

Artificial Intelligence in genetics 

In recent years artificial intelligence (AI) has been blossoming. With a wide range of 

applications, it was only a question of time before AI could be used in genetics. An interesting 

use of AI is to predict the effect of SNV on gene expression, in other words to predict how a 

change in the nucleotide sequence might affect the transcription level of neighbouring genes. 

Accomplishing this is no small feat, mainly because of the numerous ways by which genomic 

sequence can interact with gene expression27–29. Indeed, to make reliable predictions an AI 

would require a massive amount of data to be trained on, like chromatin 
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immunoprecipitation, RNA-seq, Hi-C, eQTL, etc. Those are all methods that yield data on 

chromatin accessibility, transcription level, DNA-protein interaction and expression change. 

Multiple algorithms that are able to predict expression change have been developed in the 

past 5 years59,75–77. They can make tissue specific expression fold change predictions for any 

SNV. These algorithms are of great value for the study of non-coding genomic regions. They 

can be used to prioritize variants of great functional interest, thus simplifying the study of 

those large regions. Indeed, those regions are vast, which leads to a significant loss of power 

due to multiple comparisons correction. Furthermore, there is little to no information on the 

role of non-coding regions, which is another challenge to assess the clinical impact of non-

coding variants. Finally, the aforementioned algorithms have the benefit of yielding 

informative data without having to acquire tissue samples from patients. This characteristic 

is particularly useful in neurological disorders because of how arduous it is to access brain 

tissue74. 

Application of deep learning in genetics 

Examples of algorithms that can make predictions of tissue specific expression 

change caused by variants include ExPecto59, Enformer75, Xpresso76 and Basenji77. They 

have one common characteristic, and it is that they all use deep learning, which is a specific 

type of AI. Deep learning works by doing computation with a neural network78. A neural 

network can be pictured as a giant grid of nodes that are connected with each other, similarly 

to the way that neurons are connected in the brain, hence the name (Figure 1). A neural 

network uses layers to achieve its computations. There are three types of layers, the input 

layer, the hidden layers and the output layer79,80. The input layer is the first layer of a neural 

network, it contains a number of nodes equal to the number of input variables. This layer 
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receives the data and sends it to the hidden layers. The hidden layers are the layers where all 

the computations occur. At every node some computations are made on the data, and it is 

then sent to the next layer. Every time that data is transferred between nodes a coefficient is 

used to weight the data that is transferred. That weight is what is calibrated when the model 

is trained. The number of hidden layers depends on the complexity of what the model tries 

to predict, the closer the prediction is to a linear relation the smaller is the required number 

of layers (between one to three). The more complex the relation, the greater is the required 

number of layers (from 5 to dozens). Finally, the output layer is the layer which holds the 

information of interest that we wanted our model to predict. 

 

Figure 1. Schematic visualisation of a deep learning neural network.81 

 

To be trained a model needs data corresponding to the expected input and have the 

associated output to evaluate the performance. The algorithm will then use these data to test 
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different weights combinations. It will do so randomly at first, but it will slowly progress 

toward an optimized solution by considering the previous attempts. In the end, the trained 

model will be tested on data that it has never been exposed to. This procedure is there to 

ensure that the performance of the model is not reliant on prior exposure to the data. This 

phenomenon can be caused by underfitting, overfitting during training, or poor training data. 

Underfitting is what happens when the model finds a solution that is too simplistic. A simple 

example would be that the model finds a linear solution to a problem with a higher degree of 

complexity. In that case the trained model would not be able to properly consider all the 

variables and their relations, thus resulting in poor performance. This seldom occurs when 

using deep learning due to the inherent complexity of the training process, but it can happen, 

mainly if there is a bias in the training data. Overfitting occurs when the model overoptimizes 

and finds a solution so specific and specialized that it can only be applied to the training data. 

Any attempt to use the model on other data lead to bad performance because the high 

specificity prevents generalization. Overfitting is often caused by a poor choice of parameters 

in the training algorithm. Therefore, the model needs to be trained again with different 

parameters. Finally, if the training data are bad the model will be equally as bad. The 

performance is heavily dependent on the quality of the data. If there is a bias in the training 

set it will translate to the model, thus hampering the accuracy of its predictions. 

Objectives 

The main objective of this study is to assess the impact of non-coding regions on the 

genetic etiology of epilepsy. More specifically whether these regions have an effect in a 

specific subtype of epilepsy (GGE or NAFE). To do so, the functional impact of rare non-

coding variants have to be assessed with a deep learning algorithm. Therefore, one of the 
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objective of this project is to use the deep learning algorithm ExPecto82 to predict gene 

expression change for brain and neurological tissues for every SNV in our dataset. 



 

 

Materials and Methods
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Please note that the following chapter expands upon the ‘Materials and methods’ 

section of the article. Therefore, readers who go through this chapter will have access to 

detailed explanations of the methodology, but they may find the ‘Materials and methods’ 

section of the article redundant. 

Cohort 

Description 

The cohort used in this study is the Canadian Epilepsy Network (CENet) cohort54,83–

86. It has a multitude of genetic data from genotyping to WGS. For the purpose of this project 

only WGS data from unrelated GGE and NAFE patients was used. Controls come from the 

same cohort, a part of the original CENet project consisted of WGS trios of Developmental 

Epileptic Encephalopathy (DEE) composed of both parents and the affected child. Those 

parents are good controls since the main contributing factor for DEE are de novo 

mutations65,86–89, thus parents are not expected to carry a strong genetic burden that could 

reduce statistical power. Moreover, there are advantages to choosing the DEE parents as 

controls. First, the parents from the DEE trios are more representative of the patients’ 

population because of the Québec founder effect90,91 and at the time the study was conducted 

no population reference cohort of WGS existed for the Québec population. Additionally, it 

ensures that there is no batch effect in the data. Both of those factors remove potential bias 

and sources of false positive error from the analyses. 

The WGS part of the CENet cohort is composed of 1155 total samples including 

patients and controls. After data cleaning, phenotype-based filtering and removing related 

individuals (which are all described below), 624 samples were remaining (Table 2). Some of 

the patients are labeled as having a mixed phenotype. What this means is that those people 
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are either NAFE or GGE, but their phenotype is different from other family members. For 

instance, a GGE patient who comes from a family of NAFE patients. 

 

Table 2. Number of individuals for each phenotype 

Phenotype Male Female Total Mean age Median age 

Controls 190 187 377 - - 

All Cases 112 135 247 45 41 

GGE 52 71 123 45 41 

NAFE 50 62 112 40 36 

Mixed 10 2 12 54 59 

Total 302 (48%) 322 (52%) 624   

Number of individuals by phenotype and by sex. Age data was not available for controls and 

was available for only a portion of the cases. Age was calculated in 2023. 

 Phenotyping 

Patients’ diagnosis was conducted by epileptologists in centre hospitalier de 

l’Université de Montréal research center in Montréal. Blood samples were collected at this 

site. Control blood samples were collected in centre hospitalier universitaire Sainte-Justine 

in Montréal and Hospital for Sick Children in Toronto. ILAE guidelines22,23 were used for 

diagnosis as described in the ‘Introduction’, in the ‘Epilepsy’ section, under ‘Disease 

phenotype’. 
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Sequencing 

DNA was extracted from the blood samples and was sent to Genome Quebec 

Innovation Center in Montreal for sequencing. WGS was made at 30X coverage. Genomic 

DNA (gDNA) was cleaned using ZR-96 DNA Clean & ConcentratorTM-5 Kit (Zymo) prior 

to being quantified using the Quant-iTTM PicoGreen dsDNA Assay Kit (Life Technologies) 

and its integrity assessed on agarose gels. Libraries were generated using the TruSeq DNA 

PCR-Free Library Preparation Kit (Illumina) according to the manufacturer’s 

recommendations. Libraries were quantified using the Quant-iTTM PicoGreen Double 

Stranded DNA (dsDNA) Assay Kit (Life Technologies) and the Kapa Illumina GA with 

Revised Primers-SYBR Fast Universal kit (Kapa Biosystems). The average size fragment 

was determined using a LabChip GX (PerkinElmer) instrument. The libraries were denatured 

in 0.05N NaOH and diluted to 8pM using HT1 buffer. The clustering was done on an Illumina 

cBot and the flowcell was run on a HiSeq 2500 for 2×125 cycles (paired-end mode) using v4 

chemistry and following the manufacturer’s instructions. A phiX library was used as a control 

and mixed with libraries at 0.01 level. The Illumina control software used was HCS 2.2.58 

and the real-time analysis program used was RTA v. 1.18.64. bcl2fastq v1.8.4 was used to 

demultiplex samples and generate fastq reads. The filtered reads were aligned to reference 

Homo_sapiens assembly b37. Each readset was aligned using BWA-MEM version 0.7.10 to 

create a Binary Alignment Map file (.bam). Bam files were processed to gvcf files and we 

performed joint calling of gvcf files that were merged into a single vcf file using GATK 

version 3.7-092. The vcf file was recalibrated and filtered following the GATK best practice 

guidelines. 
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Statistical analyses 

Generating Data 

ExPecto82 was used in order to generate expression change data for every SNV in our 

cohort (over 55 million). The algorithm was used without any modification to the source 

code. ExPecto runs in two phases. The first one consists of the deep learning neural network. 

It uses Python 3.8 and will predict the effect of the variation in the sequence on the general 

level of transcription. To do so the neural network was trained on 2 002 different histone 

marks, transcription factors and DNA accessibility profiles from over 200 tissues and cell 

types. Training performed by Zhou et al.82 was used for this phase. The output of the neural 

network is spatial feature transformation data, that will be used in the next step. The second 

phase is a tissue specific regularized model that uses the spatial feature transformation data 

to compute the tissue specific expression change data in natural log fold change. By 

combining those two steps the model can predict expression change for 218 tissues and cell 

types that come from either GTEx36 or ENCODE37. Predictions were made for the 26 tissues 

that are related to the brain or neural cells and 3 outgroup tissues of different embryonic 

origin to be used for comparison purposes (Artery Aorta, Colon Transverse and Skin of 

Body) (Figure 2). 
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Figure 2. List of tissues for which predictions were made with ExPecto. 

Tissues marked with a triangle are from the outgroup. Colors serve as a legend for figure 3. 

In the end, 29 predictions were made for over 55 million SNVs, which means that 

around 1,6 billion tissue specific expression change predictions were made (Figure 3). 
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Figure 3. Visual representation of around 1,6 billion expression change values across the 

genome. 

The y axis corresponds to the natural log expression fold change. The x axis corresponds to 

genomic positions. 
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ExPecto validation  

To ensure that the results are accurate, the model was tested on known eQTLs from 

the GTEx v6p database36. To do this the prediction’s directionality was compared to the 

observed directionality. The directionality is defined as the direction of the change in 

expression, in other words it corresponds to whether the transcription level increases or 

decreases. Then the proportion of variants for which the directionality of the prediction and 

the observation match is the accuracy. This can be plotted against another measure called 

magnitude. Magnitude corresponds to the absolute expression change, meaning that it is 

strictly positive. By doing this it is possible to see the relation between accuracy and 

magnitude, as well as a way to identify a critical magnitude value above which the accuracy 

is optimal (figure 4). The accuracy is perfect for a magnitude greater than 0.2, thus only 

variants with a magnitude above this threshold were used in the following analyses. 
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Figure 4. Accuracy of predictions’ directionality on known GTEx eQTLs 

Directionality accuracy was computed according to ExPecto’s predicted magnitude in natural 

log fold change. 

Constraint Violation Score 

As mentioned earlier, it is a challenge to assess whether a change in gene expression 

will have a neutral, beneficial, or deleterious effect29,93. To achieve this, expression change 

values are transformed into constraint violation scores (CVS). A CVS considers selective 

pressure to quantify the effect of gene expression. Computation of CVS requires a tissue 

specific expression change prediction for a gene and that gene’s variation potential. The 

variation potential is the sum of the predicted gene expression change in the natural log for 
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all possible SNV 1 kb upstream and downstream of the transcription start site. Since a variant 

that decreases expression will have a negative predicted value and a variant that increases 

expression will have a positive value, the sum will tend towards 0 if there is no imbalance 

between the two. However, if there is a selective pressure on the gene that results in a high 

expression level in the tissue of interest, most variants will cause transcription levels to drop 

because it is already optimized for high expression. Therefore, there will be more negative 

terms in the sum leading to a negative variation potential. The higher the selective pressure, 

the higher the variation potential will be. The inverse is also true, thus if a gene is under 

selective pressure for low expression in the tissue, most variants will increase its expression, 

leading to a positive variation potential. The CVS is obtained by multiplying the predicted 

gene expression change with the variation potential of the associated gene for the relevant 

tissue. The CVS can either be positive or negative. A positive CVS means that the variant is 

deleterious because the direction of the change goes against the selective pressure. A negative 

CVS means that the variant is beneficial because the direction of the change goes with the 

selective pressure. The fact that it is obtained by a multiplication ensures that the magnitude 

of the expression change, and the magnitude of the selective pressure are both considered. 

To ensure that the CVS had good tissue specificity, CVS distribution was compared 

in patients with epilepsy between the three outgroup tissues and the three tissues associated 

with epilepsy (hippocampus, amygdala and brain cortex)11,94–99. All three epilepsy related 

tissues had a distinctive density pike around CVS 30 that is absent from the outgroup tissues 

(Figure 5). This confirmed that the tissue sensitivity of the model is good. 
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Figure 5. Density curve of the constraint violation scores for three epilepsy related tissues 

and three outgroup tissues. 

Data cleaning 

Cleaning was made using plink v2.0100. First, Single Nucleotide Variants (SNVs) with 

a call rate below 98% were removed using ‘--geno 0.02’. Afterward, individuals with a 

genotype rate below 98% were excluded using ‘--mind 0.02’. Next, SNV that did not follow 

the Hardy-Weinberg equilibrium were removed using ‘--hwe 0.001’. Finally, individuals 

with unknown biological sex were excluded. SNVs were filtered based on their minor allele 

frequency (maf), only rare variants (maf <0.01101–103) as assessed  in our cohort as well as  in 

gnomAD were kept 104. 

Population structure 

To ensure that population structure didn’t cause bias to subsequent analyses, a two-

dimension Uniform Manifold Approximation and Projection (UMAP) was made to be used 



30 

 

as a covariable. A UMAP is created from a principal component analysis (PCA) and is a 

method used to reduce the number of dimensions and capture more complexity with fewer 

variables. To make the PCA, further cleaning was required. The PCA was made with plink 

v2.0100. Only common variants were used in the PCA (maf > 0.05102) and SNVs that were 

not in linkage disequilibrium by using ‘--indep-pairwise 50 5 0.2’. A plot of PC1 and PC2 

shows a logical separation of self-declared ethnicity, and it does not show signs of bias 

(Figure 6). 

 

Figure 6. Principal component analysis of PC1 and PC2. 

Variance explained by the PC is in the name of the axis. Colors represent self-reported 

ethnicity. 

The UMAP was made from the first five PCs of the PCA (figure 7). This decision 

was made since after those PCs the variance explained by each PC tends to remain stable, 
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thus indicating that the PCs beyond the first five explain mainly individual relations instead 

of populational relations (Figure 8). 

 

Figure 7. UMAP of ethnicity for the epilepsy patients and controls. 

Colors represent self-reported ethnicity and shape represent the phenotype. 
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Figure 8. Scree plot for the first 10 PCs. 

The python package umap-learn v0.5.1 was used to make the UMAP. Parameters were set to 

n_neighbours = 624 and min_dsit = 0. Maximizing the number of neighbours considered 

favorized the emergence of population structure over relations between small groups of 

people. Minimizing the minimum distance was unrestricting and did not force the algorithm 

to create distance between individuals, thus giving a better depiction of reality. 

Logistic regressions 

To compare the burden of rare non-coding variants between cases and controls, 

logistic regressions were performed at different CVS windows. For each window a patient 

was considered as exposed if he had at least one variant for which the median CVS score for 

the hippocampus, amygdala and brain cortex is inside that window. The analysis was 

performed for windows of ]10, 20]; ]20, 30]; ]30, 40]; > 40. These analyses were performed 

for all cases (GGE, NAFE and mixed) against controls, GGE against controls, NAFE against 
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controls and GGE against NAFE. Statsmodels v0.12.2 was used to do the logistic regressions. 

Both UMAP dimensions and sex were used as covariables. Analyses were repeated with only 

individuals of European descent to ensure that signals were not the result of an ethnic bias 

(Article - S4 Fig). Analyses were also repeated by using the median of the outgroup tissues 

(artery aorta, colon transverse and skin of body) to confirm that significant signals are tissue 

specific (Article - S2 Fig). 



 

 

Article - Unraveling the role of non-coding rare variants in epilepsy



 

 

Article’s context 

The following article presents the aforementioned study in a more concise manner. 

The paper was submitted to PLOS ONE on April 27, 2023. This version of the paper was 

resubmitted on July 26, 2023 following the review process. Supplementary figures can be 

found after the References section of the Article. The supplementary table is not directly 

included in this work due to its size, however it can be accessed through the preprint of an 

earlier and shorter version of the paper (https://doi.org/10.1101/2022.12.13.22283363). 

Personal contribution to the paper 

Patients’ selection, sample extractions and sequencing were all performed before the 

start of this project, consequently I did not partake in those steps of the study. I played a role 

in the conception of the study. I conducted all of the mentioned analyses and produced all of 

the figures. I wrote the first version of the paper and improved it with the input of the 

coauthors. 
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Résumé 

La découverte de nouveaux variants a atteint un plateau dans les dernières années dans les 

études sur l’épilepsie, malgré l’utilisation de cohortes de très grandes tailles. 

Conséquemment, la majorité de l’héritabilité reste inexpliquée. Les variants non-codants 

rares ont été largement ignorés dans les études sur l’épilepsie, même si les variants non-

codants d’un seul nucléotide peuvent avoir un impact significatif sur l’expression des 

gènes. Nous avons eu accès à du séquençage de génome complet (WGS) de 247 patients 

épileptiques et 377 témoins. Pour déterminer l’impact fonctionnel des variants non-codants, 

ExPecto, un algorithme d’apprentissage profond a été utilisé pour prédire le changement 

d’expression dans des tissus cérébraux. Nous avons comparé le fardeau des variants rares 

délétères non-codants entre les cas et les témoins. Les variants rares hautement délétères 

non-codants étaient significativement enrichis pour l’épilepsie génétique généralisée 

(GGE), mais pas pour l’épilepsie focale non-acquise (NAFE) ou tous les cas d’épilepsie 

comparés aux contrôles. Dans cette étude nous avons démontré que les variants rares 

délétères non-codants sont associés à l’épilepsie, spécifiquement pour les GGE. De plus 

grandes cohortes de WGS en épilepsie seront requises pour investiguer ces effets avec une 

plus grande résolution. Néanmoins, nous avons démontré l’importance d’étudier les régions 

non-codantes en épilepsie, une maladie où les nouvelles découvertes sont rares. 
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Abstract 

The discovery of new variants has leveled off in recent years in epilepsy studies, despite the 

use of very large cohorts. Consequently, most of the heritability is still unexplained. Rare 

non-coding variants have been largely ignored in studies on epilepsy, although non-coding 

single nucleotide variants can have a significant impact on gene expression. 

We had access to whole genome sequencing (WGS) from 247 epilepsy patients and 377 

controls. To assess the functional impact of non-coding variants, ExPecto, a deep learning 

algorithm was used to predict expression change in brain tissues.  

We compared the burden of rare non-coding deleterious variants between cases and controls. 

Rare non-coding highly deleterious variants were significantly enriched in Genetic 

Generalized Epilepsy (GGE), but not in Non-Acquired Focal Epilepsy (NAFE) or all 

epilepsy cases when compared with controls. 

In this study we showed that rare non-coding deleterious variants are associated with 

epilepsy, specifically with GGE. Larger WGS epilepsy cohort will be needed to investigate 

those effects at a greater resolution. Nevertheless, we demonstrated the importance of 

studying non-coding regions in epilepsy, a disease where new discoveries are scarce. 
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Introduction 

Epilepsy is a neurological disorder characterized by epileptic seizures and spontaneous 

episodes of abnormal neuronal activity [1,2]. Approximately 3% of all individuals will be 

affected during their lifetime [3,4]. The vast majority of genetic epilepsies are complex traits 

(>98%); traits that are affected by a plethora of genomic regions. With such a large array of 

contributing signals, it is an arduous task to detect significant associations. Several studies 

used familial trios to investigate de novo mutations, thus leading to the association of multiple 

genes with the disease [5–7]. However, new variant discoveries rarely meet expectations 

notably in recent epilepsy studies. Only large cohorts composed of tens of thousands of 

individuals had some success [4,8–13]. These studies mainly focused on common or coding 

variants.  The overwhelming majority of studies in epilepsy use either genotyping or exome 

sequencing to investigate the genetic causes of the disease. Consequently, little is known 

concerning the implication of non-coding regions in the etiology of the disease [4,8–13]. 

However, these regions were shown to have an important impact on the phenotype of an 

individual as they affect the expression of neighboring genes [14–18]. As a large portion of 

the heritability of epilepsy remains unexplained, there is a glaring need to study the impact 

of rare non-coding variants in epilepsy. 

 

Since non-coding regions are so vast, a strategy to prioritize variants of interest is to 

investigate the impact of expression quantitative trait loci (eQTL). Studying eQTL in 

neurological disease is a notable challenge, mainly because eQTLs effects are tissue specific 

and brain tissues are mostly available post-mortem [19]. Nevertheless, progress in deep 

learning now allows us to predict the functional effects of variants from sequencing data 
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without having to sample tissues from our patients [20–22]. In this study, we aimed to 

characterize the role of rare non-coding variants in epilepsy based on their functional effect 

in brain tissues using one of the most powerful deep learning algorithm, ExPecto [21]. We 

used whole genome sequencing (WGS) data from the Canadian Epilepsy Network (CENet) 

cohort to investigate deleterious rare functional variants in epileptic patients [23]. 

Materials and methods 

Cohort phenotyping 

The CENet cohort is composed of patients with Genetic Generalized Epilepsy (GGE) or Non-

Acquired Focal Epilepsy (NAFE) collected in CHUM Research Center in Montreal and 

controls (unaffected Developmental Epileptic Encephalopathy (DEE) trio parents) collected 

in CHU Ste-Justine in Montreal and the Hospital for Sick Children in Toronto [20–23]. The 

patients were recruited between 2002 and 2014. Patients were diagnosed by epileptologists. 

The clinical epilepsy phenotype was classified according to the current classification by the 

International League against Epilepsy (ILAE) [24]. More specifically for NAFE, patients 

were at least five years of age and have experienced at least two unprovoked seizures in the 

six months prior to starting treatment, an MRI scan of the brain that did not demonstrate any 

potentially epileptogenic lesions, other than mesial temporal sclerosis. Patients with clinical 

and EEG characteristics meeting the 1989 ILAE syndrome definitions for GGE were 

included. An MRI of the brain was not required for participation. All patients were at least 

four years of age at the time of diagnosis. In GGE, we also included patients with Jeavons 

syndrome, which is an idiopathic generalized form of reflex epilepsy characterized by 

childhood onset, unique seizure manifestations, striking light sensitivity and possible 

occurrence of generalized tonic-clonic seizures. Certain cases were found with an epilepsy 
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phenotype different from the other affected family members, hence they were marked as 

‘mixed’. Only one affected GGE or NAFE patient was used per family, therefore all the 

individuals in this study are unrelated. We used WGS from 377 controls and 247 patients, 

123 GGE, 112 NAFE and 12 mixed patients (Table 1). This study was approved by the 

CHUM research Center (CRCHUM) ethics committee and written informed consent was 

obtained for all patients (2003-1394, ND 02.058 -BSP (CA)). We did not have access to 

information that could allow us to identify the patients. 

Table 1. Number of individuals for each phenotype 

Phenotype Male Female Total 

Controls 190 187 377 

All Cases 112 135 247 

GGE 52 71 123 

NAFE 50 62 112 

Mixed 10 2 12 

 

 

Sequencing 

DNA was extracted at the time of recruitment. All samples were sequenced at the same time 

in 2015. Samples were sequenced for the whole genome at 30X coverage at Genome Quebec 

Innovation Center in Montreal. gDNA was cleaned using ZR-96 DNA Clean & 

ConcentratorTM-5 Kit (Zymo) prior to being quantified using the Quant-iTTM PicoGreen 
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dsDNA Assay Kit (Life Technologies) and its integrity assessed on agarose gels. Libraries 

were generated using the TruSeq DNA PCR-Free Library Preparation Kit (Illumina) 

according to the manufacturer’s recommendations. Libraries were quantified using the 

Quant-iTTM PicoGreen dsDNA Assay Kit (Life Technologies) and the Kapa Illumina GA 

with Revised Primers-SYBR Fast Universal kit (Kapa Biosystems). The average size 

fragment was determined using a LabChip GX (PerkinElmer) instrument. The libraries were 

denatured in 0.05N NaOH and diluted to 8pM using HT1 buffer. The clustering was done on 

an Illumina cBot and the flowcell was run on a HiSeq 2500 for 2×125 cycles (paired-end 

mode) using v4 chemistry and following the manufacturer’s instructions. A phiX library was 

used as a control and mixed with libraries at 0.01 level. The Illumina control software used 

was HCS 2.2.58 and the real-time analysis program used was RTA v. 1.18.64. bcl2fastq 

v1.8.4 was used to demultiplex samples and generate fastq reads. The filtered reads were 

aligned to reference Homo_sapiens assembly b37. Each readset was aligned using BWA-

MEM version 0.7.10 to create a Binary Alignment Map file (.bam). Bam files were processed 

to gvcf files and we performed joint calling of gvcf files that were merged into a single vcf 

file using GATK version 3.7-0 [25]. The vcf file was recalibrated and filtered following the 

GATK best practice guidelines. 

 

Data cleaning 

Cleaning was made using plink v2.0 [26]. First, Single Nucleotide Variants (SNV) with a 

call rate below 98% were removed using ‘--geno 0.02’. Afterward, individuals with a 

genotype rate below 98% were excluded using ‘--mind 0.02’. Next, SNV that did not follow 

the Hardy-Weinberg equilibrium were removed using ‘--hwe 0.001’. Finally, individuals 
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with unknown biological sex were excluded. To make the principal component analysis, 

further cleaning was required. Only common variants were used in the PCA (maf > 0.05) and 

SNV that were not in linkage disequilibrium by using ‘--indep-pairwise 50 5 0.2’. Single 

nucleotide variants (SNVs) were filtered based on their minor allele frequency (maf), only 

rare variants (maf <0.01) as assessed  in our cohort as well as  in gnomAD were kept [27]. 

 

Statistical Analyses 

We applied ExPecto on rare variants (MAF<0.01) for three tissues related to epilepsy: 

hippocampus, amygdala and brain cortex (GTEx V6) for which we calculated the gene 

expression change median [16,31]. ExPecto computes gene expression changes by using a 

neural network to predict the effect of variants on features such as transcription factors, 

histone marks and DNA accessibility. It then transforms those feature predictions in tissue 

specific gene expression changes with L2-regularized linear regression models. Gene 

expression changes calculated by ExPecto were used to compute a Constraint Violation Score 

(CVS) in accordance with the methods described in Zhou et al. [21]. The CVS quantifies 

how deleterious the gene expression change is: the higher the score, the more deleterious the 

variant. 

 

The accuracy of ExPecto predictions was validated using known eQTLs from the GTEx V6p 

release (S1 Fig) [16]. To do so, we used two parameters, the prediction’s directionality and 

magnitude. Directionality is defined as whether the Single Nucleotide Variant (SNV) 

increases or decreases gene expression. Magnitude is defined as the absolute size of the effect 

in gene expression fold change (natural log). We determined that the magnitude above which 
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the accuracy of the prediction’s directionality was perfect was 0.2 so we kept only variants 

with a median (for the cortex, hippocampus, and amygdala) above this threshold (S1 Fig). 

Analyses were replicated with the median of three non-neurological tissues: artery aorta, 

colon transverse and skin of body to validate the tissue specificity of the model (S2 Fig). 

 

A binomial logistic regression was performed with the python package statsmodels v0.12.2. 

Sex was used as a covariate as well as a two-dimension UMAP (umap-learn v0.5.1) based 

on the first five principal components (plink v2.0) (S3 Fig). We had access to self-declared 

ethnicity from the affected individuals, which allowed us to confirm that the UMAP was 

accurate. Analyses were replicated by using only individuals of French-Canadian and 

European descent to validate that the findings were not related to population structure (S4 

Fig). Those individuals were selected based on the cluster that corresponded with self-

declared French-Canadians and Europeans. 

 

Results 

We compared the proportion of patients and controls who had at least one rare variant 

(MAF<0.01) at different CVS thresholds using a binomial logistic regression analysis to 

compute odds ratios (OR). We repeated the analysis to compare GGE with controls, NAFE 

with controls and GGE with NAFE (mixed patients were removed from these analyses). 

Variants found in the final analysis are available in S1 Table. Our analyses showed no 

significant difference when comparing cases and controls (Fig 1A). Nevertheless, the OR 

tends to increase with the CVS threshold and reaches a peak for variants with a CVS above 

40 (OR 1.54; 95% CI 0.77-3.11). However, there is a significant difference between GGE 
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and controls for CVS above 40 (OR 2.74; 95% CI 1.20-6.22) (Fig 1B). On the other hand, 

NAFE and controls show no significant difference, meaning that the trend observed when 

comparing all cases and controls was solely driven by the GGE (Fig 1C). Next, GGE and 

NAFE have a significantly different burden for CVS thresholds of ]20, 30] (OR 2.47; 95% 

CI 1.10-5.52) and above 40 (OR 3.19; 95% CI 1.002-10.13) (Fig 1D). Finally, it is worth 

noting that none of those signals are significant after multiple tests correction, with the lowest 

adjusted p-value of 0.066 at CVS over 40 for GGE against controls (Bonferroni correction). 

Nevertheless, this particular signal is robust to multiple tests correction when using only 

individuals of French-Canadian and European descent with an adjusted p-value of 0.044 (S4 

Fig). No significant signals weres observed when repeating the analyses with non-

neurological tissues, thus demonstrating the reliability and power of the tissue specific model 

(S2 Fig). 
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Fig 1. Burden of variants for different CVS thresholds across epilepsy phenotypes. 

Odds ratios and p-value were calculated using a binomial logistic regression for variants of 

different Constraint Violation Score (CVS) thresholds. Lines represent 95% confidence 

intervals. Comparisons were made for cases and controls (A), Genetic Generalized Epilepsy 

(GGE) and controls (B), Non-Acquired Focal Epilepsy (NAFE) and controls (C) and GGE 

and NAFE (D). 

 

Discussion 

We found strong evidence that deleterious non-coding rare variants with a higher CVS are 

enriched in GGE. However, it is not the case for NAFE who are known to have a smaller 

genetic burden [4,8–11]. Once again, our findings demonstrate the importance of separating 

GGE and NAFE when studying epilepsy, which is also supported by most associated genes 
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being specific to subphenotypes [23,32,33]. Furthermore, the differences observed when 

directly comparing GGE to NAFE highlights the varying impact of non-coding variants on 

those subphenotypes. 

 

We are the first to highlight the potential impact of rare non-coding SNV on a genome-wide 

scale in epilepsy. This discovery reveals the importance of studying non-coding regions 

which may explain a part of the missing heritability in epilepsy [9]. Moreover, it showcases 

the need to conduct more studies on WGS in order to make discoveries at a higher resolution 

in non-coding regions. 

 

In addition to the contribution that we bring to the field of epilepsy, the method used in this 

study could be applicable to other diseases to provide a better understanding of the role of 

rare non-coding SNV in various pathologies. 

Limitations 

The study has two main limitations. First, the use of deep learning, as useful as it is, has the 

limitation of being predictions, not observations. Nonetheless, we validated that those 

predictions were accurate by using experimental data from GTEx (S1 fig). Additionally, 

ExPecto is not able to compute long range (>40kb) sequence effects on gene expression, 

which limits this work to the study of short-range interactions. The second limitation is our 

small sample size. Despite this, we were successful in identifying a genome-wide effect in 

individuals of European descent, but we lacked power to investigate those effects at a gene 

or variant level resolution. 
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Conclusion 

This study reveals the importance of non-coding regions in the etiology of epilepsy. The 

effect was specific for GGE, whereas NAFE showed no significant difference with controls. 

Therefore, our results indicate that the differences between those subphenotypes extends to 

non-coding genetic mechanisms. Larger WGS cohorts will be needed to deepen our 

understanding of the role of non-coding regions in epilepsy. 

Data Availability 

Raw whole genome sequences of all epilepsy patients for which we have appropriate consent 

have been deposited in the European Genome-phenome Archive, under the accession code 

EGAS00001002825.  
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Supporting information 

 

 

S1 Fig. Accuracy of predictions’ directionality on known GTEx eQTLs 

Directionality accuracy was computed according to ExPecto’s predicted magnitude in natural 

log fold change. 
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S2 Fig. Burden of variants for different CVS thresholds across epilepsy phenotypes 

when using non-neurological tissues. 

Odds ratios and p-value were calculated using a binomial logistic regression for variants of 

different Constraint Violation Score (CVS) thresholds. Lines represent 95% confidence 

intervals. Comparisons were made for cases and controls (A), Genetic Generalized Epilepsy 

(GGE) and controls (B), Non-Acquired Focal Epilepsy (NAFE) and controls (C) and GGE 

and NAFE (D). Tissues that were used are artery aorta, colon transverse and skin of body. 
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S3 Fig. UMAP of ethnicity for the epilepsy patients and controls. 

The UMAP was made with ‘umap-learn v0.5.1’ and based on the first 5 principal 

components. 
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S4 Fig. Burden of variants for different CVS thresholds across epilepsy phenotypes whit 

only individuals of European descent. 

Odds ratios and p-value were calculated using a binomial logistic regression for variants of 

different Constraint Violation Score (CVS) thresholds. Lines represent 95% confidence 

intervals. Comparisons were made for cases and controls (A), Genetic Generalized Epilepsy 

(GGE) and controls (B), Non-Acquired Focal Epilepsy (NAFE) and controls (C) and GGE 

and NAFE (D). 

S1 Table. List of variants included in the final analysis. 
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Logistic regression interpretation 

All cases against controls 

In the analyses that compare all cases to controls, no significant difference was 

observed for any CVS windows (Article - Fig. 1A). Even though it was expected that epilepsy 

patients would have a greater burden of rare non-coding variants than controls, it does not 

come as a surprise that the sample size used in this study is too small to achieve significance 

when combining epilepsy subtypes. Indeed, even studies with sample sizes over 100 times 

greater than the one in this project yield a few significant associations when comparing all 

patients to controls3,11,31–33. By assuming that the computed odds ratio is right a sample size 

of 2 641 individuals would have been required to achieve 80% power, whereas such a level 

of power was reached when comparing only GGE to controls with a sample size of 500 

(G*Power v3.1.9.7). This demonstrates that due to the great heterogeneity between GGE and 

NAFE, analyses have more power when they consider only one subtype of the disease at a 

time2,34.  

Nevertheless, a clear trend can be observed, as the CVS windows increase the 

corresponding odds ratio increases too. This indicates that with a greater sample size, 

significance level could have been reached for current windows and it could be possible to 

look at higher CVS windows to investigate the effect of even more deleterious variants. 

Genetic generalized epilepsy against controls 

When comparing only GGE with controls, odds ratios were higher for all CVS 

windows, thus indicating that the previously discussed trend was mainly driven by the genetic 

burden of GGE patients (Article – Fig. 1B). This was expected since studies conducted on 

GGE with genotyping or exome sequencing have both shown that GGE patients have a 
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stronger genetic component than NAFE, as well as a stronger heritability2,3,11,31–34. Therefore, 

it is of no surprise that this genetic disparity extends to rare non-coding variants. 

Furthermore, GGE patients have a significantly higher genetic burden for highly 

deleterious variants (CVS > 40). This result is strong evidence for the role of rare non-coding 

variants in the etiology of GGE. This is a hallmark in the study of epilepsy as it is the first 

time that the effect of rare non-coding variants has been studied in the disease. This is surely 

the first of many steps in demonstrating the importance of those variants for GGE and 

deepening our understanding of the disease. 

Non-acquired focal epilepsy against controls 

The comparison of NAFE to controls revealed no significant enrichment (Article - 

Fig. 1C). As opposed to previous analyses, there is no trend of increasing odds ratios with 

increasing CVS windows. As of now, there is no indication that rare non-coding variants are 

associated with NAFE. However, genetic heterogeneity is greater between NAFE subtypes 

than between GGE subtypes, which means that there could be a significant loss of power due 

to divergent genetic mechanisms across the different NAFE subtypes11. With the current 

sample size, it was not possible to further stratify the NAFE patients into more phenotypes. 

Despite this, the heritability is nonetheless lower in NAFE, which could be explained by the 

recent evidences that demonstrate that somatic mutations have a significant role in the 

development of focal epilepsies105–111. Even though the entire picture is still unclear, based 

on current knowledge it is undeniable that NAFE heritability is smaller than GGE and that 

NAFE patients don’t seem to have a genetic burden associated with rare non-coding variants. 
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Genetic generalized epilepsy against non-acquired focal epilepsy 

Comparing GGE to NAFE highlights the main CVS windows that differ between 

those two epilepsy subtypes (Article – Fig. 1D). For highly deleterious variants (CVS > 40), 

there is a significant difference between GGE and NAFE, which was expected due to the 

very different genetic burden discussed above. The confidence interval is quite large, which 

is a consequence of the small sample size. 

The genetic burden of variants with CVS from 30 to 40 is very similar between the 

two phenotypes, but there is once again a significant difference when looking at CVS from 

20 to 30. This is unexpected, since windows of significance are separated by a non-significant 

window. To definitively answer this question, findings will have to be replicated in larger 

WGS cohorts to increase power and resolution. Since it is the first time that rare non-coding 

variants are investigated in epilepsy, no literature exists on the subject. A hypothesis was 

formulated: It is possible that the observation is due to the fact that GGE don’t necessarily 

have a higher number of deleterious rare non-coding variants than NAFE, but that a higher 

proportion of those variants are highly deleterious which increases their risk of developing 

the disease. The significance at CVS 20 to 30 could be due to the same phenomenon, which 

cause GGE patients to have more moderately deleterious variants (CVS 20 to 30), but not 

necessarily more lightly deleterious variants (CVS 10 to 20). Once again, more studies will 

need to be conducted on the subject before the mechanism causing this disparity in the type 

of variants enriched in GGE can be better understood.  
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Principal contributions 

Importance in the field 

This research brings an important contribution to the field of epilepsy, it is the first 

time that rare non-coding variants are studied in the disease. The results show a significant 

enrichment of those variants in GGE, thus demonstrating that a portion of the missing 

heritability is likely explained by those variants. This work lays the foundations for more and 

bigger WGS cohort to delve into non-coding regions. Indeed, larger sample size will be 

needed to study those regions at a higher resolution by using statistical tools developed for 

large-scale WGS data set112–114. In the future it will be possible to conduct meta-analyses 

when more WGS datasets will be created. A new tool that can achieve variant specific 

resolution for rare variants meta-anlysis was recently published115. Until such power can be 

obtained, single cohort studies of larger size will have to use genetic burden across shifting 

windows to associate loci to the disease, as it has been historically done for the study of rare 

variants113,116–123. Although the cost of WGS is still considerably greater than genotyping, the 

continuously decreasing price of WGS combined with the development of new technologies, 

might spark an increase in the utilization of WGS124–128. With methods that keep getting more 

cost-efficient and faster WGS becomes a real possibility when creating a cohort129–131. In the 

end, with the growing accessibility of WGS and the biological insight it can provide to better 

understand the genetic risk of complex diseases, it is of the uttermost importance that other 

research groups consider creating WGS cohorts of epileptic patients. 

From a clinical standpoint, WGS are rarely used, and non-coding variants are often 

ignored. However, annotation of non-coding variants has improved enough to give valuable 

insight on the role of those variants132. Indeed, the functional role of many non-coding 
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regions have been put into light in recent years133–135. With this, new guidelines are being 

established to identify non-coding pathogenic variants which can help with fine diagnosis of 

diseases136. Additionally long non-coding RNAs have been recognized as drug targets in 

certain diseases137. Those applications further emphasize the importance of studying non-

coding regions in epilepsy. 

Exportability of the method 

The method used in this project can easily be applied to other cohorts, of epilepsy 

patients or of people afflicted with another disease. Indeed, the only required data to conduct 

those analyses are WGS data of the patients. Study on other diseases could benefit from using 

this method as it would allow them to investigate the effect of rare non-coding variants. 

Examples of diseases for which the method would yield useful information are 

schizophrenia138, Alzheimer139 and diabetes140 to name a few. In those diseases for which 

WGS studies are scarce, a large proportion of the heritability is missing141–143, and past 

studies used WGS mainly to study de novo mutations144–149, copy number variants150–157 and 

non-coding RNA158–163. Similarly, to epilepsy a part of the missing heritability of those 

diseases probably resides in rare non-coding variants. The method proposed in this project 

allows for efficient prioritization of non-coding variants with functional effect, thus 

simplifying the study of non-coding regions. Furthermore, it opens the possibility of having 

tissue specific expression data without having to take tissue sample from patients. This is 

especially beneficial when the organ of interest is hard to access like the brain. Therefore, 

this method is of great interest for neurological disorders as they are complex traits, they 

often have high heritability and a high proportion of it is missing164,165. 
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Limitations 

Artificial Intelligence 

Even though artificial intelligence is a method with revolutionary potential it also has 

limitations166,167. Indeed, an AI model’s performances are limited by the amount and quality 

of available data. If there is a bias in the data, the model will be biased as well. Additionally, 

if the model encounters a situation that is not covered by the training data it will perform 

poorly. However, due to validations made by comparing predicted data to experimental data, 

both in this study and in the original ExPecto paper82, predictions made in this study seem to 

be robust. It is certain that future algorithms will have increased performance as computing 

power continues to grow and more data is available to train models. For this reason, research 

group interested in applying this method to their dataset should probably use the state-of-the-

art algorithm at the time of their study instead of ExPecto, which might be deemed too old at 

some point in the future. 

Sample Size 

The most limiting factor of this study is its small sample size. The cohort used in this 

project is only a fraction of the size of those used in other epilepsy studies3,11,31–34,43. The 

sample size is certainly limiting when it comes to power. It is hard to make new discoveries 

in epilepsy, mainly because of the small effect size of individual variants and the genetic 

heterogeneity between patients168. Therefore, with the sample size of this study it was not 

possible to look at the genome with a variant or locus specific resolution. This is why only 

genome-wide enrichment results were presented. Moreover, it was not possible to further 

stratify epilepsy patients in more subphenotypes than GGE and NAFE. This would have been 

especially beneficial for NAFE because of the greater heterogeneity between patients. It is 
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also hard to estimate the required sample size to overcome those limitations since there is no 

precedent for it in the disease. Therefore, any power analyses would be based on mostly 

arbitrary assumptions. 

Low mappability regions 

A limitation of WGS is that some regions have a low mappability. Mappability is the 

process of assembling sequencing reads by ‘mapping’ them to a reference genome169. When 

regions are unique it is easy to correctly assemble the reads. However, some genomic regions 

are composed of repeats, which can be longer than the reads. These regions have a low 

mappability because if the read is shorter than the repeat it is impossible to map170. On the 

GRCh37 reference genome around 7.6% of the genome has a low mappability. This means 

that even though WGS was used, some regions were still out of reach of the analyses.    



 

 

Conclusion
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This work’s objective was to assess the role of rare non-coding variants in epilepsy. 

To do so, a deep learning algorithm named ExPecto was used. This algorithm can predict the 

tissue specific expression change effect of any variant in the genome. By using this 

information, it was determined that highly deleterious rare non-coding variants are enriched 

in epilepsy patients compared to controls, specifically in GGE. On the other hand, NAFE 

patients have no difference compared with controls, which indicates a rather different 

underlying genetic mechanism between those epilepsy subtypes. The results presented in this 

study showed, like previous studies, that GGE epilepsy has a stronger genetic burden than 

NAFE3,11,31–33. Even though the sample size limited power and resolution of discoveries, it is 

clear that rare non-coding variants play a role in the etiology of the disease. In the end, further 

studies involving WGS with larger sample sizes will be necessary to thoroughly explore the 

role of non-coding regions with increased statistical power and resolution. The findings of 

this research provide a basis for investigating these regions in epilepsy, as they could 

potentially account for a portion of the unexplained heritability. 
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