
A SOUND INSULATION PREDICTION MODEL FOR
WOODEN BUILDINGS USING ARTIFICIAL NEURAL

NETWORKS APPROACH

BY

MOHAMAD BADER EDDIN

Direction:
Sylvain Ménard, Ph.D., Eng. - Professor, Department of applied sciences, UQAC

Codirection:
Delphine Bard Hagberg, Ph.D. - Associated professor, KU Leuven, Belgium

Codirection:
Jean-Luc Kouyoumji, Ph.D., Eng - Doctor, FCBA, France

THESIS PRESENTED TO THE UNIVERSITY OF QUEBEC AT CHICOUTIMI
WITH A VIEW TO OBTAINING THE DEGREE OF PHILOSOPHIAE DOCTOR

(Ph.D.) IN ENGINEERING

26 June 2023

Jury members:
Jean Perron Professor University of Quebec at Chicoutimi Jury President
Catherine Guigou Carter Doctor CSTB, France External member
Jianhui Zhou Associate professor University of Northern British Columbia External member
Sylvain Ménard Professor University of Quebec at Chicoutimi Research director
Delphine Bard Hagberg Professor KU Leuven, Belgium Research co-director
Jean-Luc Kouyoumji Doctor FCBA, France Research co-director

Québec, Canada
© Mohamad Bader Eddin. 2023



RÉSUMÉ

Ce projet de recherche vise à développer des modèles de prédiction basés sur des
réseaux neuronaux artificiels (ANN) pour estimer les courbes d’isolation acoustique pour
différentes structures en bois léger dans des bandes d’un tiers d’octave (50 Hz − 5000
Hz). Deux modèles ont été conçus pour déterminer les performances d’isolation des
constructions légères en bois, telles que les planchers et les façades, sur la base de mesures
en laboratoire. Le troisième modèle a été développé pour simuler les performances
acoustiques des planchers à base de bois lamellé-croisé (CLT) dans des bâtiments réels.
Ces modèles intègrent les caractéristiques physiques et géométriques de chaque structure
en tant que paramètres d’entrée et utilisent une analyse d’attribution pour déterminer les
paramètres les plus importants pour la prédiction de l’isolation acoustique.

Le premier modèle ANN a été créé pour calculer les performances acoustiques
des planchers légers en bois pour l’isolation des bruits aériens et des bruits d’impact.
Il est basé sur 252 courbes de mesure en laboratoire, qui prennent en compte les
caractéristiques physiques et géométriques de chaque plancher. Le modèle le plus précis
est celui pour prédire l’indice de réduction des bruits aériens Rw, avec une erreur de 2
dB au maximum, tandis que l’erreur atteignait 5 dB dans le pire des cas pour le niveau
de pression acoustique d’impact normalisé pondéré Ln,w. La précision du modèle a été
affectée par les variations à proximité des zones de fréquences fondamentales et critiques.
Pour déterminer les facteurs les plus influents dans la prévision de l’isolation acoustique,
une analyse d’attribution des caractéristiques a été menée. L’épaisseur des matériaux
d’isolation, la densité des dalles en bois lamellé-croisé et des chapes flottants en béton,
ainsi que la densité totale des structures de plancher se sont révélées être les paramètres
les plus importants.

Le deuxième modèle basé sur un réseau neuronal artificiel a été développé pour
évaluer les performances acoustiques des murs de façade en bois en ce qui concerne
l’isolation contre les bruits aériens. Il est basé sur 100 mesures de courbes d’isolation de
laboratoire comme paramètres d’entrée. Le modèle s’est avéré précis dans la prévision
de la réduction des bruits aériens, avec une différence maximale de 3 dB dans l’indice
pondéré de réduction des bruits aériens (Rw). Une analyse de sensibilité a été menée, qui
a révélé que l’épaisseur des façades et la densité totale des couches extérieures étaient
des facteurs clés pour la précision du modèle.

Le troisième modèle de réseau de neurones a été développé pour prédire les différences
de niveau normalisées et les niveaux de pression acoustique d’impact normalisés des
systèmes de planchers multicouches en CLT, à l’aide de données provenant de 104
mesures acoustiques effectuées dans 15 bâtiments différents en Europe. Ce modèle
tient compte de divers paramètres structurels tels que les composants du plancher,
les types de murs environnants, les types de jonctions et leurs couches intermédiaires
viscoélastiques, ainsi que le volume de la pièce réceptrice et la surface de séparation. Le
modèle a démontré une précision satisfaisante dans la prévision des courbes normalisées



d’isolation aux bruits aériens et aux bruits d’impact pour toutes les fréquences, avec une
variation maximale de 1 dB pour les différences de niveau normalisées pondérées DnTw

et jusqu’à 2 dB pour le niveau de pression acoustique d’impact normalisé pondéré L
′

nTw.
Une étude de sensibilité a révélé que le trajet direct du son à travers le sol était le facteur
le plus influent, suivi par les trajets latéraux, le volume de la pièce réceptrice s’avérant
être un facteur critique pour les estimations.
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ABSTRACT

This research project aims to develop prediction models based on artificial neural
networks (ANN) to estimate the sound insulation curves for different wood assemblies
in one-third octave bands (50 Hz − 5000 Hz). Based on laboratory measurements,
two models have been designed to determine the insulation performance of lightweight
wooden constructions, such as floors and façades. The third model was developed
to simulate the acoustic performance of CLT-based floors in field conditions in
real buildings. These models incorporate each structure’s physical and geometric
characteristics as input parameters and use feature attribution analysis to ascertain the
most important parameters for sound insulation prediction.

The first ANN model was created to calculate the acoustic performance of lightweight
wooden floors for airborne and impact sound insulation. It is based on 252 laboratory
measurement curves considering each floor’s physical and geometric characteristics. The
model is more precise in predicting the airborne sound reduction index Rw, with an error
of 2 dB at maximum, while the error was up to 5 dB in the worst case for the weighted
normalized impact sound pressure level Ln,w. The variations near fundamental and critical
frequency areas affect the model’s accuracy. A feature attribution analysis is conducted
to determine the factors most influential in predicting sound insulation. The thickness
of insulation materials, the density of cross-laminated timber slabs and concrete floating
floors, and the total density of floor structures are the most notable parameters that follow
the mass law.

The second artificial neural network-based model is developed to evaluate the acoustic
performance of lightweight wooden façade walls for airborne sound insulation. It is based
on 100 insulation curve measurements and uses laboratory data from the façade walls as
input parameters. The model proves to be accurate in predicting airborne sound reduction,
with a maximum difference of 3 dB in the weighted airborne sound reduction index (Rw).
Then a sensitivity analysis is conducted, revealing that the thickness of the façades and
the total density of the exterior layers are critical factors for the model’s accuracy.

The third neural network model was developed to predict the standardized level
differences and standardized impact sound pressure levels of multi-layered, cross-
laminated timber (CLT)-based floor systems, with data taken from 104 acoustic
measurements from 15 different buildings in Europe. The network model accounted
for various structural parameters such as floor components, surrounding wall types,
junction types, visco-elastic interlayers, the volume of the receiving room, and the
surface separating area. The model demonstrated satisfactory accuracy in predicting the
standardized airborne and impact sound insulation curves across all frequencies, with a
maximum variation of 1 dB for the weighted standardized level differences DnTw and up
to 2 dB for the weighted standardized impact sound pressure level L

′

nTw. The sensitivity
study revealed that the direct sound path through the floor is the most influential factor,
followed by flanking paths, with the volume of the receiving room being found to be a



critical factor for estimations.
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Chapter 1

INTRODUCTION

1.1 Overview

Sound is the omnipresent companion during our entire life. It is everywhere, from

the beginning of our day with the alarm clock to the end of it. Even in the quietest

place, it is not free of sound. Complete silence is rare, instead gives unpleasant feelings

and even could be unbearable. However, noise can be annoying and harm our health and

hearing, especially when exposed to high sound pressure levels. Even sound of medium or

low density could damage our nerve system caused by sleep irregularity, elevated blood

pressure, etc. [1]. A noisy environment has been publicized as one of the most critical

risks to health [2]. Although there is no bright-line distinction between noise and another

sound, the undesired sound can be defined as noise.

Sound environment plays an essential part in human daily life where people practice

their daily routine in their working place or home. In recent years there has been a

significant increase in the number of office buildings, factory spaces, and dwellings

where acoustics are often concerned. It is acknowledged that reducing noise levels in

people’s living environment improves life quality. Hence building acoustics science

appeared. It refers to the propagation of sounds in buildings and ways to obstruct their

transmissions between adjacent rooms or to prevent external noise from penetrating [1].

Legal requirements are defined to cover a wide range of characteristics such as noise

levels, airborne, impact sound insulation, and reverberation time. In order to enforce

such requirements, relevant measuring procedures must be provided and formulated in



national or international standards. The international standards provided by International

Organization for Standardization (ISO) are increasing both in number and covering

broader aspects. In Europe, the European Committee for Standardization (CEN) has

been very active in developing standards [3]. The cooperation between ISO and CEN

under the Vienna Agreement has contributed substantially to the creation of standards of

general acceptance.

Controlling the acoustical conditions, including sound insulation, reverberation time,

or noise levels in the building, may be a complicated task even for qualified experts.

Another challenging task is to have an accurate prediction tool for building acoustics

especially in the design stage. Nowadays, several computer-based tools are at the disposal

of the building acoustics expert. Those tools are based on standards and experimental tests

to estimate the acoustical performance of different assemblies. However, some of these

tools have demonstrated non-negligible deviations in the results, each with limitations.

Since an appropriate estimation tool is vital, especially in the design stage, the demand

for developing a reliable prediction model becomes crucial.

Machine learning and neural network approaches are being acclaimed as the future

wave in predictions. They are applied in various fields and sought after in different

industries. Their strength lies in being a self-learning mechanism without exclusively

being modeled, and the need for human operators is avoidable [5–7].

1.2 Statement of the problematic

Since Canada is primarily forested, wood construction has been one of the most

significant interests of the industrial sector. Recently, higher multi-story wooden

buildings were allowed by the Canadian building code. Although wooden constructions

have many advantages, they are still under development, especially in the noise control

aspects when they are compared to heavy structures.

To maintain sufficient indoor acoustic quality, it is essential to use appropriate

prediction tools to estimate structural elements’ acoustic behavior to improve the indoor

climate’s quality. Some estimation approaches have been developed to forecast the
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sound transmission through multiple structures using different approaches: theoretical

ones [8–11], numerical tools [12–16], or artificial intelligent applications [17, 18].

However, significant gaps in results exist in some of those tools [13, 19–22], that need to

be considered to improve their reliability.

Developing a reliable prediction tool is a laborious task due to many factors.

Uncertainties and variations in sound insulation measurements are usually related to the

construction system, workmanship, and measurement implementations. This could be a

potential problem for building contractors that require a high safety margin during project

decision-making to meet the sound insulation requirements. Qian has investigated the

uncertainties in the constructional material properties, such as Young’s modulus and shear

modulus, and how they could affect the Finite Element Method (FEM) modeling [15].

Zimmermann [23] employed the transfer matrix method to construct a model to calculate

airborne sound insulation of single and double walls with interrupted cavities. The

results of this model were compared to the most widely used analytical models [23]. The

outcomes of the comparison showed agreement in results; however, the developed model

only applies to certain types of walls with limited components and, therefore, cannot be

generalized to various assemblies.

Moreover, the acoustic performance of tested structures is sometimes varied

between laboratory to on-site measurements [26]. Direct sound transmission paths

generally control sound insulation measurements in laboratories. However, there will be

energy transmitted by walls, ceilings, through cracks, or by common junctions in real

buildings [27]. The latter is called sound flanking transmission paths, which could mainly

contribute to decreasing the acoustic performance in constructions [3]. Such challenges

could limit the potential of developing a reliable prediction model. Nilsson [24, 25] has

addressed the flanking airborne transmission by developing models that deal with certain

cases of sound reduction for ventilation ducts through walls. Therefore, developing a

general and reliable tool capable of overcoming these difficulties is vital.

A direct prediction tool is based on theory-based analytical expressions, including

stiffness, mass, and damping [3]. This is reasonable for a single-leaf element but
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more complicated for lightweight multi-layered structures. Accurate forecasting of

sound isolation performance of multi-layered elements is still a challenging task [3].

Specific details, i.e., structural connections between elements, can scarcely be involved

in prediction tools, particularly in analytical approaches [28]. In addition, the diversity

of construction materials makes predictions even more complicated since each new

assembly must be tested to quantify its acoustic performance. Moreover, the standardized

method, which is indicated in ISO 12354 Part 1 [29], is extracted using insulation data

of heavy monolithic elements [30]. This is currently not appropriate for lightweight and

multi-layered structures [30].

1.3 Aims and objectives

The scope of the research project is to develop Artificial Neural Networks (ANN)

models to forecast the sound insulation performance of floor and façade structures. This

thesis aims to develop prediction tools to estimate the acoustic performance of floors

and façades (based on laboratory measurements) and to predict the insulation curves

of different floor structures considering field conditions. The isolation data comprises

laboratory and on-site measurements on various lightweight wooden elements.

The first model (Model-I) is developed to forecast the insulation performance of

lightweight floor structures using 252 lab-based acoustic curves. Moreover, the second

model (Model-II) is utilized to predict the acoustic spectra of façades based on 100

measurements that were implemented in the laboratory. In addition, Model-III is

utilized to simulate the field sound insulation of multi-layered CLT-based floor systems.

The insulation data comprises 104 on-site measurements (airborne and impact sound

insulation) implemented in different real buildings in Europe. Finally, a sensitivity

analysis is conducted to explore the relationships between the simulated parameters in

the models and how they can contribute to sound insulation estimations.
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1.4 The originality of the research

Sound insulation in building acoustics has been considered a matter of public interest.

However, many prediction tools have been developed in order to estimate the accurate

acoustics performance of wooden structures, but notable gaps in the results are evident.

Developing an appropriate prediction tool in building acoustics has always been a crucial

issue. Since the estimation of the acoustic performance in building acoustics has gained

the attraction of both industrial and research sectors. The literature review at the time of

this study did not find any research that attempted to develop an ANN-based model to

simulate the field or laboratory sound insulation for wooden structures in the frequency

range from 50 Hz to 5000 Hz.

This study will focus on developing a new alternative method for calculating airborne

and impact sound insulation based on the artificial neural network approach. The first

part of the study focuses on developing a model to simulate the lab-based measurements

for floor and façade structures. Then, another network model is developed to model field

sound insulation measurements considering different structural parameters.

1.5 Thesis outline and chapters organization

This thesis includes eight chapters; the majority centered around three peer-reviewed

articles produced during the research project to attain a Doctorate of Philosophy in

Engineering. It commences with an abstract in both English and French (résumé) which

outlines the essential findings and is followed by scientific publications (peer-reviewed,

conference, and scientific vulgarization articles).

Chapter 1 discusses the thesis overview and the statement of the research project’s

problematic. The purpose and goals of the project, which are to create a dependable

forecasting tool using an artificial neural networks approach, are also established.

Additionally, the project’s originality, the chapters’ arrangement, and the research

funding are discussed.

Chapter 2 provides an overview of building acoustics, explaining the principles and
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concepts of sound insulation in buildings. It tackles the physics beyond sound propagation

and airborne and impact sound insulation measurements. In addition, it reviews the

different acoustic prediction tools that were found in the literature, such as theory-based

analytical expressions, FEM tools, artificial intelligence models, etc. Since two primary

standards are used worldwide: the American Society for Testing and Materials (ASTM)

and the International Organization for Standardization (ISO), Chapter 1 briefly reviews

both and sheds light on their main differences.

Chapter 3 discusses the concept of artificial intelligence and its branches, along with

the supervised and unsupervised learning techniques. Additionally, the fundamentals

of artificial neural networks, the process of developing an ANN model, and the

overfitting/underfitting issues will be addressed. Furthermore, the sensitivity analysis

approach used to evaluate the parameters of ANN models is detailed.

Chapter 4 covers the experimental sound insulation measurements conducted during

the research project. Part of the measurements was conducted in the laboratory of

Lund University in Sweden and FCBA in France. In addition, the tests consist of field

measurements conducted in the research center of FPInnovations in Quebec, Canada,

and the north of Sweden. Furthermore, Chapter 4 details the database organization,

the sources of the measurements used to develop ANN models, and the standards they

followed.

Chapter 5 deals with developing an artificial neural network model to predict the

sound insulation performance of different lightweight wooden floors. It starts with a

general introduction followed by a detailed explanation of how the database is organized,

insulation measurement types, and the standards used to implement those tests. Chapter

5 depicts the prediction results for airborne and impact insulation curves. It demonstrates

the relationship between the structural parameters used to develop the model and the

estimated results using the feature attribution technique (sensitivity analysis).

Chapter 6 focuses on a neural network model for predicting sound insulation in

lightweight wooden façades. It provides information on the sound insulation curves

used to create the network model and the database structure for the wall parameters.
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Additionally, it displays the sensitivity analysis results and identifies which variables the

model depends on for accurate predictions.

In Chapter 7, a field sound insulation prediction tool for CLT-based floors is developed

through an artificial neural network approach. The Chapter provides an in-depth look into

the field of sound insulation modeling. It shows how laboratory and on-site measurements

differ, which had an apparent effect on the outcomes of the sensitivity analysis.

Chapter 8 brings the thesis to a close with a summary of the main findings and the

scientific contributions that have been achieved. It also outlines the possible steps to be

taken to enhance the network models’ accuracy.

1.6 Research funding

This research Is funded by the Natural Sciences and Engineering Research Council

(NSERC) of Canada through its IRC and CRD programs (IRCPJ 461745-18 and

RDCPJ 524504-18), the Region Nouvelle-Aquitaine (ref. 2017-1R10223) and the

industrial partners of the NSERC industrial chair on eco-responsible wood construction

(CIRCERB).
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Chapter 2

LITERATURE REVIEW

2.1 Building acoustics

Building acoustics is the science of controlling noise inside buildings. It includes

minimizing noise transmission from one space to another and controlling sound

characteristics within spaces. Sound transmission is a critical nonstructural design

consideration for designing walls and floors in multistory buildings, whether designed

for residential or commercial purposes. This topic has significant practical importance,

which concerns noise control. Noise can penetrate a room from the exterior could have

two possible reasons:

1. The airborne sound in a room, such as a speech or operating machine, with

respect to the surrounding walls and ceiling, also represents an exciting spatially

distributed force. The vibration is also generated in the structures, which eventually

radiate sound. That can be summarized by airborne sound - structure-borne sound

- airborne sound, which is defined as airborne sound (Figure 2.1 (a)).

2. Direct external forces affect walls and ceilings, such as a neighbor walking on a

floor in the apartment above or operating a machine in a building. Such forces

induce vibrations, and structure-borne sound develops, which is transported to other

floors. These vibrating structures excite the surrounding air and radiate sound. This

sound development can be summarized by the term "force - structure-borne sound

- airborne sound", which is defined by impact sound (Figure 2.1 (a)).
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The afore-mentioned forms of excitation in the rooms of buildings that radiate sound are

not necessarily transmitted via the direct path (which leads from the partition wall or

ceiling to the adjacent room), see Figure 2.1 (b). The propagation of vibrations can take

multiple paths because adjacent ceilings can exchange vibration energy. In addition to

the direct transfer path, there are many other transfer paths, called flanking paths (Figure

2.1 (b)). It should be mentioned that it is only possible to determine the dominant path

by carrying out measurements first. For example, in a partition wall with high sound

insulation, the dominant transmission path is flanking. Therefore, an additional acoustic

improvement on the partition wall will not necessarily achieve better results in the total

sound insulation.

(a)

(b)

Figure 2.1: The propagation of a sound flux through partitions. (a) Sound generation
and its paths inside the building. (b) Sound transfer paths: Ff: flanking–flanking, Fd:
flanking–direct, Dd: direct–direct, Df: direct–flanking.

2.2 Measurements of airborne sound insulation

In measuring airborne sound insulation, the measured element is constituted by a

partition between two rooms. Airborne sound insulation can be measured directly in a
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laboratory or the field. Laboratory measurements follow the procedures that are indicated

in ISO 10140-2 (2010) [89] and American Society for Testing and Materials (ASTM)

E90-09 (2016) [32], while field ones are implemented according to ISO 16283 (Part 1 &

2) [33, 34] and to ASTM E336 and ASTM E1007 [35, 36]. For laboratory measurement,

the lab consists of two adjacent rooms that are separated by a common surface or partition.

In airborne measurements, a sound source (speaker) is used in the source room as a source

for emitting the noise. White or pink steady noise is usually used for such measurements.

The sound pressure levels are measured in several microphone positions with at least four

positions, which is implied in two rooms; see Figure 2.2.

Figure 2.2: Experimental setup for measuring the transmission loss of a partition wall
between two rooms.

The sound level pressure in a specific room depends on the sound power incidence and

the room’s acoustic design. Supposing that only the level differences between the source

and receiving room were used as an indicator for sound insulation of a wall (in airborne

case), the resulting value would characterize not only the wall attributes but also the room

properties. For this reason, the sound power transmission coefficient τ is principally used

to describe the wall properties.

τ = PE/PS . (2.1)

The transmission coefficient represents the power PE ratio, passing through the

receiving side, and the power incidence PS on the source side. When a diffuse sound field
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is assumed on both sides of the partition element, the incident sound power is given by:

Ps =
P̃2

S S
4ρc

, (2.2)

where P̃S represents the rms-value (root mean square) of the sound pressure in the source

room, S, the surface area of the partition, ρ air density and c is sound speed. Under steady-

state conditions, the power inflow in the receiving room is equal to the absorbed sound

power:

PE =
P̃2

EAE

4ρc
, (2.3)

where AE represents the equivalent absorption area of the receiving room. So the sound

power transmission coefficient:

τ =
P̃2

EAE

P̃2
S S

. (2.4)

τ is a component of the transmission loss R (also known as the sound reduction index)

R = 10log1/τ = LS − LE + 10 log
S
AE

(2.5)

By definition, a large value of R represents good sound insulation. LS and LE are the sound

pressure levels in the source and receiving room, respectively. The equivalent absorption

area AE can be derived from Sanbine’s fundamental equation as:

AE =
0.161V

T60
. (2.6)

According to Sabine’s principle, for an empty room of volume V, the reverberation

time (T60) in the receiving room is given by (in SI units). AE id given by:

AE =
∑

i

αiAi. (2.7)

The summation expresses the total surface area of the room, each element of area Ai

characterized by an absorption coefficient αi. The absorption coefficient is determined
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with various components of wall coverings and from the requirement that αi = 1 for an

open window.

The reverberation time (T60) is one the most important quantities in building acoustics.

If the sound energy in a random room is switched off, the room is gradually emptied.

The duration of this process depends on the outlet surface area. Large outlet surface

areas result in a quick empty of sound energy, whereas small areas result in a slow empty

with a long duration. Reverberation time is defined by the time elapsed for the sound

pressure level to decrease by 60 dB or equivalent. In field measurements, and due to high

background noise, T30, T20 (decay time for 30 and 20 dB respectively) are used [1, 3].

2.2.1 Apparent sound reduction index

As different from the measuring situation in the laboratory and imitating the actual

phenomena, the actual situation in a building is the existence of many flanking paths for

the sound energy. The sound could be transmitted via flanking constructions, cable ducts,

cracks, etc. Certain limiting values of the sound reduction index give the requirements for

airborne sound insulation in building acoustics in most countries. The same laboratory

procedures are applied for on-site measurements. Instead of equation 2.5, we write:

R
′

= D + 10log
AE

S
, (2.8)

where D = LS - LE is the difference in the sound pressure level between rooms. In this

case, R
′

is called the apparent sound reduction index. However, the measurement of sound

insulation for on-site measurement is described in ISO 16283-1 (2014) [116] depending

on a given standardization reverberation time for dwellings T0 = 0.5 sec. In addition,

DnT is donated standardized level deference. The R
′

and DnT are measured in 1/3 octave

bands. After measuring the sound reduction index as curves, those curves are converted

to a single number value instead of a sound reduction curve, and the word weighted is

added to their definition, whether for laboratory or on-site measurements.

DnT = D + 10log
T60

T0
. (2.9)
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2.2.2 Weighted sound reduction index:

Usually, in building codes, when indicating the sound insulation capability for a

specific construction, it is reasonable to specify a single number instead of the whole

frequency curve. In addition, the last number is usually composed of data in one-third-

frequency bands from 100 Hz to 3150 Hz and could be extended down from 50 Hz to

5000 Hz. The idea of indicating a single number to refer to the acoustic performance of a

specific assembly is based on the use of what is called a reference curve [3]. That means

there is unanimous consent on a specific sound reduction curve to be compared with

measurement data. There are reference curves for airborne and impact sound insulation,

which is internationally accepted in ISO 717 Part 1 [37] and Part 2 [38]. The single

numbers or weighted indices are acquired by calculations as follows. The reference

curve is shifted in 1 dB steps towards the measured curves unite the sum of unfavorable

deviation is as large as possible but not exceeding 32 dB, regarding all frequency bands

available between 100 Hz to 3150 Hz. Finally, the weighted value is the value of the

shifted reference curve at 500 Hz; see Figure 2.3. In ASTM E413-16 [39], the same

procedures are carried out to calculate the rating number value, called sound transmission

class STC, with some differences that will be discussed in Section 2.5.
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Figure 2.3: Calculating the weighted sound reduction index Rw for an insulation curve
according to ISO standards.

Acoustic descriptors:

Acoustic descriptors are called for indices that describe the acoustic properties of the

tested structures, such as weighted airborne and impact sound insulation or reverberation

time. In addition, spectrum adaption terms C and Ctr are defined in ISO 717 Part 1

[37]. Those terms are given to consider the influence of spectrum characteristics on

the final weighted value for the cases of airborne sound insulation [40]. C terms are

calculated according to the frequency range, and Ctr is the A-weighted urban traffic noise

spectrum. Then the single rating number can be written Rw(C; Ctr; C50−3150; Ctr,50−5000)

if two frequency bands (100-3150 Hz and 50-3150 Hz) are used, see Annex B of ISO

717 part 1 [37]. The latter is called the weighted standardized sound reduction index

with correction spectra in the frequency range of 50 to 3150 Hz. The calculation of the
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spectrum adaption terms is given in ISO 717 part 1 [37]:

C50,3150 = −10log(
19∑
i

10(Li−Ri)/10) − Rw, (2.10)

Ctr = 10log(
∑

i

10(Li−Ri)/10) − Rw. (2.11)

2.2.3 Sound transmission loss of single-leaf partitions

The sound transmits through a wall through successive events. The incident sound

wave elasticity bends the wall. The latter vibrates and then acts as a sound source that

emits sound to the adjacent room. Figure 2.4 illustrates a simple description of the

airborne sound transmission through a single leaf partition.

Figure 2.4: The sketch is used to calculate the transmission loss of a single-leaf partition.
Pa : incident sound field, Pr : reflected sound field, P1 = Pa + Pr: total sound field in front
of the wall, P2 : transmitted sound field.

Some elements can be identified in Figure 2.4:

The source room. A half space that is filled with air is assumed for this case. The
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sound field is donated by a wave incident from the angle ϑ:

Pa = P0e− jkxcosϑe jkzsinϑ, (2.12)

while the reflected sound field is expressed by:

Pr = rP0e jkxcosϑe jkzsinϑ. (2.13)

The sound field in the source room consists of two waves:

P1 = Pa + Pr = P0e jkzsinϑ(e− jkxcosϑ + re jkxcosϑ). (2.14)

Therefore, the sound field in the source room consists of two elements:

P1 = Pa + Pr = P0e jkzsinϑ(e− jkxcosϑ + re jkxcosϑ). (2.15)

Both room spaces are assumed to be a half-space filled with air. Therefore, the sound

power is described as:

P2 = τP0e− jkxcosϑe jkzsinϑ, (2.16)

where τ is the sound power transmission coefficient.

The applied pressure difference P1(0,z) - P2(0,z) excite the wall to vibrates. However,

the solutions of the bending wave equation by:

1
k4

B

d4υW

dz4 − υW =
j

m1ω
(P1(x = 0, z) − P2(x = 0, z)), (2.17)

where υW is wall velocity, KB is bending wavenumber, m1 represents the mass per unit

area of the partition, and ω is the angular frequency. A detailed description of the bending

wave solution can be found in [41].

Then the incident sound wave reaches the wall, and the latter vibrates in the same
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direction of sound incidence (with respect to the z-axis by assumption):

υW = υ0e jkzsinϑ. (2.18)

Utilizing (2.15) and (2.16),

υ0 =
1 + r − t

k4

k4
B
sin4ϑ − 1

jP0

m1ω
, (2.19)

where υ0 is the wave amplitude of υW . t represents the sound pressure transmission

coefficient. The reflection coefficient r is a value to be known. Assuming that velocities

on both sides of the partition are equal to its velocity υW :

υ1(x = 0) =
j
ωρ

∂P1

∂x
|x=0 = υW , (2.20)

υ2(x = 0) =
j
ωρ

∂P2

∂x
|x=0 = υW . (2.21)

Both equations 2.21, and 2.22 can be expressed by:

P0

ρc
cosϑ(1 − r) = υ0. (2.22)

Since

t = 1 − r or r = 1 − t, (2.23)

Equation 2.22 can be written as:

t
P0

ρc
cosϑ = υ0. (2.24)

By utilizing Equations 2.19 and 2.24:

tcosϑ =
jρc

m1ω

1 + r − t
k4

k4
B
sin4ϑ − 1

. (2.25)

Replacing the reflection coefficient r with the sound pressure transmission coefficient t.
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The latter is given by:

t =

2 jρc
m1ω

( k4

k4
B
sin4ϑ − 1)cosϑ +

2 jρc
m1ω

. (2.26)

The sound pressure transmission coefficient is used to determine the sound power

transmission coefficient as follows:

τ = |t|2 . (2.27)

Therefore, airborne transmission loss is given by:

R = 10log1/τ (2.28)

The interpretation of equation 2.26 highlights a significant relationship between the

bending wavelength λB and the air wavelength λ. Equation 2.26 can also be written:

(
k4

k4
B

sin4ϑ − 1) = (
λ4

B

λ4 sin4ϑ − 1) = (
f 2

f 4
cr

sin4ϑ − 1). (2.29)

At frequencies below the coincidence frequency λB << λ (comparable to f << fcr),

terms in brackets in Equation 2.29 are almost independent of the incidence angel ϑ.

However, within the frequency ranges f > fcr (λB > λ), the sound transmission is strongly

linked to ϑ. Therefore, the two cases ( f << fcr and f > fcr) can be identified in the sound

insulation.

Frequency range below the critical frequency f << fcr

The sound pressure transmission coefficient t is given by:

t ≈
2 jρc
m1ω

2 jρc
m1ω
− cosϑ

. (2.30)
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The ratio c/m1 has a small number in all cases [41]. Therefore, the sound power

transmission coefficient can be donated by:

τ = |t|2 ≈ (
2ρc
m1ω

)2 1
cos2ϑ

, (2.31)

and the transmission loss by:

R = 10log(
m2

1ω

2ρc
)2 + 10logcos2ϑ. (2.32)

Assuming diffuse sound incidence and an average incidence angle of ϑ = 450. Then

the transmission loss can be expressed using Equation 2.32 as:

R = 10log(
m2

1ω

2ρc
)2 − 3dB. (2.33)

The latter equation is known as the mass law or Berger’s law. This mass law states

that the transmission loss increases by 6 dB per octave and by 6 dB per doubling the

mass [41]. Equation 2.33 shows the inefficiency of the bending stiffness of the partition

at frequencies f << fcr. Therefore walls are called flexible when the critical frequency is

above the range of interest.

Frequency range above the critical frequency f > fcr

In this case, the incidence angle is called critical incidence angle ϑcr, resulting in a

total sound power transmission t roughly equal to 1. When ϑ = ϑcr, it is true that:

sinϑcr =
kB

k
=

λ

λB
=

√
fcr

f
. (2.34)

Therefore, the wall is referred to as acoustically transparent due to the match between

the incidence sound wave and the partition vibration (ϑ = ϑcr). The wavelength of the

incident sound wave is given by:

λb = λ/sincϑ. (2.35)
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At the matching (where ϑ = ϑcr), the coincidence effect is obvious when:

λs = λ/sincϑcr. (2.36)

The simplified sound transmission loss model indicates a transmission coefficient t

equals 1 when ϑ = ϑcr, which is not satisfying in practice [41]. This is because of the

presence of inner partition damping. However, the losses of the partition can be described

by a complex bending stiffness:

B
′

→ B
′

(1 + jη), (2.37)

where η is the loss factor of the partition (which is material dependent, see table 2.1).

Therefore, the wavelength becomes:

K4
B =

m1

B′
ω2 →

m1

B′(1 + jη)
ω2 =

k4
B

1 + jη
. (2.38)

Then, the sound pressure transmission becomes:

t =

2 jρc
m1ω

(λ
4
B
λ4 sin4ϑ(1 + jη) − 1)cosϑ +

2 jρc
m1ω

. (2.39)

At coincidence angle, where ϑ = ϑcr. Equation 2.39 is transferred to:

t(ϑ = ϑcr) =

2 jρc
m1ω

2 jρc
m1ω

+ ηcosϑcr

. (2.40)

Equation 2.40 states that the sound transmission depends on the loss factor of the

partition at high frequencies. When a diffuse sound field is considered, the average sound

power transmission coefficient τ is given by:

τ =
1
π/2

∫ π/2

0
τ(ϑ)∂ϑ =

1
π/2

∫ π/2

0
|t(ϑ)|2 ∂ϑ. (2.41)
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Then,

R = −10logτ̄ (2.42)

The integration in Equation 2.41 can only be integrated analytically using an

approximation, which is a lengthy procedure. The average sound power transmission

coefficient becomes (using an approximation in the calculation):

τ = (
2ρc
m1ω

)2

√
fcr

f
1
2η
, (2.43)

and the transmission loss R above the critical frequency f > fcr is donated by:

R = 10log(
m1ω

2ρc
)2 + 5log

f
fcr

+ 10log2η. (2.44)

The transmission is influenced by the loss factor η of the wall, which could be due to the

material damping of the wall or transmitted energy to the adjacent elements.

Figure 2.5: The effect of the loss factor on the characterization of the the transmission
loss curve of single-leaf partitions [41].

Figure 2.5 illustrates the transmission loss characteristics for single-leaf elements
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below and above the critical frequency. The transmission loss depends on the effect of

the loss factor [41]. The results in practice do not always meet the theories for different

reasons, such as the sound leakage (in windows and doors), the inhomogeneities in the

materials, and porous materials [41].

Table 2.1: Typical loss factors for various materials [42].

Material Loss factor η Material Loss factor η

Aluminum 10−4 Magnesium 10−4

Brass, bronze < 10−4 Masonry blocks 5 − 7 × 10−3

Brick < 1 − 2 × 10−2 Oak, fi 0.8 − 1 × 10−2

Concrete Plaster 5 × 10−3

Light < 1.5 × 10−2 Plexiglass, Lucite 2 − 4 × 10−2

Porous < 1.5 × 10−2 Plywood 1 − 1.3 × 10−2

Dense < 1.5 × 10−2 Sand, dry 0.6 − 0.12

Copper < 2 × 10−3 Steel, iron 1 − 6 × 10−4

Glass < 0.6 − 2 × 10−3 Wood fiberboard 1 − 3 × 10−2

Gypsum board < 0.6 − 3 × 10−2 Lead 0.5 − 2 × 10−3

2.2.4 Sound transmission loss of double-leaf partitions

Usually, to enhance the acoustic performance of a specific partition, an additional

lining is added. The supplemented layer could be fabricated of plasterboard or any other

material that is expected to fulfill the acoustic requirements. The additional layer is

mounted separately from the first partition by leaving a distance between the latter d.

The distance d should be small compared to the incident wavelength. An air gap acts as

a spring in the mass-spring wall system. The stiffness of the cavity per unit area is given

by:

s =
ρc2

d
. (2.45)

The pressure Pi in the cavity between the two partitions can be described by:

Pi =
s
jω

(υ1 − υ2), (2.46)

22



This states that the transverse coupling of the elements in the cavity parallel to the

partitions can be neglected. The cavity can also be damped with mineral wool or other

insulation material. In general, the lining is thin, so its critical frequency is higher than

the range of interest. The resulting pressure in the cavity can be donated by:

Pi = jωm2υ2, (2.47)

where m2 is the mass per unit area of the additional lining. Figure 2.6 illustrate the sound

incident on double-leaf partitions. The sound pressure in the receiving room P2 is smaller

by magnitude to the right of the lining than the pressure in cavity Pi.

|P2(x = 0))| << |Pi| . (2.48)

If the double-leaf system consists of a solid heaving wall, it can be assumed that the

additional lining would not influence the wall’s vibration. Therefore, the results for single-

leaf can be adopted in this case. From 2.24 and 2.18, it can be found:

υ1 =
P0

ρc
t1cosϑe jkzsinϑ. (2.49)

And according to Equation 2.26:

t1 =

2 jρc
m1ω

( k4

k4
B
sin4ϑ − 1)cosϑ +

2 jρc
m1ω

. (2.50)

The vibration of the additional lining υ2 can be calculated by inserting Equation 2.47

into Equation 2.48:

υ2 =
υ1

1 − ω2m2
s

=
υ1

1 − ω2

ω2
0

. (2.51)

The resonance frequency ω0 is given the cavity air spring s and the mass of the

additional lining m2 as:
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ω2
0 =

s
m2

.

Theoretically, the additional lining performs infinitely large vibrations when ω = ω0. The

latter is because of a lack of damping which can reduce its effect by adding a loss factor

η. Inserting 2.49 in (2.51) gives:

Figure 2.6: The sketch is used to calculate the transmission loss of a double-leaf partition.
Pa: incident sound field, Pr: reflected sound field, P1 = Pa + Pr: total sound field in the
front of the wall, P2: transmitted sound field, Pi: sound pressure in the filled cavity.

υ2 =
P0

ρc
t1

1 − ω2

ω2
0

cosϑe jkzsinϑ . (2.52)

The sound pressure that is radiated from the additional lining can be written as:

P2 = tP0e− jkxcosϑe jkzsinϑ, (2.53)

where t represents the sound pressure transmission coefficient of the double-leaf partition
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that is delivered from the condition:

j
ωρ

∂P2

∂x
|x=0 = υ2.

And then,

t =
t1

1 − ω2

ω2
0

. (2.54)

Therefore,

R = 10log
1
τ

= 10log
1
t2 = 10log(1 −

ω2

ω2
0

)2 + 10log
1
τ1
, (2.55)

or in another way:

R = R1 + 10log(1 −
ω2

ω2
0

)2, (2.56)

where R1 is the transmission loss of the single-leaf partition. The transmission loss of

double-leaf consists of the summation of the transmission loss of the heavier wall and the

improvement R2 that results from the additional lining:

R = R1 + R2, (2.57)

where R2 is given by:

R2 = 10log(1 −
ω2

ω2
0

)2 . (2.58)

Form Equations 2.57 and 2.58, the followings are true concerning the additional lining

[41]:

– the effectiveness of the additional lining below the resonance frequency ω << ω0

where R2 = 0,

– at the resonance ω = ω0, the transmission loss decreases, and it depends on the loss

factor,

– at resonances above ω >> ω0, the transmission loss R2 ≈ 40log(ω/ω0) rising at a
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gradient of 12 dB per octave.

Moreover, from the noise control perspective, the resonance frequency f0 should be as

low as possible,

f0 =
1

2π

√
ρc2

m2d
≈

60Hz
√

m2d
.

Therefore, it is recommended to utilize an additional heavy lining with a large gap

distance d to achieve better insulation. Figure 2.7 shows the measurement improvements

that are achieved by damping the cavity with mineral wool. Avoiding the physical

connections (known also sound bridges) between the two partitions could increase the

improvements. Sound bridges could create a way for sound to transfer through the two

linings, which can affect the sound insulation negatively [3].

Figure 2.7: The effects of damping the cavity with mineral wool. The critical frequency
fcr of the double-leaf plaster partition is ( fcr = 3000 Hz). Figure from [41].

However, to obtain a higher sound insulation performance of double-leaf partitions, it

is important to [41]:
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– use a non uniformly distributed overall mass of the two partitions,

– utilizing a large cavity width d between the partitions,

– utilizing absorbent materials to damp the cavity,

– avoids the leakage that can result due to window or door installations,

– avoid sound bridges or structure-borne sound in the design of the partitions.

2.3 Measurements of impact sound insulation

The impact noise can be described as the noise that is radiated by a ceiling or a wall

from another room floor that is excited by footsteps, moving chairs, or similar exciters.

When the floor is excited, it performs structure-borne vibrations (which is also called

impact sound) and emits airborne sound to the below or adjacent room. It is common to

have an impact sound annoying in a room above a noisy, non-acoustically treated space

function, such as a restaurant.

The measurements of impact sound in a laboratory are performed on a floor with 10

m2 opening in the middle by a certain source, and the impact sound pressure level is

measured below in a room below the floor see Figure 2.8. The radiated sound power

can only be measured in the receiving room using several microphone positions. The

measurement procedures are described in detail by ISO 10140-3 (2010) [43] and ASTM

E492-09 (2016) [44]. The latter standards considered a frequency range of 100 Hz − 3150

Hz (ISO) or 125 Hz − 4000 Hz (ASTM). Recently, ISO Standards attempted to enlarge

the evaluation low-frequency range down to the 50 Hz one-third octave band. For on-

site measurements, the impact noise depends on the directly transmitted noise from the

bottom surface of the floor/ceiling and on flanking transmitted sound paths by the linked

walls to the separating floor.
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Figure 2.8: Measure the impact sound pressure levels in the laboratory using the
standardized taping machine as an excitation source.

In laboratory, the normalized impact sound pressure level Ln is given by:

Ln = Li + 10 log (A/A0), (2.59)

where Li is the energy average sound pressure level in the one-third octave band in the

receiving room when the impact source excites the floor. A is the equivalent absorption

area, and A0 is the reference equivalent absorption area equal to 10 m2. It can be noticed

that the impact sound level is sensitive to the absorption in the receiving room. This means

that the room criteria will highly affect the measurements of impact sound. Therefore, it

is advisable to standardize the measurement by the reverberation time. The standardized

impact sound pressure level is given by:

LnT = Li + 10logT/T0, (2.60)
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where T is the reverberation time in the receiving room, and T0 is the reference

reverberation time equals 0.5 sec.

Theoretically, for massive floor, the impact sound level for 1/3 octave bands is given

by [114]:

Ln = 10log(
fc

ηM2
s
) + 10log(

4η f
π fc

+ σ) + 82.3, (2.61)

where Ln is the sound pressure level in the receiving room, and it is normalized to a 10

m2 absorption area, Ms is the surface density, and σ the radiation factor of the plate.

Equation 2.61 is valid for an isotropic and homogenous plate without topping. The last

term in Equation 2.61 considers partly the near-field contribution and partly the radiation

efficiency of the reverberant field in the plate. When the loss factor η is relatively small,

the near field contribution is often neglected, and Equation 2.61 can be written as:

Ln = 10log(
fc

ηM2
s
) + 10log(σ) + 82.3. (2.62)

Further simplification can be carried out in [114], and the normalized impact sound

pressure level becomes:

Ln ≈ 131 − 30logh − 15logρs − 5logE − 10logη + 10logσ, (2.63)

where h is thickness of the plate(m), ρs the density of the plate material (kg/m3), E the

Young’s modulus of elasticity of the plate (N/m2).

2.3.1 Impact sound sources

Using an impact source aims to mimic the walking step sound. However, the

standardized tapping machine is used to quantify the impact insulation performance of

a particular floor structure. It is a standardized measurement device consisting of five

hammers, each weighing 500 g, which fall onto the floor from a defined height (40 mm)

one after another with a tapping frequency of 5 Hz [3]. The distance between the center

of each hammer is 100 mm [45]. Warnock [46] compared real footsteps and ISO tapping

machine. The measurement data shows that the ISO tapping machine force spectrum
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roughly equals the real walk steps spectrum. However, the tapping machine generates

a poor impact sound spectrum in low frequency as it was initially developed to imitate

the impact sound of high-heeled shoes [27]. In order to induce this kind of sound in low

frequency, some countries use a rubber tire and a rubber ball that is purposed in [47].

The rubber tire is used as an impact source which weighs 3 kg, and it is dropped from a

height of 0.5 m to generate a peak force from 1250 to 2400 N [48]. Another device is the

Japanese rubber ball. It weighs 2.5 ± 0.1 kg with a diameter of 183 mm, dropping from 1

m height to imitate human activities and to generate an impact noise spectrum.

2.3.2 Weighted normalized impact sound pressure level

Similarly to the weighted airborne sound index, the weighted impact sound index can

be calculated using the impact sound reference curve described in ISO 717 Part 2 [38].

Again, the curve is shifted in 1 dB steps towards the measured curve until the sum of

deviation is as large as possible but not exceeding 32 dB. Then the weighted impact sound

index Ln,w is the value of the reference curve at 500 Hz, see Figure 2.9. The rating impact

number in ASTM E989-06 is notated by IIC (impact insulation class). The better impact

insulation gives higher IIC values but lower Ln,w. Section 2.5 explains a better comparison

between both standards.
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Figure 2.9: The Calculation of weighted sound pressure level Ln,w for an insulation curve
according to ISO standards.

Spectrum adaption term

Similarly to airborne sound insulation, the spectrum adaption term for impact sound

insulation is defined in ISO 717 Part 2, which is CI. It is a value, in decibels, added

to the single number quantity to take account of the unweighted impact sound level.

Usually, it is calculated according to the frequency range, and for instance, there is CI

(for the frequency range 100-2500 Hz) or for the enlarged range CI,50−2500 (for 50-2500

Hz). Then it can be written Ln,w,100 = Ln,w + CI,50−2500, which is the standardized impact

sound pressure level index with spectrum adaption terms in the frequency range of 50 Hz

to 3150 Hz. The calculation of the spectrum adaption term is given in ISO 717 part 2:

CI,50−2500 = 10log(
2500∑

50

10Ln,i( f )/10) − 15 − Ln,w . (2.64)
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2.4 Different acoustic prediction tools

Since the beginning of the 20th century, acousticians have been interested in computing

sound transmission through solid structures [22]. Different analytical and empirical

formulations have been developed for structures ranging from simple monolithic

homogeneous isotropic thin partitions to more complex and double-leaf systems. Despite

these tools, limitations remain due to the range of technological solutions involved in

building partitions - from non-homogeneous massive walls to lightweight double-leaf

systems. Thus, more advanced models are needed. Heck [49] provided a thorough

theoretical understanding of sound transmission in buildings. Additionally, Pellicier

and Trompette [50] reviewed the prediction methods based on the wave approach for

estimating sound transmission through specific partitions. However,

In 1942, Cremer investigated sound transmission through a homogeneous single-leaf

partition [51]. This theory was also discussed in other works [52, 53]. The sound

transmission coefficient is generally defined as the ratio of the transmitted to the incident

sound power, which can also be calculated as the square of the ratio of the sound

pressure [22]. This concept has been explained in numerous textbooks [52, 54, 55].

2.4.1 Sound transmission for homogeneous panels

The mass law [57] states that, in the case of a simple homogeneous panel, the most

significant factor to consider when predicting its transmission loss is the mass per unit

area:

R = 20log(m f ) − 47, (2.65)

where m is the superficial weight (kg/m2) and f the frequency (Hz). However, Cremer

[51] modified Equation 2.65 of mass law to account for the change in transmission at the

critical frequency and higher:

R = 20log(m f ) − 10log(2ηw/πωc) − 47. (2.66)
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The latter equation provides a reasonable estimate for high-frequency ranges but

is limited regarding low frequencies. For typical structures that measure 10-20 m2,

the radiation efficiency of forced waves must be considered for frequencies below 200

Hz. Sewell [192] has investigated that for an infinite area panel by providing a certain

correlation:

∆R = −log10[ln(kA1/2)] + 20log10[1 − (ω/ωc)2], (2.67)

where A is the partition surface area, and k is the wave number. Equation 2.65) and

(2.66) with the Sewell correlation is not sufficient to describe very thick and heavy panels,

such as concrete. For these panels, flexural waves become the dominant waves at high

frequencies [58]. This causes the transmission loss to be decreased by 6 dB/octave [59]

instead of 12 dB/octave for thin panels above the critical frequency.

2.4.2 Sound transmission for double Panels

Sharp [60] suggests using a thin lining with an air gap in between, such as two

homogeneous panels without interconnections separated by an air gap. This helps to

improve the acoustic performance since the air gap acts like an acoustically absorbing

blanket. Sharp [60] developed an expression for transmission loss across three frequency

domains for this purpose.

R = 20log( f (m1 + m2)) − 47 f < f0, (2.68)

R = R1 + R2 + 20log( f d) − 29 f0 < f < f1, (2.69)

R = R1 + R2 + 6 f1 < f , (2.70)

where m1 and m1 the surface mass for each panel, d is the air gap depth, and f0 is the

resonance frequency, f1 is equal to 55/d Hz. R1 and R2 are the transmission loss for each
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panel. Sharps’ expressions do not consider the acoustical variation in the whole system

due to the air gap. Fahy [54] took that effects into account in high-frequency domain as:

R = R1 + R2 + 8.6αd + 20log10(β/k) f > f1, (2.71)

where α and β are the real and imaginary parts of the propagation coefficient of the

absorption.

In addition, the wave approach can be used to calculate the sound transmission loss for

infinite thin single or double-leaf partitions (using Kirchhoff theory) as follows [50]:

R( f ) = 10log(
1
τ( f )

), (2.72)

where τ( f ) is the sound transmission coefficient, at the frequency f, in a diffuse incident

sound field that is obtained by the summation of all angles of incidence:

τ( f ) =

∫ θmax

0
τ(ω, θ)cos(θ) sin(θ)dθ∫ θmax

0
cos(θ) sin(θ)dθ

. (2.73)

2.4.3 Prediction tools for impact sound insulation

It is essential to estimate an assembly’s impact sound insulation performance,

particularly during the design stage. Prediction tools must consider the sound

transmission system and the excitation source [61]. In dwellings, the source of the impact

sound can be footsteps or objects dropped onto the floor. As described in ISO standards, a

standardized tapping machine is used to evaluate the impact sound levels experimentally.

Several authors have investigated this problem concerning particular floors, considering

the interaction between the hammers and the floor. Cremer [62] derived an impact source

spectrum on a homogeneous floor caused by a tapping machine, assuming the impact to

be elastic; the results proved applicable for several frequencies. Vér [63] described the

force spectrum caused by a tapping machine on hard surfaces. He also suggested ways to

improve the insulation on high-impedance surfaces, such as using elastic layers on the

surface or floating floors.
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Brunskog and Hammer [64] developed a theoretical-based model to estimate the

impact of sound pressure levels for lightweight floor assemblies (mainly based on two

boards, joists, and with/without mineral wool). However, disagreements were found in

the middle to higher frequencies due to the air cavity’s influence, which is not entirely

neglected when the cavity is not filled with mineral wool. In high frequency and above

800 Hz, the deviation between measurements and the calculations was approximately 5

dB.

In [65], more than forty types of materials were studied to assess the effect of various

floor toppings on sound performance. The results indicated that the effect of the floor

topping materials is not solely dependent on the mass density but also on the nature of the

material and the internal and external damping mechanisms. Caniato et al. [66] conducted

field measurements of a four-story building with a Cross-Laminated Timber (CLT) floor.

By utilizing equations, they determined the average equivalent impact sound in different

frequency domains for bare CLT floors:

Ln,eq,avg = −0.15( f ) + 77.7 (dB) 50 < f < 80Hz, (2.74)

Ln,eq,avg = −7.26( f ) + 35.6 (dB) 100 < f < 630Hz, (2.75)

Ln,eq,avg = −0.006( f ) + 84.4 (dB) 800 < f < 5000Hz. (2.76)

Developing an accurate model is challenging due to the lack of knowledge about

the dynamic behavior of timber constructions. In order to predict the sound insulation

performance, two methods are currently utilized: Statistical Energy Analysis (SEA) and

Finite Element Method FEM.

Statistical energy analysis (SEA) is a method used to predict a complex structure’s

vibration or noise levels. This method divides the system into subsystems and considers

the exchange of energy between them via resonant vibration modes [67]. The basic

concepts of SEA are as follows [68]: 1) The power flow between subsystems corresponds
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to the energy in each subsystem. 2) The transmitted power in a subsystem is either

dissipated in the subsystem or transmitted to the adjacent one. 3) Energy only exists

at resonant modes. Therefore, the greater capacity of the subsystem implies that more

energy modes are excited. A disadvantage of SEA is that it is more applicable to

heavy constructions, such as masonry and concrete. Additionally, it is used to predict

sound insulation in mid and high frequencies. Unfortunately, SEA is not as effective

in predicting sound insulation in low-frequencies, as this is often where noise issues in

wooden structures arise.

The Finite Element Method (FEM) is a widely used computational technique for

obtaining approximate solutions to boundary value problems in engineering. A boundary

value problem is a mathematical problem with one or more dependent variables that

must satisfy a differential equation everywhere within a known domain of independent

variables, under specific conditions on the boundary of the domain [69]. One of the

disadvantages is the difficulty in handling the boundary conditions in the modelling.

Another challenge of the FEM is selecting the proper mesh element, as there is a

strong relationship between frequency and finite element size [70]. Furthermore, long

computation times and hardware problems such as storage capacity are other limitations

of this method.

However, each developed prediction tool deals with a specific case of study [71]

or a certain frequency band. For example, some of them do not consider the joists

in a double-leaf structure [60, 72, 73]. However, others include the joists in the

calculations [64, 74–77]. In addition, they cannot be generalized for a certain kind of

structure. Moreover, significant deviations are shown in the results. Such limitations

make developing a reliable estimation tool a difficult task, and therefore, innovative tools

such as machine learning applications should be adapted.

2.4.4 Models based on artificial neural networks approach

Machine learning algorithms have paved the way for technological achievements in

various fields that have been challenging since a few years ago. It is the science that allows
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algorithms to learn and predict based on sample data. Big and diverse data is essential

to enhance the predictive power of these models, especially artificial neural networks

(ANN). The latter is widely used in different acoustic applications and will be discussed

in detail in Chapter 3.

A few studies have been conducted in the literature concerning building acoustics using

artificial neural networks. For instance, Shin et al. developed a convolutional neural

network model to classify inter-noise floors between apartment houses by recording noise

for 24 hours [78]. Garg et al. employed ANN to predict weighted sound reduction index

(Rw) and sound transmission class (STC) for sandwich partition panels within ±3 dB

deviations [79]. Additionally, Buratti et al. used ANN to predict Rw for wooden windows

using limited technical parameters [80]. However, these models can only predict single-

number-quantities (SNQ) and do not predict full-spectrum insulation curves.

Several studies have used an ANN approach to predict 1/3-octave-band curves based

on sound insulation measurements. For example, a model was developed for monolithic

brick walls based on 34 sound insulation measurements [17], and 49 types of aramid

honeycomb sandwich panels were studied in the frequency range of 100 Hz − 6300 Hz

[81]. Additionally, two studies [82–84] that used lab-based measurements were published

to consider a wider frequency range (50 Hz − 5000 Hz) and for lightweight wooden

structures. These two studies will be discussed more in Chapters 5 and 6. The models

developed from 252 and 100 lab-based acoustic measurements for floors and façades,

respectively, gave reasonable results with maximum differences of 1 and 3 dB in the

estimation of Rw. However, the deviation was up to 5 dB in the prediction of Ln,w

(weighted normalized impact sound pressure level). Moreover, Another network model

was developed to estimate the field sound insulation of multi-layered cross-laminated

timber (CLT) floor systems using 104 field sound insulation curves (will be discussed

in Chapter 7). The results were reasonable, with a maximum error deviation of 1 dB

in the estimation of weighted standardized differences DnTw and 2 dB for the weighted

standardized impact pressure level L
′

nTw.
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2.5 Acoustic Standards - ISO & ASTM

International standards published by ASTM and ISO are adapted for sound insulation

measurements in building acoustics. Airborne and impact sound insulation measurements

are standardized through several international standards, which are used depending on

the geographical region. For example, ASTM standards are used in the United States

and Canada, whereas in Europe, Asia, and other parts of the world, ISO standards are

employed. Since the acoustic measurements (that are used in this thesis) have been

carried out according to ISO and ASTM standards, a comparison relating to building

acoustics measurements will be presented in this section. This comparison will highlight

the similarities and differences between the two standards and their equivalent parts.

The airborne sound transmission in ASTM standards is developed by the E33

committee "Building and Environmental Acoustics" [85], and subcommittee E33.03

"Sound transmission". However, for impact sound insulation, it is developed by

subcommittee E33.10 "Sound Acoustics and Vibrations". In ISO standards, airborne

and impact sound transmission are developed by committee 43, subcommittee 2

(ISO/TC43/SC 2) [86, 87]. SC 2 is responsible for developing standards related to

building acoustics, such as the measurement of sound absorption, the measurement of

flanking sound transmission, and the prediction of apparent sound insulation based on

the performance of building elements. Tables 2.2 and 2.3 show the equivalent parts for

ASTM and ISO standards.
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Table 2.2: The ISO equivalent of ASTM standards for sound transmission committee [87].

ASTM Year Title ISO equivalent
ASTM E90 2016 Standard Test Method for Laboratory Measurement of Airborne

Sound Transmission Loss of Building Partitions and Elements
ISO 10140-2

ASTM E336 2017 Standard Test Method for Measurement of Airborne Sound
Attenuation between Rooms in Buildings

ISO 16283-1

ASTM E413 2016 Classification for Rating Sound Insulation ISO 717-1
ASTM E596 2016 Standard Test Method for Laboratory Measurement of Noise

Reduction of Sound-Isolating Enclosures
ISO 15667 & ISO 11546

ASTM E966 2018 Standard Guide for Field Measurements of Airborne Sound
Attenuation of Building Facades and Facade Elements

ISO 16283-3

ASTM E1289 2016 Standard Specification for Reference Specimen for Sound
Transmission Loss

ISO 10140-5

ASTM E1332 2016 Standard Classification for Rating Outdoor-Indoor Sound
Attenuation

ISO 717-1

ASTM E1414 2016 Standard Test Method for Airborne Sound Attenuation Between
Rooms Sharing a Common Ceiling Plenum

ISO 10848-2

ASTM E1704 2010 Standard Guide for Specifying Acoustical Performance of Sound-
Isolating Enclosures

ISO 15667 & ISO 11546

ASTM E2249 2016 Standard Test Method for Laboratory Measurement of Airborne
Transmission Loss of Building Partitions and Elements Using Sound
Intensity

ISO 15186-1

ASTM E2964 2014 Standard Test Method for Measurement of the Normalized Insertion
Loss of Doors

ISO 16283-1

Table 2.3: ASTM standards for structural acoustics and vibration committee and their
equivalent in ISO standards.

ASTM Year Title ISO
ASTM E492 2016 Standard Test Method for Laboratory Measurement of Impact

Sound Transmission Through Floor-Ceiling Assemblies Using the
Tapping Machine

ISO 10140-3

ASTM E756 2017 Standard Test Method for Measuring Vibration-Damping Properties
of Materials

ISO 18437-3

ASTM E989 2012 Standard Classification for Determination of Impact Insulation
Class (IIC)

ISO 717-2

ASTM E1007 2016 Standard Test Method for Field Measurement of Tapping Machine
Impact Sound Transmission Through Floor-Ceiling Assemblies and
Associated Support Structures

ISO 16283-2

ASTM E1123 2016 Standard Practices for Mounting Test Specimens for Sound
Transmission Loss Testing of Naval and Marine Ship Bulkhead
Treatment Materials

—

ASTM E2179 2016 Standard Test Method for Laboratory Measurement of the
Effectiveness of Floor Coverings in Reducing Impact Sound
Transmission Through Concrete Floors

ISO 16251-1

ASTM E2963 2016 Standard Test Method for Laboratory Measurement of Acoustical
Effectiveness of Ship Noise Treatments Laboratory Measurement of
Acoustical Effectiveness for Marine Bulkhead and Deck Treatments

—

ASTM E3133 2018 Standard Test Method for Laboratory Measurement of Floor Impact
Sound Radiation Using the Tapping Machine

—
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2.5.1 Sound insulation requirements in ASTM and ISO

The laboratory measurement of the airborne sound insulation of structure elements

follows the same principles in ASTM and ISO standards. The tested element is mounted

between two reverberation rooms (source and receiving chambers), and the average level

differences between the two rooms are detected by sampling the sound field in both

rooms. The measurements are normalized, and they consider the structure surface area S

and the equivalent absorption area AE. In receiving room, transmission loss TR (ASTM

terminology) or sound reduction index R (ISO standards) is determined by:

T L( f ) = Ls( f ) − LR( f ) + 10log(
S
AE

) , (2.77)

R( f ) = Ls( f ) − LR( f ) + 10log(
S
AE

) . (2.78)

Although the principles of the laboratory measurements of airborne sound insulation

are the same, there are some differences in the laboratory requirements between ASTM

and ISO standards [87]:

– reverberation time procedures: the reverberation time measurements are

indicated in ISO 10140-4 [88] using two procedures (interrupted noise and

response methods). While in ASTM E90, only the interrupted noise method is

permitted. However, in ISO 10140-2 [89], the ideal room reverberation time should

be between 1 and 2 sec. If the value falls outside of this range, then the room must

be modified by: 1 ≤ RT ≤ 2(V/50)(2/3).

– volume of the receiving room: in ASTM E90 [32], the minimum required room

volume is 80 m3, while it is 50 m3 in ISO 10140-5 [90]. More eigenmodes at lower

frequencies can be excited with higher room volume as a condition of a diffuse

sound field [87]. Moreover, in ISO, the weighted single number, weighted sound

reduction index Rw covers lower frequency ranges than a single number, sound

transmission class STC, in ASTM standards. Although ISO standards have smaller
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minimum requirement room volume and consider lower frequencies, several

recommendations are adapted for better mode distribution.

– requirements for specimen area: According to ISO, the recommended size of the

specimen area for walls is 10 m2, while for floors, it is between 10 m2 to 20 m2,

with a minimum length of 2.3 m for the shorter edge. However, ASTM does not set

a minimum size for the specimen area but specifies a minimum dimension of 2.4

m.

– loss factor value: ISO 10140-5 [90] precises the minimum loss factor for heavy

structures should be ηmin = 0.01 + 0.3/
√

f . However, no such requirement for the

loss factor has been indicated in ASTM E90 [32].

– precision: ISO 10140-2 [89] requires a rounded sound reduction index R to the

nearest 0.1 dB, ASTM E90 [32] indicates that the transmission loss TL must be

reported in integers.

2.5.2 Airborne and impact sound rating numbers

The process for calculating the weighted single number Rw (in ISO) or the sound

transmission class STC (in ASTM) is essentially the same in both standards, with some

differences outlined in Table 2.4. The reference curve in ASTM E413-16 [39] is from 125

Hz to 4000 Hz, while it covers lower ranges in ISO 717-1 [37]. The STC value is rounded

to the nearest whole dB value, and it is rounded to the nearest 0.1 dB for Rw [23]. The

same procedures are carried out in both standards for calculating the single number values.

However, an additional criterion is required in ASTM, known as the 8 dB rule. The latter

indicates that the reference curve and the measured one must be as big as possible but not

exceed 32 dB as long as the maximum deficiency allowed during the fitting procedure is

8 dB at a single frequency band. The result is written as STC XX (without dB notation),

where it is in dB for Rw. Usually, the Rw and STC are close, but significant differences

could be found in resonance dip cases [152]. However, no adaption terms are indicated in

ASTM in contrast to ISO standards.
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Table 2.4: Differences between airborne rating single number in ISO and ASTM
standards.

Notes ISO 717-1 ASTM E413-16
Precision rounded to the nearest 0.1 dB rounded to the nearest 1 dB
Reference curve 100 Hz − 3150 Hz 125 Hz − 4000 Hz
Curve shifting rules sum of deviations ≤ 32 in additions to the 8 dB
Adaptation terms such as C and Ctr no adaption terms

Calculating the weighted impact sound pressure level Ln,w using a standard reference in

one-third-octave bands (100 Hz − 3150 Hz) is indicated in ISO 717-2 [38]. For calculating

the STC value, ASTM E989-06 [91] is a relative standard to ISO 717-2 with the same

reference curve. Moreover, both standards are essentially the same and use the same

standardized tapping machine. There is a significant difference in the interpretation of the

results. The IIC value is given by: 110 dB - Ln,w if the 8 dB rule is not invoked. The letter

means the higher impact sound insulation donates a higher IIC value but a lower Ln,w.

Additionally, some differences can be highlighted between the standards in representing

the single number quantities. ASTM E989-06 rounds the IIC value to the nearest 1 dB

while it is to the nearest 0.1 dB in ISO. The additional criterion regarding the 8 dB rule

is also applied in calculating the IIC value. In ASTM, The result is written as ICC XX

(without dB notation), where it is in dB for Ln,w. Table 2.5 summarized the calculation

method of impact single number quantities in ASTM and ISO.

Table 2.5: Differences between impact rating single number in ISO and ASTM standards.

Notes ISO 717-2 ASTM E989-06
Precision rounded to the nearest 0.1 dB rounded to the nearest 1 dB
Reference curve 100 Hz − 3150 Hz 100 Hz − 3150 Hz
Curve shifting rules sum of deviations ≤ 32 in additions to the 8 dB
Higher rating number means lower impact insulation higher impact insulation
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Chapter 3

ARTIFICIAL NEURAL NETWORKS
APPROACH

3.1 Artificial intelligence: history and techniques

Recently, Artificial Intelligence (AI) and data science have gained tremendous

popularity. AI was developed in the 1950s when a handful of pioneers in the computer

science field started wondering whether the machine could be coded to think [92]. AI is a

general field that encompasses both Machine learning (ML) and Deep Learning (DL), but

some approaches are not quantified as a learning approach (Figure 3.1 (a)). For instance,

simple chess programs only involved hard code, which is written by programmers, and

did not classify as machine learning. Not long ago, experts believed they could achieve

human-level intelligence by utilizing a large set of rules. The latter approach is known as

symbolic AI, and it was the dominant AI archetype from the 1950s to the late 1980s [92].

Although the symbolic AI is suitable for solving logical and well-defined problems,

solving many complex problems, such as image classification or speech recognition, is

intractable using symbolic AI. However, a new approach arose to replace it, which is

called machine learning (Figure 3.1 (b)).

Machine learning arises to deal with a specific task without being explicitly

programmed by looking at the data. With this approach, doors are opened to a new

programming paradigm. The main differences between AI and ML are how rules are

created. In the AI method, humans put rules, and data proceeds depending on those rules

to find the answer for a specific task. While in ML, the rules are extracted from the



given data to automate the task without being explicitly programmed see Figure 3.1 (b).

Although ML techniques only started in the 1990s, they became AI’s most popular and

flourishing branch.

Deep learning is a particular subfield of ML, a new view on the learning representation

of data that emphasizes successive layers. Artificial neural networks are a specific

approach to DL algorithms. It was motivated by the structure of the human biological

brain [6]. The Artificial Neural Networks approach uses simple computational operations

(multiplication, additions, and fundamental logic elements) to solve complex and

ill-defined tasks [93]. Furthermore, it allows for very low-level programming to solve

complex problems in a self-organizing manner.

(a)

(b)

Figure 3.1: Artificial intelligent division. (a) AI, ML, and DL. (b) The paradigm of
machine learning.

3.2 Main artificial neural networks learning modes

The primary purpose of training the network model is to tune the intermediate

connections (weights) between layers by respecting the neural-based algorithm. This

modifies the weight values to achieve the desired accuracy, called the adaption function
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or learning mode. There are two types of modes: supervised and unsupervised learning.

Supervised learning needs an external observer. The latter could be a data training set or

an observer who rates the performance of a network model. However, in unsupervised

learning, no external observer is needed, and the system must organize itself by some

designed criteria in the network [94].

3.2.1 Supervised learning

The vast bulk of the ANN tasks has been trained with supervised learning. In this

mode, inputs and output values are provided to the network system. Then the ANN

processes the inputs and compares the predictions against the desired outputs (actual

values) to initiate weight values. The system reviews errors, and weights are adjusted

to increase the reliability of the predictions. Several iterations repeat this process, and

weights are continually tweaked until the system finds optimal values. The latter is called

training the ANN. However, some network models can never learn. This is probably

because the input data does not contain the specific information from which the desired

output is derived. In addition, networks also do not converge if insufficient data is

provided. Therefore, a big and wide range of data should be available to develop a

reliable model.

3.2.2 Unsupervised learning

The other type of training mode is called unsupervised training. In this type, the

network is fed with inputs but not with desired outputs. The system must identify what

features it needs to group the input data. This is often referred to as self-organization

or self-adaption. This adaption to the environment is the promise that would enable

science fiction types of robots to learn independently as they encounter new situations and

environments continually. This promising field of unsupervised learning is also known as

self-supervised learning. In those networks, there is no external influence to adjust weight

values, and they monitor their performance by themselves. However, most neural network

applications are trained with supervised learning.
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In both learning modes, if a specific network model is not able to solve the problem, the

designer then has to review the inputs and the outputs (in the supervised training case),

the number of layers, the number of units per layer, the summation, and the training

functions, and even the initial weights themselves. In addition, the designer’s creativity

also governs the rules of training. There are many laws (algorithms) used to implement

adaptive feedback. The most common technique is backward-error propagation, more

commonly as back-propagation, which will be explained in section 3.3.4.

3.3 Developing an ANN model

The architecture of ANN consists of layers, and each layer contains computation units

referred to as neurons [95]. Those units are connected through weights, which take

the same role as the strength of the connections in biological organisms. Weights are

utilized to scale each input to a neuron, affecting the function computed at that unit. ANN

computes a function of the inputs by propagating computed values from the input neurons

to the output neuron(s) and using weights as intermediate parameters [96]. Training data

contains examples of input-output pairs of the function to be learned. It provides feedback

on the correctness of the weights depending on how well the network can predict output

values. Errors made by ANN are viewed to evaluate the weights between neurons through

what is called back-propagation. Then the weights are adjusted in a network model (this

is how ANN learns). Features of ANN (weights and bias) are adjusted during the learning

phase of the network. A data set flows through each neuron in an input-output manner. In

other words, each neuron receives a signal, manipulates it, and forwards an output signal

to the other connected neurons in the adjacent layer, see Figure 3.2.
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Figure 3.2: The architecture of an ANN model shows how input data propagates to
calculate the predicted values.

A single neuron can be defined as a mathematical function that takes one or more input

values and outputs them as a single numerical value. The neuron is identified as follows:

y = f (
∑

(wixi + b)), (3.1)

where y, wi, xi, and b represent a neuron’s output, weight value, input, and bias,

respectively. Output values from neurons are known as activation values, used as input

to the activation function. The activation functions most commonly used are sigmoid,

hyperbolic, tangent, ReLU, and LeakyReLU functions [97].

3.3.1 Different types of activation functions

The choice of activation function is a critical part of an ANN design. Multi-layered

networks can be classified as linearly inseparable classes. Therefore, they need to satisfy

more than one condition. If the neurons do not have activation functions, their outputs

would be the weighted sum of the inputs
∑

(wixi), which is a linear activation function.
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Then the entire neural network becomes a composition of linear functions. In addition,

when hidden layers are added, the network will still be equivalent to a simple linear

regression model as long as a linear activation function is used for all hidden layers.

In order to use the network model in non-linear problems, non-linear activation functions

need to be utilized. Each layer could have different activation functions according to the

purposes of the model. The most activation functions are as follows:

– identity function. This function lets the activation value go through without any

modification.

f (a) = a, (3.2)

– threshold activity function. This function activates the neuron, whereas the

activation is above a certain value.

f (a) =


1 i f a > 1

0 i f a < 1
, (3.3)

– logistic function, or the logistic sigmoid. It is also called the S-shaped activation

function. It is one of the most commonly used in AI field, as it basically converts

values into probabilities between 0 and 1 (Fig. 3.3), and can be interpreted

scholastically as the probability of the neuron activity.

f (a) =
1

1 + exp−a , (3.4)

– bipolar sigmoid. It is simply a logistic sigmoid rescaled and translated to have an

output in a (−1, 1) range.

f (a) =
2

1 + exp−a − 1 =
1 − exp−a

1 + exp−a . (3.5)
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Figure 3.3: Graphical representation of the sigmoid activation function.

– hyperbolic tangent (or tanh). This is also sigmoidal (S-shaped), and the range of

this function is between (−1, 1), see Fig.3.4. The main advantage of this activation

function is that the negative values can be dealt with more easily.

f (a) =
expa − exp−a

expa + exp−a =
1 − exp−2a

1 + exp−2a . (3.6)

Figure 3.4: Graphical representation of the tan activation function.
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– ReLU function. The Rectified Linear Function (ReLU) is a mix of the identity and

the threshold function (Fig. 3.5). There are variations on the ReLU, such as Noisy

ReLU, Leaky ReLU, and ELU (Exponential Linear Unit).

f (a) =


a i f a > 0

0 i f a ≤ 0
. (3.7)

Figure 3.5: Graphical representation of the ReLU activation function.

– Leaky-ReLU. It is an improvement of the main default ReLU. It is similar to ReLU

but relaxes sparsity constraints by allowing small negative activation values [5];

see Figure 3.6. It has two benefits which could face ReLU and other activation

functions. Firstly, it fixes the dying ReLU problem, as it does not have a zero-slop

part. In addition, it speeds up the training phase, as the mean activation values are

close to zero.

f (a) =


a i f a > 0

0.01a i f a < 0
. (3.8)
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Figure 3.6: Graphical representation of the Leaky ReLU activation function.

The range for the logistic function is (0, 1), which is one reason why it is a preferred

function for stochastic networks. The hyperbolic function is similar to the logistic

function, but its range is (−1, 1). In contrast, the ReLU has a range of (0,∞). The

derivative (or the gradient) of activation functions such as logistic sigmoid, hyperbolic

tangent, and ReLU is essential for the training process of the network, as will be

explained in sections 3.3.2 and 3.3.3.

The derivative of the logistic activation function f is:

f ∗ (1 − f ), (3.9)

while the hyperbolic tangent function is:

(1 + f ) ∗ (1 − f ). (3.10)

Moreover, the decoration of the ReLU activation function is much simpler as:

f
′

(a) =


1 i f a > 0

0 i f a < 0
. (3.11)

The purpose of artificial neural networks is to transfer inputs to outputs using
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intermediate values (weights) through the activation functions. In each iteration, weights

are evaluated depending on errors in the predicted values. Then, the aim is to minimize

the errors utilizing a cost function. The cost function is a mathematical expression

used to evaluate the model’s performance. The latter procedure is training the network

model. There are two algorithms to train the ANN model: linear and logistic regression,

depending on the data. Regression algorithms are supervised algorithms that use input

data to predict the desired values. Regression analysis works on finding the best network

parameters that fit the input dataset.

3.3.2 Linear regression

In a linear regression algorithm, the goal is to minimize the cost function by finding

appropriate parameters. A popular cost function is the Mean-Square-Errors (MSE) or the

Root-Mean-Square-Errors (RMSE), where they take the square (or root-square) of the

mean differences between the predicted and the desired values. Once the cost function is

calculated for each epoch, the gradient descent algorithm updates the weights to minimize

the cost function. The gradient descent starts working when weight values are initialized

with random values. Then the cost function (in this case MSE) is calculated for all trained

samples. Let us donate MSE by J, where J is given by:

J = MS E =
1
n

n∑
i=0

(ai − ŷ)2 =
1
n

n∑
i=0

(xi ∗ w − ŷ)2, (3.12)

n is number of training sample, a is the neuron activation value (xi ∗ w), and ŷ is the

target value. In the next iteration, weight values are reviewed and tuned by calculating the

derivative of J and choosing an appropriate learning rate α. The learning rate determines

the ratio by which the weights are adjusted. The last process is repeated until the cost

function falls below the threshold or reaches the minimum.

w := w − α 5 (J(w)). (3.13)

Since yi is a function of w, then j is a function of w. Therefore, the cost function j
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represents a hypersurface of dimension equal to the dimension of w. Figure 3.7 illustrates

that the cost function (MSE) for a single input value x changes considering a single weight

w and an assumed learning rate.

Figure 3.7: Cost function diagram for an ANN model.

Minimizing the cost function J means finding weight values w that make J reach its

global minimum. Consequently, the partial derivative of J is calculated with respecting

the weights w as:

−→
d =

∂J(w)
∂w j

=
∂ 1

n

∑n
i=0(ai − ŷ)2

∂wi
=

1
n

n∑
i=0

∂(ai − ŷ)2

∂w j
=

2
n

n∑
i=0

∂yi

∂w j
(ai − ŷ). (3.14)

If ai = xi.w, then ∂yi

∂w j
= xi

j. Therefore, the derivative is given by:

∂J(w)
∂w j

=
2
n

n∑
i=0

xi
j(a

i − ŷ). (3.15)
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Then, weights are updated by following the rule for each iteration:

w := w − α
∂(J(w))
∂w j

= w − α
2
n

n∑
i=0

xi
j(a

i − ŷ). (3.16)

3.3.3 Logistic regression

Logistic regression is almost similar to linear regression, with one output difference. In

logistic regression, the outputs are a special function: σ(xi.w j), which squashes the value

of (xi.w j) in the interval of (0 : 1). That means that the output values are two labels 1 or

0. The logistic algorithm is a function that works as a probability function. The closer the

result is to 1, the greater the chance that the output is closer to the target and vice versa.

Since the outputs are in the (0, 1) range, the logistic function can be used for 2-class

(binary) classification problems. It uses a logistic sigmoid as an activation function.

Supposing the logistic sigmoid function is σ(a), where a is the neuron activation value

(x.w). For each sample x, the probability y (y = σ(a)) for given weights w, is donated as:

P(y|x,w) =


σ(a) i f y = 1

1 − σ(a) i f y = 0
. (3.17)

Succinctly, the equation can be written as:

P(y|x,w) = σ(a)y(1 − σ(a))1−y. (3.18)

Since the probability P(y(i)|x(i),w) are independent for each sample x(i), the global

probability is given by:

P(y|x,w) =

n∏
i

P(yi|xi,w) =

n∏
i

σ(ai)yi
(1 − σ(ai))(1−yi). (3.19)
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To turn products of the Equation 3.19 into sums, the natural log is employed.

log(P(y|x,w)) = log(
n∏
i

σ(ai)yi
(1 − σ(ai))(1−yi))

=

n∑
i

[yilog(σ(ai)) + (1 − yi)log(1 − σ(ai))] .

(3.20)

The goal is to maximize the log to get the highest probability of predicting the correct

values. As for linear regression, the derivative of the cost function with respect to the

weights can be calculated by

∂log(P(y|x,w))
∂w j

=

∑n
i [yilog(σ(ai)) + (1 − yi)log(1 − σ(ai))]

∂w j

=

n∑
i

∂[yilog(σ(ai)) + (1 − yi)log(1 − σ(ai))]
∂w j

=

n∑
i

[yi∂log(σ(ai))
∂w j

+ (1 − yi)
∂log(1 − σ(ai))

∂w j
]

=

n∑
i

[yi(1 − σ(ai))xi
j + (1 − yi)σ(ai)xi

j] .

(3.21)

The last equation can be obtained by following the chain rule for derivatives. It states

that if we have a function F(x) = f (g(x)), then the derivative of F with respect to x would

be:

F
′

(x) = f
′

(g(x)g
′

(x)), (3.22)

or in another form

dF
dx

=
d
dx

[ f (g(x))] =
d

dg(x)
[ f (g(x))].

d
dx

[g(x)]. (3.23)

Applying the chain rule to the derivative of logistic regression

∂σ(ai)
∂ai = σ(ai)(1 − σ(ai))
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∂σ(ai)
∂a j = 0

∂σ(ai)
∂w j =

∂
∑n

k wkxi
k + b

∂w j
= xi

j . (3.24)

Therefore, according to the chain rule, the following is true:

n∑
i

∂σ(ai)
∂w j =

n∑
i

∂log(σ(ai))
∂ai

.
∂ai

∂w j
=

1
σ(ai)

σ(ai)(1 − σ(ai))xi
j

= (1 − σ(ai))xi
j .

(3.25)

Similarly, the following applies:

n∑
i

∂log(1 − σ(ai))
∂w j

= σ(ai)wi
j . (3.26)

This is similar to the update rule that was mentioned in linear regression.

3.3.4 Back-propagation

In previous sections, updating the weight values for one layer has been described. The

latter concept is easily adapted for a network model with one hidden layer, where the

outputs of a hidden layer are reviewed considering target outputs and, therefore, weights

will be tuned. However, this is not the case in multi-layered networks with more than one

hidden layer. That is because the target values for each hidden layer are not available

and known. By defining wi j, a weight between the ith neuron of layer l and the jth

neuron of layer l + 1. In a multi-layered network, l and l + 1 can be any two successive

layers, including inputs, hidden, and output. y is referred to values in the hidden layers.

Therefore, y is the output of the activation function of layer l, and it is the input to the

layer l + 1, see Figure 3.8.
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Figure 3.8: The figure represents two layers, the input (layer 1) and the output (layer 2),
and wi, j connects the yi activation in layer 1 to the inputs of the j − th neuron of layer 2.

Using chain rule (Eq.3.23), It is possible to write the following for the last hidden

layer:
∂J
∂wi, j

=
∂J
∂y j

∂y j

∂a j

∂a j

∂wi, j
. (3.27)

Since ∂a j

∂wi, j
= yi, then:

∂J
∂wi, j

=
∂J
∂y j

∂y j

∂a j
yi. (3.28)

For a previous (hidden) layer, the same formula holds

∂J
∂wi, j

=
∂J
∂y j

∂y j

∂a j

∂a j

∂wi, j
. (3.29)

Since the ∂a j

∂wi, j
= yi, and also ∂y j

∂a j
is the derivative of the activation function. Therefore,

what needs is to calculate the derivative of the error with respect to the activation function

in the next (or output) layer. The latter can be applied by calculating all the derivatives,

starting from the last layer and moving backward. By applying the chain rule to the cost
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function

∂J
∂yi

=

n∑
j

∂J
∂y j

∂y j

∂yi
=

n∑
j

∂J
∂y j

∂y j

∂a j

a j

yi
. (3.30)

Note that the sum over j reflects that in the feed-forward part, the output y is fed

to all neurons in the next layer(s); therefore, they all contribute to yi when the error is

propagated backward.

Once ∂y j

∂a j
and ∂a j

∂yi
= wi, j is calculated. And ∂J

∂y j
is known. Then, ∂J

∂yi
can be calculated. In

addition, when ∂J
∂y j

for the last layer is found, it can be moved backward and calculates ∂J
∂yi

for any layer. And therefore, ∂J
∂wi, j

for any layer.

For a sequence of layers, the following applies:

yi → y j → yk .

Then, those two fundamental equations are given by:

∂J
∂wi, j

=
∂J
∂y j

∂y j

∂ai

∂a j

∂wi, j
, (3.31)

∂J
∂y j

=

n∑
k

∂J
∂yk

∂yk

∂y j
. (3.32)

Using the latter equations, the derivatives of the cost function considering each layer

can be computed. Setting δ j = ∂J
∂y j

∂y j

∂a j
. Then δ j represents the variation in the cost function

with respect to the activation value. δ j can be assumed as the error at neuron y j.

The latter equations can be rewritten as follows:

∂J
∂y j

=

n∑
j

∂J
∂y j

∂y j

∂yi
=

n∑
j

∂J
∂y j

∂y j

∂ai

∂a j

∂yi
=

n∑
j

δ jwi, j . (3.33)

This implies that δi = (
∑n

j δ jwi, j)
∂yi
∂ai

. These equations give an alternate view of back-

propagation when there is a variation in the cost respecting activation value. Therefore,

the variation for any layer can be determined once the variation for the following layer is
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calculated:

δ j =
∂J
∂y j

∂y j

∂a j

δi = (
n∑
j

δ jwi, j)
∂yi

∂ai
.

Therefore,
∂J
∂wi, j

= δ j
∂a j

∂wi, j
= δ jyi . (3.34)

Finally, the update rule for tuning the weight values for each layer is given by the

following equation:

wi, j := wi, j − αδ jyi . (3.35)

3.4 Overfitting and underfitting issues

In general, the fundamental issue of artificial neural networks or machine learning is

the tension between optimization and generalization [5]. Optimization refers to tuning the

model to get the best performance on the training data. Whereas generalization explains

how well the trained model performs on the test data that has never been seen before. The

goal of training the model is to get a good generalization. However, the generalization is

not controllable, and it depends on the training data.

At the beginning of the training process, optimization and generalization are well

correlated (as the lower cost function value for training data also means a lower value

of the test data). During the training, the model is underfitted. It means progress is still

to be achieved, and the network model has not yet found the best relevant patterns for

the training data. After certain iterations, generalization stops improving and starts to

degrade. That means that the model is starting to overfit. Then the model starts learning

patterns specific to the training data but misleading for new data.

To prevent the model from learning irrelevant patterns that could be found in the
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training data. The best solution for such a problem is to get more training data. The

model will generalize better when trained on more data. When this option is not possible,

the second best solution is to modulate the quantity of information the model is allowed to

store or to add some constraints on what types of information are allowed to be stored [5].

In other words, the optimization process will force the network model to concentrate on

the most prominent patterns. This increases the probability of better generalization. The

process of fighting overfitting is called regularization. It is always necessary to know

that deep learning models tend to be good at fitting between training data and targets, but

generalization is still a real challenge [5].

Overfitting solutions:

– Reducing the size of the network model: the simplest way to prevent the model

from falling into overfitting is to reduce the size of the model. That can be done by

changing the model’s capacity or learnable parameters. Those parameters are the

number of layers and units per layer. However, no universal formula can determine

the suitable model’s size. It should be evaluated from different perspectives to

determine the appropriate parameters that fit the training data. The general rule

is to start from a simple network with few parameters and then increase the size

until obtaining a reasonable accuracy.

– Adding weight regularization: another way to prevent overfitting in a network

model is adding weight regularization. It is a common way to magnitude the

overfitting that puts constraints on a network by adding additional coefficients to

the cost function to force the model to decrease the cost function values [5]. This

process makes the distribution of weight values more regular. Weight regularization

is done by adding to the cost function a penalty (term) that is given in two ways:

1. L1 regularization: also called lasso regression. This regularization type adds

the weight coefficients’ absolute values to the cost function (Equation 3.36 in
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red).

Cost f unction =
1
n

n∑
i=0

(xi ∗ w − ŷ)2+λ

n∑
i=0

|w|. (3.36)

2. L2 regularization: also called ridge regression. This type adds the square value

of the weight values to the cost function. The latter is also called weight decay

regularization (Equation 3.37:

Cost f unction =
1
n

n∑
i=0

(xi ∗ w − ŷ)2+λ

n∑
i=0

w2. (3.37)

– Adding dropout: it is one of the most efficient and commonly used regularization

techniques. Dropout refers to dropping out hidden and visible units from the neural

network model [98]. Dropping a unit out means removing it from the network,

along with output features of the layer during the training process (see Figure 3.9).

The choice of selecting units to be dropped is entirely random. Each unit is retained

with a fixed probability p, where p can be chosen depending on the problem. The

typical value of the fixed probability is p = 0.5, which is an optimal value for a wide

range of tasks [99].

(a) (b)

Figure 3.9: Dropout neural network model. (a) Standard neural network. (b) Neural
network after applying dropout technique.
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3.5 Sensitivity analysis approach

Explaining the mechanism of complex deep learning models, such as neural networks,

is quite cumbersome as they are identified as black box predictor tools [100]. To

understand which features the model relies on, the problem of attributing a deep

network’s prediction power to input features must be identified. The attribution problem

was formerly studied in several papers [101–103].

A significant challenge in attribution techniques is that they are difficult to evaluate

empirically. In addition, it is hard to distinguish between errors that came from the

model’s misbehavior or the attribution method’s misbehavior. Taking an axiomatic

approach, called Integrated Gradients approach (IG) [104], can compensate for this

limitation. The latter differs from the gradient descent algorithm [105], a common way

to optimize ANN models.

The latter is denoted here as IGi(x) and uses a function F : Rn → [0, 1] that presents

a neural network and an input x = (x1, ..., xn) ∈ Rn. An attribution of the prediction at the

input x relative to a baseline input z ∈ Rn is a vector AF(x, z) = (a1, ..., an) ∈ Rn, where

ai is the attribution of xi of the prediction function F(x). The integrated gradients can be

defined as the integral of the gradients along the straight path from the baseline input z to

the input x. The integrated gradient for the ith dimension between a baseline and an input

is defined by [104]:

IGi(x) = (xi − zi) ∗
∫ 1

α=0

∂F(z + α ∗ (x − z))
∂xi

dα. (3.38)

In those graphs, the y− axis represents the effect size, which quantifies the importance

of each parameter on the prediction of sound insulation curves. If the y values are

greater than zero, this indicates a direct relationship between the parameters and the

outputs. However, values near zero suggest a weaker relationship. The integrated gradient

technique focuses on the importance of each parameter in the prediction [104]. It often

produces signed values, which can be challenging to interpret in specific applications

[100]. Whether to take the absolute values depends on the dataset’s characteristics. For
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this research, taking the absolute value of the gradient can provide a better understanding

of the results, as the goal is to identify the most significant parameters.

3.6 Mechanism used to develop the ANN models in the

study and to extract the results

The ANN models were developed using Python language (3.7.4 version). They were

used within the PyTorch framework [106] (version 1.5.0). The code was developed by

the author for the three models. In addition, MySQL software [107] is used to organize

the database of acoustic measurements. Figure 3.10 shows the mechanism that is used

to develop the ANN models for different structures and how the results are obtained.

The process starts with identifying the structural parameters for each assembly using

MySQL software. The parameters contain categorical variables and metrically measured

variables. Categorical variables are ways to label or identify objects [108]. An example

of categorical variables is the structural materials used in assemblies (i.e., CLT panel,

plasterboard). However, metrically measured variables reflect relative quantity and are

appropriate for considering the amount of magnitude [108]. An example of the latter

in the database is the thickness of the assemblies or the sound insulation performance

values. Then the entire database is split (randomly) into three subsets: training (80%),

validation (10 %), and training (10%) sets. see Figure 3.10. Each set contains inputs

(structural parameters) and outputs (insulation curves) used to develop the ANN model.

The ANN network starts to initiate its features (weights, biases, etc.) through several

epochs or iterations using a training set. The prediction values are compared to measured

ones in each epoch to minimize the cost function by tuning the weight values. In this

study, measured curves are assumed as reference values to be compared with (although

they would have uncertainty, as will be discussed in Chapters 5, 6, and 7). Therefore a

world error represents the differences between measured and predicted values. Once the

cost function reaches the minimum, weights, and biases are fixed. Then the validation and

testing sets are used to evaluate the model’s performance. Finally, a sensitivity analysis is
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carried out on the developed model (Figure 3.10).

Figure 3.10: The methodology is utilized to develop network models to estimate the sound
insulation performance of different wooden structures.
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Chapter 4

EXPERIMENTAL SOUND
INSULATION MEASUREMENTS
AND DATABASE ORGANIZATION
USED TO DEVELOP THE ANN
MODELS

4.1 Acoustic measurements used to build the database

Developing an artificial neural network model needs diverse data to train the network

model. Big data is utilized to develop acoustic prediction tools based on ANN models

for different wooden configurations. Three models have been developed in this research

project. ANN Model-I and Model-II (in Chapters 5 and 6) are created to predict

acoustic performance based on laboratory measurements. Lab-based measurements

are received from different institutes, such as Lund University in Sweden, FCBA in

France, FPInnovations, and CRNC in Canada. The measurements are not necessarily

implemented at the latter sources but could be from their database. However, the third

model (Model-III, Chapter 7) simulates acoustic field measurements. This chapter

provides details about assemblies and measurements used in this research. Alongside

this, part of the measurement that the author has assisted will be highlighted in this

chapter.

Measurement data based on ASTM standards were converted to comply with ISO

standards descriptors, the weighted airborne sound reduction index Rw and the weighted



normalized impact sound pressure level Ln,w. The latter are described in ISO 717-1

(2013) [37] and ISO 717-2 (2013) [38] respectively. This conversion is done in order

to have an agreement with the acoustic descriptors that are calculated from the airborne

and impact sound insulation curves.

4.1.1 Sound insulation measurements for Model-I

The first model (Model-I) deals with the prediction of sound insulation of lightweight

floor structures, 252 standardized laboratory measurements received from Lund

University in Sweden, FCBA in France, FP innovations, and the National Research

Council (NRC-CNRC) [109] in Canada, see Table 4.1. The measurement curves are all

presented in Figures A1 and A2 in Annex A. The database contains two measurement

curves: airborne sound reduction index R and normalized impact sound pressure level

Ln in one-third octave frequency bands (50 − 5000 Hz). The measurements concern

142 different floor structures (CLT-based and joist floors), corresponding to the data

observations. Hence, for every floor structure or observation, there are the technical and

materials parameters, the airborne sound reduction index data, and/or the normalized

impact sound pressure levels data. There are 107 structures with airborne and impact

sound insulation data, 26 with only airborne sound data, and 12 with only impact sound

curves.

Each floor configuration in the database is arranged in three parts: upper, main, and

ceiling part, following the order of material layers. The main part presents the dominant

material for the structure’s character among all floor components. The upper and ceiling

parts represent materials located and clustered above and below the main part of each

floor structure (Figure 4.1). The database contains two types of floor assemblies: CLT

and joist floors; see Figure 4.1.

The database is organized with MySQL software [107]. Table 4.2 illustrated the

structural parameters employed in the database classification. The parameters of the

observations are arranged with respect to the type of materials, material layers order,

thickness, density, joists type, width and depth of joist, area of test floor (S ), the volume
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of the receiving room (V), the ratio (S/V), total mass and total density of the structure,

mass per unit area (P.U.A) of upper, main and ceiling parts, depth of the resilient metal

channel, spacing between resilient channel, the slope of curves in three different frequency

ranges (Low: 50 − 200 Hz, Middle: 250 − 1000 Hz and High: 1250 − 5000 Hz), and the

airborne and impact sound insulation curves in dB in one-third octave bands (50 − 5000

Hz). Additionally, the classification contains two-floor solution systems: wet and dry

solution systems. The wet system can be defined as a lightweight wooden floor structures

with a light concrete part on top as a floating layer, whereas dry floor systems refer to

wooden floors without any concrete layer on the top.

The acoustic measurements are implemented following ISO and ASTM standards.

The measurements consist of airborne and impact sound insulation tests performed

on 142-floor structures from 50 Hz to 5000 Hz. The airborne sound reduction index

measurements were carried out according to ISO 140-3 (1995) [110] or the latest

ISO 10140-2 (2010) [89] and ASTM E90-09 (2016) [32]. The impact sound pressure

level data were measured following ISO 140-6 (1998) [111] or the latest ISO 10140-3

(2010) [43] and ASTM E492-09 (2016) [44].

Figure 4.1: Database classification for floor assemblies. (a) An example of CLT floor
assembly. (b) An example of the joist floor assembly.

67



4.1.2 Sound insulation measurements for Model-II

Model-II is developed using 100 standardized laboratory measurements that are

implemented on different façade assemblies. The technical reports are received from

Lund University and NRC-CNRC [112] in Canada. The measured data consists of

airborne insulation measurements of 100 various façade walls in one-third-octave bands

(50 Hz to 5000 Hz). They were performed according to ISO 10140-2 (2010) [89] and

ASTM E90-09 (2016) [32]. The measurements used relate to complete wall systems

without considering the presence of doors, windows, and small openings in the façades.

Figure B1 in Appendix B illustrates the 100 insulation curves of façades of airborne

sound reduction index R( f ) in the frequency range from 50 Hz to 5000 Hz. Every façade

assembly in the database has technical parameters and a full-spectrum insulation curve.

Table 4.2 summarizes the parameters used for each façade wall to be used as inputs for

the network model.

In the database, each façade configuration is clustered in three parts: interior, main,

and exterior, respecting the installation order of each façade component. The main part

represents the dominant component or material. Therefore, The interior and exterior

sections present components clustered and located alongside the main façade material

(Figure 4.2). The database contains CLT and frame walls, as Figure 4.2 illustrates.
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Figure 4.2: Database classification for façade assemblies. (a) An example of CLT façade
assembly. (b) An example of frame façade assembly.

MySQL software is also used to organize the database using variables of structural

parameters of each façade assembly (Table 4.2). Those parameters are arranged

considering the type of each façade component, their installation position, thickness and

density of each layer, depth of studs and spacing between them, area of a façade (S ),

the volume of a receiving room (V), group and total thickness and mass of a structure,

resilient metal channel depth and spacing between them, and airborne sound reduction

index in one-third-octave bands.

4.1.3 Sound insulation measurements for Model-III

The database collection comprises 104 acoustic field measurements implemented

on multi-layered CLT-based floor systems for different buildings in Europe. The

measurements include airborne and impact sound insulation in one-third-octave bands

(50 Hz − 5 kHz). Fifty-one of them are airborne insulation measurements, and fifty-three

are impact curves. Measurements were carried out according to ISO 16283 (Part 1

& 2) [33, 34] and ISO 717 (Part 1 & 2) [37, 38]. The floor structures contain two

construction systems: wet and dry-rise solutions. A wet system can be identified as a

CLT-based floor with a thin, lightweight concrete layer on the top as a floating panel.
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A dry-rise solution is (in this thesis) referred to as a system without a concrete topping,

with boards on top of point supports with integrated resilient interlayers. The dry-rise

system separates the toppings and the CLT panel with an insulation layer in between; see

Figure 4.3. The measurements are related to 19 projects related to 15 wooden buildings.

Five buildings use a wet floor system, and the rest (ten) have a dry-rise system. Overall,

38 acoustic measurements are conducted on wet-floor systems (21 airborne curves and

17 impact curves). Moreover, 66 measurements are carried out on the dry-rise system (30

measurements are airborne, and 36 are impact curves).

Figure 4.3: Database classification for CLT-based assemblies. (a) An example of a wet
solution system. (b) An example of a dry-rise solution system.

The database includes several structural parameters of the measured floors, surrounded

walls, and specific information about linked junctions. For each acoustic measurement,

the structural materials of each floor and wall and their installation orders, thickness,

densities, floor construction system, wall type, junction type, and visco-elastic interlayer

thickness are considered in the modeling. In addition, each test floor’s area and the

receiving room’s volume are included in the classification. However, openings in the

surrounding walls are not considered during the modeling. Table 4.2 summarizes the

categorical variables of the structural parameters that are considered in the modeling.

Table 4.1 shows each model’s measurement number and type and the structures on
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which the measurements are performed. Moreover, it summarizes the number of airborne

and impact insulation curves for each network model.

Table 4.1: A division summary of the acoustic measurement numbers that are used to
develop each ANN model sound insulation estimations.

ANN model Model-I Model-II Model-III
Measurement number 252 100 104
Airborne measurements 113 100 51
Impact measurements 119 – 53
Measurements type laboratory laboratory field
Test structures floors façades floors

Table 4.2: Structural parameters used to classify the acoustic measurements for the ANN
Models.

Input parameters Model-I Model-II Model-III
−Material types X X X
− assembly solution system X X X
−Material installation order X X X
−Material thickness X X X
− Group thickness X X —
− Total thickness of the assembly X X —-

− Group density X X —
− Total density of the assembly X X —
− Structure area S X X X
− Volume of the receiving room V X X X
− Group mass X X —
− Total mass X X —
− Junction type — — X
− Surrounding wall type — — X
− Visco-elastic inter-layer thickness — — X
− Joist type — — X
− Joist depth X — X
− Spacing between joists X — X
− Studs depth — X —
− Spacing between studs — X —
− Resilient channels depth X X X
− Spacing between Resilient channels X X X
− Curve slope X — —
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4.2 Acoustic laboratory measurements in Lund university

The research project started at Lund University by attending courses related to

the thesis subject. In addition, the author implemented some lab-based acoustic

measurements at Lund University. The measurements were for quantifying airborne and

impact sound insulation for different structure components and following the latest ISO

standards. The latter measurements were used in this study in order to develop artificial

neural network models. Other previously implemented acoustic measurements at Lund

University were added to the database to create the network models. The acoustic

measurements obtained from Lund University are confidential and intended for research

purposes only. Figure 4.4 shows an example of a floor assembly’s airborne and impact

insulation measurement. It shows a CLT panel is connected to joists, and the spacing

between the latter is filled by an insulation material. Additionally, the details of the

ceiling are also illustrated. However, Figure 4.4 depicts the removal of the floor structure,

and the test structure is usually directly set up in the laboratory opening.

Since controlling the acoustic environment is vital in building acoustics, many

solutions are being proposed to decrease the noise level in buildings. Figure 4.5

illustrates a dry-rise solution system used in Europe efficiently in the noise control aspect

for floor structures. It depicts boards on top of point supports with integrated resilient

interlayers. The the dry-rise system separates the toppings and the structural panel with

an insulation layer in between.
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Figure 4.4: A wooden floor structure is installed in the laboratory of Lund University to
quantify the sound insulation measurement.

Figure 4.5: A dry-rise solution system that uses boards on top of point supports with
integrated resilient interlayers.
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4.3 Sound insulation measurements in a mock-up

building in Luleå, north of Sweden and in the

research center of FPInnovations in Quebec

During the research project, the author had opportunities to carry out additional

acoustic measurements in mock-up buildings in Luleå, in the north of Sweden and the

research center of FPInnovations in Quebec (industrial partner of the doctoral project).

The measurements were meanly for different structures’ reverberation time, airborne,

and impact sound insulation. Some of the measurements were conducted in empty spaces

and with furnished ones. Figure 4.6 shows joists fabrication and assembly using metal

connectors, which are utilized to set up a floor structure in a mock-up building in Luleå.

The joists are installed in the mock-up opening as illustrated in Figure 4.7 (a). In between

the joists, an insulation material is employed to fill the gaps to improve the acoustic

performance of the structural element. Figure 4.7 (b) showed an insulation matrix that is

installed under the floor topping, which is efficient in acoustic improvements.

Generally, many products are used as a floor toppings, such as lightweight concrete

layers, gypsum-based toppings, or parquet using different types of wood. Figure 4.8

shows the installation of the topping floor utilizing an underlying sheet and a parquet

layer.

Some of the measurements that are carried out in the mock-up in Luleå were aimed to

evaluate the low-frequency annoyance. For this purpose, the Japanese ball was utilized

to evaluate the impact sound insulation performance for the test floor; see Figure 4.9

(a). However, the measurements in the mock-up building were not limited to airborne

and impact sound insulation; different measurements also were included. Figure 4.9 (b)

illustrates the measurement of floor deflection under a specific load to verify the floor and

the joists assemblies. Moreover, the vibration of the assembled floor was also measured

using accelerators in different locations of the floor structure, see Figure Figure 4.10 (a)

and (b).
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(a) (b)

Figure 4.6: An example illustrates the joists assemblage used in a floor composition in
a mock-up building in Luleå. (a) Poisi-joists fabrication and assemblies using metal
connectors. (b) Joists are ready to be used in a floor structure.

(a) (b)

Figure 4.7: An example for floor installation in a mock-up building in Luleå. (a)
Insulation material filled the spaces between joists. (b) Insulation matrix used under
the top flooring to improve the sound insulation.
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Figure 4.8: Topping floor installation using a parquet layer and underlying sheet in Luleå.

(a) (b)

Figure 4.9: Measurement types that are carried out at the mock-up building in Luleå.
(a) Impact sound measurement using the Japanese ball. (b) Deflection measurement of a
floor.
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(a) (b)

Figure 4.10: Measurement set up for floor vibrations using accelerators on different
locations in Luleå. (a) Transferring measured data. (b) Accelerators and tapping
machine.

In addition, some measurements were implemented in the mock-up building in the

research center of FPInnovations in Quebec. The measurements follow the ASTM

standards for different partition types. The measurements in FPInnovations and in

Luleå were educational and informative opportunities for the author to stay updated

with the innovative industrial solutions and different measurement techniques in Europe

and North America. Figure 4.11 depicts some materials used as floor components in

FPInnovations. Figure 4.11 (a) illustrates parquet layers for floor topping. In addition,

Figure 4.11 (b) shows an insulation matrix fabricated from recycled rubber tires and can

contribute to sound insulation improvements. The relationship between sound insulation

and embodied carbon emission (EC) was discussed by the author’s contribution in a

conference paper [113].
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(a) (b)

Figure 4.11: Examples of materials that could be used in floor components in the mock-
up building in FPInnovations in Quebec. (a) Floor topping parquet layer. (b) Insulation
materials that are fabricated from recycled tires.

4.4 Field sound insulation measurements at University of

Quebec in Chicoutimi

Sound insulation measurements were carried out in classrooms at the University

of Quebec in Chicoutimi. Measurements were for airborne sound insulation curves

for walls and floors of certain classrooms and the reverberation time measurements.

In addition, vertical and horizontal impact sound insulation measurements were also

implemented. Figure 4.12 shows acoustic setup equipment in a classroom using a sound

source, amplifier, and sound meter. However, those measurements are not included in

the database to develop the artificial neural network models. The research project aims

to develop prediction tools for wooden structures, and the university building is mainly

made from concrete. Then those measurements were implemented from an educational

and training point of view and were out of the scope of this research.
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Figure 4.12: Acoustic measurements set up in a classroom at University of Quebec in
Chicoutimi.

(a) (b)

Figure 4.13: An experimental study to assess the noise levels induced by three coolers to
be installed at the University of Quebec in Chicoutimi. (a) Generating noise similar to
cooler noise. (b) measuring noise levels in the laboratory.

Furthermore, the author has had the opportunity to participate in acoustic projects
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other than building acoustics for wooden structures. Figure 4.13 reveals an experimental

study set-up to assess the noise levels generated by three coolers installed in different

locations outside the university’s main building and near two laboratories (on the first

and the second floor). The noise levels of an installed cooler were measured to generate

similar noise in future cooler positions. Then a sound source is installed in the future

positions to generate noise, and the noise level is measured in the adjacent laboratories.

The results were satisfactory, and façades of the university have good sound insulation

that fulfills the acoustic requirements for students.
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Chapter 5

PREDICTION OF SOUND
INSULATION USING ARTIFICIAL
NEURAL NETWORKS – PART I:
LIGHTWEIGHT WOODEN FLOOR
STRUCTURES

Résumé

L’approche des réseaux neuronaux artificiels est appliquée pour estimer les

performances acoustiques des courbes d’isolation aux bruits aériens et aux bruits

d’impact de différents planchers légers en bois. Le modèle de prédiction est développé

sur la base de 252 courbes de mesure normalisées en laboratoire dans des bandes d’un

tiers d’octave (50 Hz − 5000 Hz). Les caractéristiques physiques et géométriques de

chaque structure de plancher (matériaux, épaisseur, densité, dimensions, masse, etc.)

sont utilisées comme paramètres de réseau. La capacité de prédiction est satisfaisante

et le modèle peut estimer les bruits aériens mieux que les bruits d’impact, en particulier

dans la gamme de fréquences moyennes (250 Hz − 1000 Hz), alors que les bandes de

fréquences plus élevées présentent souvent des erreurs importantes. La prévision de

l’indice pondéré de réduction du bruit aérien Rw a été calculée avec une erreur maximale

de 2 dB. Cependant, l’erreur a augmenté jusqu’à 5 dB dans le cas le plus défavorable

de la prévision du niveau de pression acoustique d’impact normalisé pondéré Ln,w.

Le modèle a montré de fortes variations près des zones de fréquence fondamentale et

critique, ce qui affecte la précision. Une analyse d’attribution des caractéristiques a



exploré les paramètres essentiels de l’estimation de l’isolation acoustique. L’épaisseur

des matériaux d’isolation, la densité des dalles en bois lamellé-croisé et des planchers

flottants en béton, ainsi que la densité totale des structures de plancher semblent affecter

le plus les prédictions. Une comparaison entre les systèmes de plancher sec et humide

a montré l’importance de la partie supérieure des planchers pour l’estimation des bruits

aériens et des bruits d’impact dans les basses fréquences.

Mots clés: bruit aérien, bruit d’impact, isolation, modèle de prédiction, réseaux

neuronaux artificiels
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Abstract

The artificial neural networks approach is applied to estimate the acoustic performance

of different lightweight wooden floors’ airborne and impact sound insulation curves. The

prediction model is developed based on 252 standardized laboratory measurement curves

in one-third octave bands (50 Hz − 5000 Hz). Physical and geometric characteristics

of each floor structure, such as materials, thickness, density, dimensions, mass, etc., are

utilized as network parameters. The predictive capability is satisfactory, and the model

can estimate airborne sound better than impact sound cases, especially in the middle-

frequency range (250 Hz − 1000 Hz), while higher frequency bands often show high

errors. The weighted airborne sound reduction index estimate Rw was calculated with a

maximum error of 2 dB. However, the error increased to 5 dB in the worst-case prediction

of the weighted normalized impact sound pressure level Ln,w. The model showed high

variations near the fundamental and critical frequency areas, affecting accuracy. A feature

attribution analysis explored the essential parameters of estimation of sound insulation.

The thickness of the insulation materials, the density of the cross-laminated timber slab,

the concrete floating floors, and the total density of floor structures affect predictions the

most. A comparison between wet and dry floor solution systems indicated the importance

of the upper part of floors to estimate airborne and impact sound in low frequencies.

Keywords: airborne sound, impact sound, insulation, prediction model, artificial neural

networks



5.1 Introduction

Managing the acoustic environment in buildings is a vital issue of both new and

renovated structures, particularly dwellings [114]. Enhancing the acoustic comfort level

of the occupants is also a key consideration in the research, design, and development

of current constructions [115]. Standardized measurements are used to obtain helpful

insulation data for existing building components, providing an indication or prediction

of the performance of these elements in a new structure. Such measurements may be

conducted in situ, or various test building elements can be set up in a laboratory, such as

for testing the insulation of wall or floor partitions [3, 43, 89, 110, 111, 116, 117].

In order to ensure an adequate indoor climate, it is necessary to use prediction models

and acoustic products with the expected performance. Previous works have presented

several prediction tools to estimate the acoustic behaviour inside buildings [8–12, 17,

79]. However, some of these tools have shown a significant deviation from the expected

outcomes [19–22]. In order to improve the accuracy of these tools, specific building

parameters must be taken into consideration, such as modeling the connection between

assemblies [12, 22, 30, 80].

Many problems arise for the acoustic performance prediction from that data due

to: uncertainties in the measurements and the material properties, workmanship,

and variations between field measurements (in a realized building) and laboratory

measurements (in a controlled environment). The sound insulation curves measured

for the same partition in a laboratory setup and in situ may deviate significantly due to

lots of reasons, the most profound being flanking transmission, i.e., indirect propagation

paths from the adjacent components in the entire mechanical system of a structure [3].

The acoustic comfort perception of residents may vary as well based on the material

properties (heavyweight or lightweight structures) and the different cases of the measured

sound insulation, e.g., airborne or impact sound related [30, 118, 119].

Wood has been widely used in construction engineering for its abundance in nature and

ease of use [120]. North America has seen wood-frame structures as the leading housing
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building system in the 20th century [121]. Lightweight construction is a technique that

uses materials to reduce the overall mass of a structure while maintaining its quality [122].

The term ’lightweight construction systems’ often refers to wooden buildings. The study

in this chapter (and thesis) focuses on this type of construction, and it could refer to joist

floors, framing walls, and CLT floors and walls. A challenge in some types of lightweight

construction is that the subjective sound insulation quality is perceived to be lower than

that of a heavier structure with the same sound insulation data [123].

The most straightforward prediction model based on mass, stiffness, and losses is

commonly used for single-wall structures but unsuitable for multi-layered and lightweight

constructions [114]. Accurately estimating sound insulation for double structures has

proven to be a challenge [3]. Mechanical connections between different materials, which

are difficult to consider in analytical approaches [28] and the variety of construction

materials make the prediction process complicated. Furthermore, the standardized

methods for estimating the acoustic performance of building elements indicated in

ISO 12354 Parts 1 and 2 [29, 124], which were developed based on data from heavy

monolithic constructions, are not appropriate for multi-layered, complex, and lightweight

structures [30].

Recently, machine learning (ML) and its applications have been employed for

tackling complex problems across various domains, such as image classification, speech

recognition, and building acoustic applications [17, 78, 125–131]. ML can be defined as

a branch of statistics wherein a model can learn autonomously based on data without

requiring explicit programming [132]. Thus, it is a tool utilized for large-scale data

processing. ML techniques, and deep learning (DL) in particular, demonstrate superior

performance when provided with large data sets, thus leading to enhanced predictive and

analytic power, with greater accuracy and fewer errors. In other words, ML models and

Deep Learning artificial neural networks (ANN) are more effective when supplied with

large and varied data sets encompassing a representative sample of cases.

Artificial Neural Networks have been employed for various purposes in the field

of acoustics. In audio engineering, studies have utilized ANN for optimizing the
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acoustic performance of car interiors [133,134] and for other applications such as speech

recognition [135–139]. In environmental acoustics, ANN has been used to recognize the

position of wind turbines using sound emission data of wind farms [140,141]. Moreover,

ANN has been used to predict the sound absorption of various materials based on their

physical properties [142, 143].

In building acoustics, ANN models have been used to predict the sound insulation

of sandwich partition panels and to accurately estimate the weighted airborne sound

reduction index Rw and sound transmission class (STC) values with an error of ±3 dB

and a confidence level higher than 95% [79]. Similar research was conducted on wooden

window insulation to estimate the Rw based on technical parameters such as window

typology, frame and shutters thickness, number of gaskets, Rw of glazing, and Rw of the

window [80]. However, these two studies were limited to estimating a single value for the

weighted index without utilizing full measurement curves in different frequency bands.

An Artificial Neural Network (ANN) was applied to predict the airborne sound

insulation curves of masonry walls [17]. Thirty-four laboratory measurements of simple

monolithic brick walls were studied, and their geometric and physical characteristics were

used as input data for the ANN model: material, dimensions, density, mass, Poisson’s

module, Young’s modulus, etc. Subsequently, a feature attribution analysis identified the

most statistically significant parameters influencing the airborne sound insulation [17].

The parameters found to have the most significant effect on the estimation were: mass

per unit area, the thickness of the wall, Young’s modulus, the length, and the height of the

brick. Although the predicted values agreed with the actual ones, the study was restricted

to a specific type of construction.

In a previous study by the authors [144], an artificial neural networks model was

used to accurately predict the acoustic spectrum of different lightweight wooden floor

structures. The model was based on only 67 measurements and two parameters (thickness

and installation order of the materials). Despite the model’s limitations, it demonstrated

acceptable accuracy in predicting Rw with 1 dB variation, suggesting that more precise

estimations can be made by adding more parameters and measurement data. However,
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the prediction of Ln,w gives higher deviations of 9 dB.

This chapter seeks to develop a prediction tool based on artificial neural networks for

estimating airborne and impact sound insulation for different floor structures. The data

used to carry out this study are measurements from different floor configurations that have

been standardized in a laboratory. A feature attribution analysis is conducted to determine

the most influential parameters and their effect on sound insulation.

5.2 Materials and methods

5.2.1 Laboratory acoustic measurements

The database is constructed with data collected from 252 standardized laboratory

tests conducted at Lund University in Sweden, FCBA in France, FPInnovations, and

CNRC [109] in Canada. The measurements are not necessarily implemented at the

latter sources but could be from their database. The tests involved 142-floor structures,

measuring airborne and impact sound insulation in the frequency range of 50 Hz to 5 kHz.

The airborne sound reduction index was measured following ISO 140-1 (1995) [110] or

the latest ISO 10140-2 (2010) [89] and ASTM E90-09 (2016) [32]. The impact sound

pressure level was assessed based on ISO 140-6 (1998) [111] or the latest ISO 10140-3

(2010) [43] and ASTM E492-09 (2016) [44].

The measurement data was adjusted to meet ASTM and ISO standards, which included

the calculation of the weighted airborne sound Rw and the weighted normalized impact

sound pressure level Ln,w as described in ISO 717-1 (2013) [37] and ISO 717-2 (2013)

[38] respectively. This conversion was necessary to ensure consistent acoustic descriptors

derived from the airborne and impact sound insulation curves.

In this study, Figures A1 and A2 in the Annex visually represent the 252 standardized

laboratory measurement curves utilized as input data for the ANN model. The database

contains two types of measurement curves: airborne sound reduction index R and

normalized impact sound pressure level Ln in one-third octave frequency bands (50 Hz

− 5000 Hz). Table 5.1 summarizes the data observations based on 142 different floor
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structures. Of these, 107 structures have airborne and impact sound insulation data, 26

have only airborne sound data, and 12 have only impact sound curves.

24 floor structures were used to validate the characteristics of the models, and another

24 was employed for testing and making predictions. Figure A3 in Annex A displays the

testing data cases of floor configurations, which were randomly selected from all the data

observations. These cases generally represent the typical trends of the insulation curves

but also contain some significantly higher or lower cases, such as floors #1, #4, and #9 in

Figure A1, or floors #2, #3 and #4 in Figure A2.

(a) (b)

Figure 5.1: Mean and standard variation of the standardized laboratory measurements.
(a) Standardized measurements for airborne sound reduction index. (b) Standardized
measurements for normalized impact sound pressure levels.

Table 5.1: A detailed description of the database number and their divided sets in the
ANN model.

Database ANN model

Number of 252 252

measurements

airborne impact training set validation set testing set

133 119 204 24 24
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Figure 5.2: A schematic descriptive example illustrating the database organization for
the floor components.

The floor structures in the database are composed of three distinct parts: upper, main,

and ceiling. The main part is the most prominent material in the floor assembly. The

upper and ceiling parts are collections of materials located above and below the main

layer, respectively (see Figure 5.2).

Table 5.2: List of structural parameters that are used as inputs to train the ANN model.

Parameters used in the prediction model Units Classes
− Floor system — wet or dry solution
−Material types — i.e. concrete layer, CLT panel, insulation materials, etc.
−Material installation order — first/ second/...
−Material thickness mm —
− Group thickness mm upper, main and ceiling parts
− Total thickness of the floor mm —
−Material density kg/m3 —
− Group density kg/m3 upper, main and ceiling parts
− Total density of the floor kg/m3 —
− Area of the floor structure S m2 —
− Volume of the receiving room V m3 —
− Ratio S/V — —
− Group mass P.U.A kg/m2 upper, main and ceiling parts
− Total mass P.U.A kg/m2 —
− Joist type — metal/ wooden
− Joist depth mm —
− Spacing between joists mm —
− Resilient channels depth mm —
− Spacing between Resilient channels mm —
− Curve slope — low (50 Hz − 200 Hz), middle (250 Hz − 1000 Hz),

high frequencies ( 1250 Hz − 5000 Hz)

The MySQL software [107] was used to organize the database in this study. A total

of 23 variables were used as structural parameters (Table 5.2), which were used as inputs

to train the ANN model. The model’s output values were airborne and impact sound
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insulation curves, with 21 values in dB in one-third octave bands for each curve. These

parameters included the type of materials used, the material layers order, the thickness

and density of the materials, the type of joists, the width and depth of joists, the area of

the test floor (S), the volume of the receiving room (V), the ratio (S/V), the total mass and

total density of the structure, the mass per unit area (P.U.A) of the upper, main and ceiling

parts, the depth of the resilient metal channel, the spacing between resilient channel, the

slope of the curves in three different frequency ranges (Low: 50 Hz − 200 Hz, Middle:

250 Hz − 1000 Hz and High: 1250 Hz − 5000 Hz), and the airborne and impact sound

insulation curves in dB in one-third-octave bands.

5.2.2 The configuration of artificial neural networks model

The ANN model is built on a multilayer perceptron algorithm consisting of two hidden

layers with 40 and 30 neurons each. Cross-validation was adopted to design and validate

the model, as well as to address overfitting [96, 145]. The LeakyReLU (Leaky Rectified

Linear Unit) function [97, 147, 148] was used as the activation function for both layers.

This type of ReLU-based activation function has a slight slope for negative values. The

Adam optimizer [149], which is a gradient descent-based optimization algorithm [105]

used to optimize neural networks [150], was utilized for training the network and

overcoming the vanishing gradient issues that are faced with normal activation functions

such as sigmoid and tan functions by giving negative gradients instead of zeros [151].

The measurements are randomly split into three subsets: training, validation, and test

set. The training set, which is 80% of the total, is used to initiate the ANN features. The

validation set, which is 10% of the total, is employed to optimize the model’s architecture.

Finally, the test set, the remaining 10%, is used to estimate the predictive capabilities of

the chosen model.

The Root-Mean-Squared Error (RMSE) is a cost function used to evaluate a model’s

performance when making predictions with continuous values, such as when predicting

an acoustic curve.

RMS E =

√√
1
n

n∑
i=1

(ŷi − yi)2, (5.1)

90



where n is the total number of acoustic measurements that are used as a training set, ŷi and

yi are the predicted and measured values, respectively. The overall prediction accuracy

of the model (using the test set) is equal to 3.97 dB. For better evaluation in different

frequency ranges, each predicted curve is evaluated individually against the measured

one using RMSE function.

5.3 Results and discussion

5.3.1 Prediction of airborne sound insulation

After training and validating the ANN model with 202 and 24 laboratory

measurements, respectively, another 24 sound insulation curves are randomly selected

to test the model’s accuracy (12 for airborne reduction index and 12 for impact sound

pressure levels). The acoustic performance (in dB) in one-third octave bands (50 Hz − 5

kHz) is the set of dependent variables the model is used to be estimated. Figure A3 in

Annex A displays the testing data cases of floor configurations.

The comparison between the measured and predicted curves of different floor

configurations for airborne sound insulation, as shown in Figure 5.3, reveals that the

predicted curves are very close to the measured ones, particularly in the low-frequency

ranges. However, there are some discrepancies in the high-frequency bands. Floor #1 has

the smallest deviation, with a RMSE of 1.65 dB, while floor #9 has the most significant

deviation at 7.63 dB. Floor #9 comprises a simple configuration of 160 mm CLT and two

light layers on top, and floor #1 is only slightly more complex.

It is often observed that significant variance in sound radiation is present at high

frequencies (1.25 kHz − 3 kHz), which is typically the critical frequency for lightweight

floors. This is due to resonance, which makes the sound radiation more efficient at this

frequency [152]. It is possible to observe that the predicted curves tend to be smoother

near the critical frequency, which is indicative of the limitations of the model when

it comes to understanding these phenomena. This behavior is typical for plate-type

structures, that is, components where the third dimension is negligible compared to
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length and width, such as a gypsum plate [3].

Figure 5.3: Comparison between measured and predicted acoustic curves for the tested
floor structures for airborne sound reduction index.

Table 5.3: Comparison between measured and predicted sound reduction indexes for
airborne sound insulation in test floor structures.

Floor no. RMSE (dB) Rw (dB) C100−3150 C50−5000 RwPred (dB) CPred 100−3150 CPred 50−5000

1 1.65 38 0 1 39 -1 0
2 3.59 61 -2 -4 59 -2 -2
3 2.07 54 -2 -1 54 -2 -1
4 5.18 35 0 0 37 -1 0
5 2.33 49 -4 -5 49 -4 -5
6 1.9 48 -3 -3 50 -4 -5
7 5.84 54 -2 -2 54 -1 0
8 3.31 43 0 0 41 -1 0
9 7.63 57 -1 -3 56 -2 -1

10 2.21 50 -3 -5 51 -4 -5
11 1.75 44 -2 -2 46 -4 -4
12 2.68 55 -3 -4 54 -4 -5

However, this behaviour at the critical frequency may not be as apparent when dealing
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with thicker floor slabs or multilayered floor configurations. The sound radiation is

dependent on the overall vibration response of the system after excitation, as well as the

material’s properties included [152]. As such, every plate structure is excited below the

critical frequency and radiates sound at low levels. However, significant sound radiation

is observed in the mechanical system at the critical frequency. Above this, the whole plate

structure can synchronize and radiate sound.

In certain cases, deviations can be seen at low frequencies below 150 Hz, where

the fundamental resonances (first eigenfrequencies) are more evident [3], for example,

floors #4 and #9. At these low frequencies, the airborne sound reduction performance is

challenging to estimate accurately by the network model.

Table 5.3 demonstrates the total root-mean-square error between measured and

predicted airborne sound curves for each tested floor configuration in one-third octave

bands. The table also reveals the measured and predicted single-number quantities, Rw

and RwPredicted respectively, for each test floor. The differences between the weighted

reduction indices range from zero deviation (floors #3, #5, and #7) to a maximum

deviation of 2 dB (floors #2, #4, #8, and #11). The calculated and predicted correction

terms C100−3150 and C50−5000 in Table 5.3 demonstrate similar levels of deviation that do

not exceed the deviations from the weighted reduction index comparison.

Figures 5.4 and 5.5 illustrate the differences between the measured and predicted sound

insulation curves regarding dB and normalized errors, respectively. The most significant

errors are seen in the high frequencies, while in the low frequencies, the model shows

acceptable accuracy except for floors #4 and #7 (Figure 5.4). For the normalized errors,

the frequencies are scattered randomly in the interval [−1, 1] with a higher density in the

low and high frequencies (Figure 5.5).
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Figure 5.4: Error variations between measured and predicted airborne sound reduction
index curves (R( f )-R( f )Predicted) for test floor structures.

Figure 5.5: Normalized error variations (interval of [−1, 1]) between measured and
predicted airborne sound reduction index curves for test floor structures.
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5.3.2 Prediction of impact sound insulation

The model was tested on 12 randomly chosen test floors to evaluate its performance in

predicting the normalized impact sound pressure level curves from 50 Hz to 5 kHz (Figure

5.6). The results showed that the model generally had a good agreement between the

measured and predicted curves, particularly in middle frequencies. The greatest accuracy

was found for floor configuration #12, with a deviation of only 2.28 dB (RMSE). Floor

#7 had the greatest difference of 7.07 dB.

At frequencies close to 1.25 kHz, the critical frequency effect is again responsible for

discrepancies between the measured and predicted curves, which can be seen in floors

#3, #4, and #10. In addition, similar disagreements between the two curves appear near

fundamental natural frequencies (first eigenfrequencies) of the floor below 200 Hz, for

example, for floors #2, #3, #4, #7 and #9 (Figure 5.6).

The weighted normalized impact sound pressure level indices (Ln,w and Ln,wPredicted) are

presented in Table 5.4. The largest error deviation is up to 5 dB (RMSE) for floors #2 and

#3, while for floors #1 and #11, the estimated weighted index is equal to the measured

one. Additionally, the correction terms, CI,100−2500 and CI,50−5000, show errors between

0 − 3 dB, which are within the range of deviations for the weighted indices.

Figures 5.7 and 5.8 show the prediction error and normalized error deviations for the

impact sound pressure levels of the floor samples. The predicted dB values for impact

sound pressure levels in the low-frequency bands are more accurate than high frequencies,

except Floors #7 and #8. This is important as the lower frequencies are typically more

influential in building acoustics for lightweight wood assemblies [153–155].

It is also known that impact sound curves have significantly low-frequency content

with potentially more significant measurement uncertainty due to laboratory receiving

room effects [156,157]. These effects depend on the location of the Schroeder frequency,

which is the point above which the diffuse field assumptions hold. Below this frequency,

there can be unpredictable influence from the room’s sound field during measurements.
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Figure 5.6: Comparison between measured and predicted values for the test floor
structures for impact sound pressure level.

Table 5.4: Comparison between measured and the predicted weighted normalized impact
sound pressure level for impact sound insulation in tested floor structures.

Floor no. RMSE (dB) Ln,w (dB) CI,100−2500 CI,50−5000 Ln,wPred (dB) CPred I,100−2500 CPred I,50−5000

1 1.93 64 1 1 64 0 0
2 3.96 48 2 6 53 4 6
3 2.68 53 3 4 48 2 4
4 3.54 88 -4 -4 85 -4 -4
5 3.07 68 0 3 67 1 4
6 3.16 66 1 4 68 2 4
7 7.07 64 -2 -1 66 -5 -2
8 4.7 64 -1 0 66 1 1
9 6.74 64 -2 1 60 0 1

10 4.46 63 1 5 60 1 5
11 1.76 60 1 6 60 0 5
12 2.28 68 0 2 70 0 3
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Figure 5.7: Error variations between measured and predicted impact sound pressure
levels curves (Ln(f)-Ln(f)Predicted) for test floor structures.

Figure 5.8: Normalized error variations (interval of [−1, 1]) between measured and
predicted impact sound pressure curves for test floor structures.
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(a) (b)

Figure 5.9: Histograms of error variations in the prediction model for airborne sound
reduction index and impact sound pressure levels for test floor structures in the frequency
range (50 Hz − 5000 Hz) in one-third octave bands. (a) Airborne sound reduction index.
(b) Normalized impact sound pressure levels.

The results of the normalized error distribution across frequency bands appear to be

equally random and consistent for both low, middle, and high-frequency bands. Figure

5.9 illustrates the histograms of error variations in predicting airborne sound and impact

sound insulation curves for test floor structures in the frequency bands (50 Hz − 5000

Hz). It can be seen that the errors are concentrated in the range of (-5, 5) dB for both

airborne and impact sound estimations. Additionally, Figure 5.9 (a) and Figure 5.9 (b)

demonstrate that the histograms are not symmetrical, with a higher peak for airborne

sound reduction index and a lower peak for impact sound pressure levels. This indicates

a higher accuracy of forecasting airborne sound insulation curves than impact sound

insulation curves, which is also reflected in the calculation of single number quantities

(Rw and Ln,w).

5.3.3 Sensitivity analysis results

A feature attribution analysis is conducted to investigate the connections between

parameters and how they affect sound insulation estimations. This analysis is critical for

this kind of modeling to evaluate the relevance of each dataset parameter on the prediction.

It assesses the significance of different parameters and gives a comprehensive view of the
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influence in each frequency band.

Certain materials were selected to investigate their contribution to sound insulation

estimation based on their most common presence in acoustic measurements. Physical

parameters such as the area of the floor being tested, the volume of the receiving room,

the thickness and density of the upper, main, and ceiling parts of the floor, as well as other

parameters, were taken into account to explore the effect they have on the modeling.

A further division is made on the measurements to assess the effect of dry and wet floor

systems’ upper, main, and ceiling elements on estimating acoustic insulation curves. A

wet floor solution is described as a lightweight wooden floor structure with a thin concrete

layer on top as a floating layer, while a dry floor system is a wood floor without any

concrete layer on the top.

Feature attributions for airborne sound estimations

Figure 5.10 illustrates the correlation between the thickness and density of specific

materials and their contribution to airborne sound insulation. It shows that, in the

low frequencies, the densities of the concrete and CLT (cross-laminated timber) layers

significantly impact the prediction. In the middle and high-frequency bands, the

sensitivity of the density of the concrete layer and CLT panel remain essential, though

diminished. Furthermore, the density of OSB (oriented strand board), chipboard, and

plasterboard layers also have notable attributions across all frequency bands.

The thickness of some insulation materials (e.g., fiber glass, rock fiber, cellulose fiber)

is usually a major factor that affects the prediction of insulation curves. This is not true

for glass wool and rock wool in the presented ANN model. Contradicting the results of

a previous study [161], there are no differences in sound reduction index in frequencies

above 1.25 kHz for different densities of the rock wool. However, the ANN model shows

that the effectiveness of rock wool in the middle frequencies is significant, which is also

concluded in [161]. In addition, other floor components, such as rock wool, cellulose fiber

sprayed on, and air gap, are more influential than their thicknesses or densities regarding

the material effect.
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Figure 5.10: Feature attributions of structure layers and material types for airborne
sound prediction.

The results of Figure 5.11 indicate that the volume of the receiving room V affects low-

frequency sound. However, the area of the test floor S influences high frequencies, which

agrees with another study that highlighted the importance of S in the predictions [162].

The ratio S/V does not have any notable effect. This contrasts the findings of a different

study [162], which reported that S/V had a significant impact.

The total thickness parameter and thickness of the main part have an obvious

correlation with higher frequency bands. The spacing (central distance) between joists

impacts the estimation of airborne sound insulation in the middle and high frequencies.

It is also observed that the spacing between the resilient metal channels (in suspended

ceilings) affects the prediction of airborne sound insulation in the middle frequencies.

However, parameters such as the slope of the acoustic spectrum (in low, middle, and high

frequencies), depth of the joist and resilient channels, and type of the joist appear to have

only minor influences.
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Figure 5.11: Feature attributions of additional parameters for airborne sound prediction.

Figure 5.12: Feature attribution of dry and wet floor solutions’ upper, main, and ceiling
parts for airborne sound prediction.

The results of Figure 5.12 suggest that the thickness and density of the upper, main,
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and ceiling parts of dry and wet floor solutions influence the airborne sound insulation.

Surprisingly, the ceiling part’s effect appears insignificant for all floor solutions. For dry

floor systems, the thickness of the upper part has a noticeable effect only for frequencies

in the low and high ranges. In middle and high frequencies, however, the thickness and

density of the main part have a significant impact.

The density of the wet floor systems’ upper part (containing a concrete layer) affects

the prediction of airborne sound at all frequencies. This is shown in Figure 5.10, which

demonstrates the impact of the density of a concrete layer. For dry solutions, the thickness

of the main part plays a significant role in the middle and high frequencies.

Feature attributions for impact sound estimations

Figure 5.13 shows the effect of different materials on the prediction of normalized

impact sound pressure levels. The thickness of the CLT panel has a similar effect size for

all frequencies (as seen in Figure 5.10). However, the thickness of the concrete layer has

a minor impact on the prediction. The density of the CLT slab has a significant attribution

in low and high frequencies and decreases in the middle frequencies. The density of the

concrete layer has the highest sensitivity for frequencies between 50 Hz and 250 Hz.

The thickness of insulation materials is essential in higher frequency ranges,

particularly for fiberglass, rock fiber, and cellulose fiber, but not for glass wool in the

ANN model. Additionally, it is generally accepted and assumed that no significant noise

reduction is achievable in low-frequency bands, as stated by the force transmissibility

theory, which states that the injected force is transmitted directly to the structure without

any attenuation at low frequencies [158, 159].
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Figure 5.13: Feature attributions of structure layers and material types for impact sound
prediction.

Figure 5.14: Feature attributions of additional parameters for impact sound prediction.

Figure 5.14 shows that the spacing between joists and the spacing between resilient
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channels affect the estimation of impact sound insulation only in high frequencies.

Additionally, the volume of the receiving room V has a more significant effect on the

prediction of sound insulation in low-frequency bands, compared to the findings of [156],

which concluded that the effect of the volume is not frequency dependent. The slope of

the measurement curves, the floor area, the ratio S/V, and the joist type have a minimal

impact on the prediction of impact sound insulation.

Figure 5.15 results suggest that the thickness of the upper part has the most significant

influence on the impact of sound insulation predictions for dry floor systems in low and

middle frequencies. For wet floor systems, the thickness of the upper part appears to affect

the predictions more than the density in low and high frequencies, while the main part has

a lesser effect on the predictions in the middle and high frequencies. The ceiling part

has little impact on the dry and wet floor solutions in middle and high frequencies. The

effect of concrete toppings in wet systems is also highlighted in an experimental study of

different concrete topping thicknesses [160].

Figure 5.15: Feature attribution of dry and wet floor solutions’ upper, main, and ceiling
parts for impact sound prediction.

The data in Figure 5.15 is consistent with the classic mass-spring-damping system
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approach [3], indicating that below the first eigenfrequency (the stiffness-controlled

region) thickness is the main parameter in predicting impact sound insulation.

Additionally, the results confirm the previously established conclusion that density

and thickness have a more significant contribution in the middle and high-frequency

bands (the mass-controlled and coincidence-controlled regions, separated by the critical

frequency). The latter findings were also highlighted in [114].

Common observations in prediction of for airborne and impact insulation

It appears that the most significant discrepancies between the measured and predicted

values in the results of the ANN model (for both airborne and impact sound insulation)

are found for the simplest floor configurations, such as floor #4 in Figure 5.3 and floor #9

in Figure 5.6. This is likely due to the lack of measurements taken on simple structures

in the database, which could affect the accuracy of the estimation. The results indicate

significant difficulties in estimating airborne and impact sound insulation curves at high

frequencies. This is probably because of the critical frequency locations for the test floors

at high frequencies, as well as the increasing standard deviation of the sound insulation

curves above 1 kHz (Figure 5.1). This limitation in the ANN model was previously noted

by [17]. Similar problems appear with the estimations in the low-frequency band at the

fundamental frequencies.

The ANN model is not able to accurately predict all fluctuations of the measured

curves, leading to smoother forecast curves compared to the measured curves, as seen in

Floors #4, #7, #8, #9, and #10 in Figures 5.3 and 5.6. This is due to the statistical nature

of neural networks, which rely on the measurements in the database to form an estimation

that follows an average trend. The more similar measurements to the test floors in the

training set, the higher the likelihood of accurately estimating the test floor curves.

Table 5.5 provides a comparison between the measured and the predicted airborne

and impact sound insulation curves split into three different zones: low (50 Hz − 200

Hz), middle (250 Hz − 1000 Hz) and high frequencies (1250 Hz − 5000 Hz). The

error variations are assessed using the root-mean-square error (RMSE) function. The
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RMSE value in low frequencies for airborne sound estimations is similar to that of the

impact insulation cases. However, the model’s predictive capability for airborne sound

in the middle-frequency range is better than impact insulation’s. In high frequencies, the

accuracy is lower than the other zones for airborne and impact sound forecasts due to

critical frequency. Overall, Table 5.5 demonstrates that the prediction of airborne sound

reduction curves is more accurate than impact sound insulation curves, particularly in the

middle-frequency range.

The results of Figures 5.11 and 5.14 demonstrate that the floor structures’ total

density significantly impacts the prediction of airborne and impact sound insulation in

all frequencies. Additionally, the volume of the receiving room V has a minor effect on

predictions of airborne and impact sound at lower frequencies.

The sensitivity analysis results suggest that the material composition of the concrete

layers and CLT panels significantly impacts sound estimation, particularly at lower

frequencies. The effects of CLT, concrete layers, and rock wool can be seen in airborne

and impact sound prediction. Moreover, similar trends are observed for the thickness

parameters of certain insulation materials (fiberglass, rock fiber, cellulose fiber), although

the sensitivity is higher in higher frequencies. This is reasonable, as fiber insulation

materials have better noise absorption capabilities in the middle and high-frequency

ranges.

A similarity between wet and dry floor solutions regarding sound sensitivity is that the

main part influences sound (particularly in higher frequencies). In contrast, the ceiling

part has a minimal influence on both kinds of insulation (airborne or impact).

Table 5.5: Comparison between measured and predicted airborne sound reduction index
R and normalized impact sound pressure levels Ln clustered in low, middle, and high
frequencies using the RMSE function for test floor structures.

Root-Mean-Square Errors in dB

Frequency range Low Middle High

50 Hz − 200 Hz 250 Hz − 1000 Hz 1250 Hz − 5000 Hz

R (airborne sound) 3.76 2.55 4.79

Ln (impact sound) 3.79 3.48 4.97
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5.4 Conclusions

This chapter presents a model based on artificial neural networks to predict the airborne

sound reduction index R and normalized impact sound pressure levels Ln for various

lightweight floor structures. This model is validated with 252 standardized laboratory

measurements and has good accuracy with a root-mean-square error (RMSE) of 1.67 −

7.63 for the frequency bands 50 Hz − 5000 Hz. Furthermore, when considering the single-

number quantities, the weighted airborne sound reduction index Rw and the weighted

normalized impact sound pressure levels Ln,w, the accuracy improves with an RMSE of

0 − 2 dB and 0 − 5 dB, respectively.

The model demonstrated a better accuracy for airborne sound prediction, particularly

in the mid-frequency range of 250 Hz − 1000 Hz. However, its predictions around

the fundamental and the critical frequencies were often inaccurate, emphasizing the

importance of coupling effects in developing a reliable prediction tool.

A sensitivity analysis was conducted to determine which material had the most

significant impact on the prediction of sound insulation. The thickness of the insulating

materials is crucial in the middle and high frequencies. Additionally, the density of

the CLT panels and concrete floating floors on top of lightweight floors also affects the

prediction of airborne and impact sound insulation. Furthermore, the total density of the

floor structure is an essential factor in forecasting these insulation curves.

When comparing wet and dry solution systems, the thickness of the main part of the

floor structure has the most influence on the prediction sensitivity across all frequencies.

No effects were seen on the prediction sensitivity for the ceiling part of the floor structure.

However, the structure’s upper part significantly impacts the prediction sensitivity of low-

frequency impact sound in wet and dry cases.
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Chapter 6

PREDICTION OF SOUND
INSULATION USING ARTIFICIAL
NEURAL NETWORKS – PART II:
LIGHTWEIGHT WOODEN FAÇADE
STRUCTURES

Résumé

Un modèle de prédiction basé sur des réseaux neuronaux artificiels est adapté pour

prévoir les performances acoustiques de l’isolation contre les bruits aériens de divers

murs de façade en bois léger. 100 courbes d’isolation ont été utilisées pour développer

le modèle de prévision. Les données sont des mesures en laboratoire de murs de façade

dans des bandes de tiers d’octave (50 Hz − 5 kHz). Pour chaque mur de façade, les

informations géométriques et physiques (type de matériau, dimensions, épaisseurs,

densités, etc.) sont utilisées comme paramètres d’entrée. Le modèle montre une capacité

de prédiction satisfaisante pour la réduction des bruits aériens. Une plus grande précision

est obtenue aux fréquences moyennes (250 Hz − 1 kHz), tandis que les gammes de

fréquences inférieures et supérieures présentent souvent des écarts plus importants.

L’indice pondéré de réduction du bruit aérien (Rw) des façades peut être estimé avec une

différence maximale de 3 dB. Parfois, le modèle présente de fortes variations dans les

fréquences fondamentales et critiques qui influencent la précision de la prédiction. Une

analyse de sensibilité est mise en œuvre pour étudier l’importance des paramètres dans

les estimations d’isolation. La densité des matériaux (panneaux de bois lamellé-croisé,



plaques de plâtre), l’épaisseur des matériaux d’isolation, l’épaisseur et l’espacement

entre les montants intérieurs et la densité totale des façades sont des facteurs qui ont un

impact significatif sur les prédictions. Les résultats soulignent également l’importance de

l’épaisseur des façades et de la densité totale des couches extérieures groupées.

Mots clés: bruit aérien, façade, modèle de prédiction, réseaux neuronaux artificiels
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Abstract

A prediction model based on artificial neural networks is adapted to forecast the

acoustic performance of airborne sound insulation of various lightweight wooden façade

walls. One hundred insulation curves were used to develop the prediction model. The

data are laboratory measurements of façade walls in one-third-octave bands (50 Hz

− 5 kHz). For each façade wall, geometric and physical information (material type,

dimensions, thicknesses, densities, and more) is used as input parameters. The model

shows a good predictive capability for airborne sound reduction. Better accuracy is

obtained at middle frequencies (250 Hz − 1 kHz), while lower and higher frequency

ranges often show deviations in the results. The weighted airborne sound reduction index

(Rw) of façades can be estimated with a maximum difference of 3 dB. Often, the model

shows high variations within fundamental and critical frequencies that influence the

predictive precision. A sensitivity analysis is implemented to investigate the significance

of parameters in insulation estimations. The material density (i.e., cross-laminated

timber panel, gypsum board), thickness of the insulation materials, thickness and spacing

between interior studs, and the total density of façades are factors of significant weight

on predictions. The results also emphasize the importance of façades thickness and the

total density of the clustered exterior layers.

Keywords: airborne sound insulation, façade, prediction model, artificial neural networks



6.1 Introduction

Timber is a favorable choice in construction engineering due to its availability in

nature and ease of handling [120]. Additionally, it has a lower carbon footprint than

concrete and offers excellent thermal performance [163, 164]. This has led to wooden

buildings becoming increasingly popular in places such as Scandinavia and Australia

[165,166]. In North America, wood-frame structures have been the most common form of

building construction in the 20th century [121]. Recently, cross-laminated timber (CLT)

has become an innovative product for the North American construction market, and its

serviceability as a sustainable material has gained much attention from researchers and

the wood industry [167].

Lightweight wooden structures can reduce construction time and cost; however, they

do not provide the same sound insulation as concrete or heavier structures [123]. This

applies to construction components such as floors, roofs, internal walls, and façades. The

quality of sound insulation in these constructions is considered lower than traditional

concrete constructions [123].

The importance of sound insulation of building façades is evident, and the acoustic

environmental needs to be controlled. Poorly designed façade walls can decrease the

acoustic comfort for occupants in a building. To ensure adequate levels of acoustic

comfort, controlling the acoustic environment of new and renovated buildings is necessary

[114].

Although certain façades are designed primarily for thermal insulation and fire

safety; acoustic aspects are often neglected or misunderstood [168]. Standardized

measurements, such as those outlined by ISO and ASTM [3, 32–34, 89, 116, 169], can

be used to characterize the acoustic performance of façade structures, but they are costly

and time-consuming [170]. Furthermore, results obtained from such measurements are

specific to certain specimens and cannot be generalized to different structures.

It is essential to use accurate prediction tools to forecast structural elements’ acoustic

behavior to ensure good indoor acoustic quality. Various approaches have been developed
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to predict sound transmission through multiple elements, including theoretical approaches

[8–11], numerical tools [12, 13], and machine learning applications [17, 79]. However,

some of these tools have revealed significant deviations due to different reasons, such

as material uncertainties or modeling limitations [13, 19–22]. It is necessary to take

into account specific construction details during the modeling process to improve their

accuracy, such as mechanical connections between assemblies [12, 22, 30, 80].

A direct prediction tool based on theory-based analytical expressions, including

stiffness, mass, and damping, may be suitable for single-leaf elements. However, it

is much more challenging to forecast the sound insulation performance of multi-layer

structures accurately [3]. As such, structural connections between elements and diversity

in building materials cannot be adequately considered in analytical approaches [28].

Machine learning algorithms have enabled breakthroughs in different areas that

were previously difficult to tackle, such as image recognition, speech recognition,

language translation, and acoustics [17, 126, 129, 171]. It is a science that allows

algorithms to learn and make predictions based on data [132]. The more data fed into

these models, particularly artificial neural networks (ANN), the better their predictive

power will be. ANN has been commonly used for different acoustic applications,

such as audio engineering, the vehicle industry, acoustic material, and environmental

acoustics [133, 139, 140, 142].

In building acoustics, a convolutional neural networks model was used to classify

inter-floor noise in a household by recording different noise sources for 24 hours [78].

Moreover, an ANN model was applied on sandwich partition panels for the estimation of

sound insulation, weighted airborne sound reduction indices Rw and sound transmission

class STC values, and the results were within ±3 dB differences [79]. Another research

was conducted to predict Rw using measurements related to wooden windows utilizing

technical parameters [80]. However, these researches only dealt with single-number

quantities (SNQ) without estimating full-spectrum insulation curves.

By taking the predictions of ANN one step further, the authors of [17] conducted

detailed predictions of airborne insulation in 1/3-octave bands for masonry walls using
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laboratory measurements on thirty-four brick walls. While the estimated values agreed

with the measured ones, the study was limited to a monolithic structure. To expand

the scope, the authors of [144] used ANN to estimate the sound insulation behavior

of different lightweight wooden floors in frequency bands (50 Hz − 5 kHz), using 67

insulation measurements and two variables (material thickness and their installation

order). The model provided reasonable results regarding SNQ with a maximum difference

of 1 dB in the estimation of Rw. However, the accuracy decreased with deviations up

to 9 dB in the prediction of Ln,w (normalized weighted impact sound pressure level).

Despite the sample size limitation, the study showed good potential for predicting sound

insulation data.

A comprehensive study was carried out by [83] in which 252 standardized laboratory

measurements were conducted on lightweight wooden floors with varying construction

parameters such as material type, material thickness and density, and area of the floor

structure. The results found that when more data and detail were included, a better

accuracy in predicting Ln,w could be achieved, with a variance of no more than 5 dB.

However, the variance in forecasting Rw increased to a maximum of 2 dB yet still yielded

good results. An attribution analysis was conducted to determine the most critical

parameters in forecasting sound insulation curves.

This chapter aims to create an Artificial Neural Network (ANN) model to predict

the airborne sound insulation of lightweight wooden façade walls. The data consists

of laboratory measurements of complete external wall systems, not including doors,

windows, or other openings. A sensitivity analysis will be conducted to determine how

parameters impact the prediction of sound insulation.

6.2 Materials and methods

6.2.1 Acoustic experimental tests for façade structures

The database developed includes 100 standardized laboratory measurements obtained

from Lund University in Sweden and The National Research Council (NRC-CNRC)
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[112] in Canada. The measurements consist of airborne insulation measurements of 100

different façade walls in one-third-octave bands ranging from 50 Hz to 5 kHz. These

measurements were conducted according to ISO 10140-2 (2010) [89] and ASTM E90-

09 (2016) [32]. The measurements performed in compliance with ASTM standards have

been converted to the ISO 717-1 (2013) [37] descriptor (the weighted airborne sound

Rw) in order to have a consistent agreement between insulation data. This conversion is

necessary to standardize the acoustic descriptors in the measurements.

Figure 6.1 shows the mean and standard deviations of the insulation data of façade

structures. The total insulation curves are presented in the Annex in Figure B1. The

database includes curves of airborne sound reduction index R( f ) in the 50 Hz to 5 kHz

frequency range. Therefore, every façade structure has technical parameters and a full-

spectrum insulation curve.

Figure 6.1: Mean and standard variation of airborne sound insulation curves of façade
walls.

Ten measurements of different façade walls were used to create the features of the

ANN model. Additionally, a separate set of ten curves (selected randomly) were chosen

to assess the accuracy of the model (see Figure B2 in Annex B for a detailed view of the

assemblies). These testing curves represent the insulation curves’ average tendency and

extreme values at all frequencies, as seen in façades #4, #9, and #1 in Figure B1. In the
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database, each façade configuration is divided into three parts: interior, main, and exterior,

corresponding to the order in which each façade component is installed. The main part of

the façade holds the dominant material or component. The interior and exterior sections

each consist of components that are located alongside the main façade material (see Figure

6.2).

Figure 6.2: A schematic presenting the division of each façade component in the database
using an example of the test façade #6.

The MySQL software [107] is used to organize the database, which contains 10

variables of structural parameters of each façade wall (Table 6.1). These parameters

are used to train the network model. They are chosen based on the type of façade

component, their installation position, thickness and density of each layer, depth of studs

and spacing between them, area of a façade (S), the volume of a receiving room (V),

group and total thickness and mass of a structure, resilient metal channel depth and

spacing between them. The output/target of the ANN model is the value of the airborne

sound reduction index in one-third-octave bands. Despite the significant effect of specific

elastic properties on sound transmissions, such as dynamic stiffeners and the modulus of

elasticity of each material, they are not considered in the input parameters due to the lack

of information in acoustic measurement reports.
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Table 6.1: Structural variables are utilized to organize the database and employed as
inputs for the network model.

Parameter Unit Class
− type of material — i.e., CLT panel, insulation materials, etc.
−Material installation order — first/ second/...
−Material thickness mm —
− Group thickness mm interior, main and exterior parts
− Total thickness of a façade mm —
−Material density kg/m3 —
− Group density kg/m3 interior, main and exterior parts
− Total density of a façade kg/m3 —
− Façade area S m2 —
− Volume of the receiving room V m3 —
− Studs depth mm —
− Spacing between studs mm —
− Resilient channels depth mm —
− Spacing between Resilient channels mm —

6.2.2 ANN network configuration

This model uses a multilayer perceptron class of ANN with two hidden layers, each

containing 40 and 30 artificial neurons, respectively. The network model in this Chapter

has the same number of hidden layers as the used model in Chapter 5. However, it

differs with the number of neurons in the input layer and the measurement types. Cross-

validation technique is employed to validate the network model and prevent overfitting

issues [96, 145]. LeakyReLU is chosen as the activation function for the hidden layers to

avoid the vanishing gradient problem that could face other activation functions, such as

tan or sigmoid [151]. For training, the Adam optimizer is used to minimize the errors of

the prediction model [105, 149, 150].

80% of the total measurements are allocated to the training set, 10% to the validation

set, and 10% to the testing set (Table 6.2). The training set develops the network

parameters, such as bias and weights. The validation set optimizes the model’s

hyperparameters, such as the number of hidden layers and neurons. Since the predictions

are continuous values (insulation curves), the root-mean-square error (RMSE) function
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can be used as a cost function,

RMS E =

√√
1
n

n∑
i=1

(ŷi − yi)2, (6.1)

where n presents the number of observations (measurements) used in the training phase.

Output (predicted) and input (measured) values are donated by ŷi and yi, respectively. The

developed model in this study achieved an overall prediction accuracy of 4.44 dB for all

the predicted and measured curves. Each estimated insulation curve is compared to the

measured one using the RMSE function in each one-third-octave band from 50 Hz to 5

kHz to evaluate the results more accurately.

Table 6.2: A description summary of measurement numbers used by the prediction model.

Measurements ANN Model
Measurement
number 100 100

airborne training set validation set testing set
100 80 10 10

6.3 Results and discussion

6.3.1 Airborne sound insulation estimations

The ANN model is trained and validated using 80 and 10 standardized laboratory

measurements, respectively. Additionally, ten measurements are used to test the accuracy

of predictions of airborne sound reduction curves. The acoustic behavior of each wall (as

measured in decibels) in 1/3-octave frequencies (ranging from 50 Hz to 5 kHz) is utilized

as the dependent variable for the predictions.

Figure 6.3 demonstrates the predicted and measured airborne curves of test façades.

Figure B2 in Annex B illustrates each test wall’s assemblies. The predicted and measured

insulation curves are similar, with some variations in certain cases. The discrepancies

between predicted and measured curves are more significant in some low and/or high-

frequency band samples. The slightest deviation is observed in façade #3 with a RMSE
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of 2.19 dB, while the most significant discrepancy is 5.73 dB in façade #10, which has a

slightly complex structure.

Figure 6.3: Predicted and measured airborne insulation curves for test façade walls.

A noticeable difference in the results can be seen at high frequencies (1.25 kHz −

3 kHz). This frequency range usually includes the critical frequency of lightweight

constructions, also known as the coincidence frequency. At this frequency, the

wavelength of the bending wave in the plate matches up with the incident acoustic

wavelength projected onto the plate [3]. This indicates that the structure will be able to

effectively radiate sound at and above this frequency [152].
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Table 6.3: Predicted and measured weighted sound reduction indices of test façades.

Façade no. RMSE (dB) Rw (dB) C100−3150 C50−5000 RwPred (dB) CPred 100−3150 CPred 50−5000

1 3.42 39 -4 -3 40 -3 -3
2 5.48 46 -2 -2 48 -1 -1
3 2.19 53 -4 -6 53 -4 -6
4 2.92 50 -3 -4 51 -6 -6
5 5.62 52 -2 -2 51 -6 -6
6 4.48 55 -4 -4 55 -5 -5
7 5.59 48 -1 -1 51 -2 1
8 3.01 65 -5 -7 67 -4 -5
9 4.12 37 -4 -3 38 -1 -1

10 5.73 49 -3 -3 47 -2 -1

Similar variations can be seen at frequencies lower than 200 Hz in façades #1, #8, and

#9. This can be attributed to the effect of first eigenfrequencies or fundamental natural

frequencies [3]. Additionally, it is observed that the estimated curves become smoother

near low fundamental and/or critical frequencies. This indicates that the main challenge

of estimating sound reduction values occurs in those bands. Similar issues with ANN

models have been reported in other research [17, 83].

Table 6.3 illustrates the root-mean-square errors (RMSEs) in the prediction of airborne

sound reduction curves, as well as the single-number quantities (SNQs) Rw and RwPredicted

that correspond to each curve. The largest error is up to 3 dB (façade #7), while the model

can accurately predict the same weighted values for façade #3 and #6. Additionally, the

correlation terms C100−3150 and C50−5000 show a maximum difference of 4 dB in façade #5.

In Figure 6.4, the normalized error deviation values are displayed within the range

of [-1, 1]. It can be seen that the most significant variations in error occur in the high-

frequency range (1.25 kHz − 5 kHz) for façade #2, #7, and #10. Additionally, the model

seems to struggle at the lower frequencies (50 Hz − 200 Hz), with notable discrepancies

between measured and predicted curves for façade #5 and #9. Furthermore, it can be

observed that the errors are distributed similarly in both low and high frequencies, while

a better prediction is noticed in the mid-frequency region (250 Hz − 1 kHz).

The graph in Figure 6.5 demonstrates the probability distribution of errors in estimating

airborne sound insulation curves across all frequencies. The highest density of errors is
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in the (-5,5) dB range, with a peak close to 0 dB, indicating the model’s accuracy in

producing satisfactory results.

Figure 6.4: Normalized error distributions for the estimated airborne insulation curves
for tested walls.

Figure 6.5: The probability density function of error distribution for the sound insulation
curves from 50 Hz to 5 kHz.
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6.3.2 Feature attribution of structural parameters

A sensitivity analysis is performed to examine the effect of each structural parameter on

the predicted sound insulation. This analysis also provides insights into the contribution

of different input variables at each frequency band. Furthermore, commonly used building

materials in façade components are selected to evaluate their impact on the network model

(Figure 6.6). Additionally, physical parameters of the façade, such as tested area, the

volume of the receiving room, and thickness and density of the interior, main, and exterior

parts of the façade (Figures 6.7 and 6.8), are incorporated in the attribution analysis.

Furthermore, another categorization is carried out on the dataset to explore the impact of

the thickness and density of the exterior, main, and interior parts of the façade structure

on the predicted airborne sound insulation curves.

Figure 6.6 demonstrates the influence of the thickness and density of various building

materials on sound insulation prediction. At low frequencies, the density of materials such

as cross-laminated timber (CLT) panels, oriented strand board (OSB), and lightweight

concrete panels has a significant effect. However, the sensitivity of lightweight concrete

and CLT panel increase at middle and high frequencies, except for the OSB panel.

Furthermore, the density of the gypsum board has a more prominent effect at higher

frequency bands. The density of gypsum fiberboard has a more significant effect on

sound insulation than typical gypsum board, particularly at lower frequencies. This is

because the stiffer material of gypsum fiberboard is more dominant at lower frequencies

(stiffness-controlled region). While the density of insulation materials impacts sound

insulation at all frequencies, it is more pronounced for wood fiber insulation at higher

frequencies. A previous study [161] found that rockwool density plays a vital role in

improving sound insulation below 1.25 kHz, which is supported by the results in Figure

6.6. Additionally, the density of the coating material (mineral plaster) is critical for sound

insulation in both low and high frequencies.

It is observed that the thickness of CLT panels is significant at all frequencies, as is the

thickness of insulation materials, air gaps, and coating materials. However, the thickness

of certain materials, such as OSB panels and gypsum boards, is more important in middle
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and high frequencies when the mass control region dominates [3]. In addition, specific

building components (e.g., air gaps and glass fiber) have a more significant effect on

airborne sound insulation than the densities or thicknesses of the materials.

Figure 6.6: Sensitivity analysis of façade structural components on predicting airborne
insulation curves.

Figure 6.7 illustrates the influence of various parameters on the estimation of airborne

sound. It is evident that, for very low and high frequencies, the surface area S of the

façade structure has a small impact. The importance of the structure area for predicting

airborne sound in the low-frequency range is also reported in [162]. In contrast, the

volume of the receiving room V is significantly significant at all frequencies, particularly

in higher ranges, where the energy of short sound waves can be easily dampened due to

relaxation phenomena, which is more evident at high frequencies and/or in larger rooms.

This agrees with [83] and in contrast to [162], which showed the unimportance of V in the

low-frequency range. The thickness of the interior studs has a more significant influence

on prediction across all frequencies, while the spacing between the interior studs affects

the predictions at low and middle frequencies.

122



Figure 6.7: Attributions analysis of various parameters to the prediction of airborne
insulation curves.

The importance of the spacing between the exterior studs is only revealed at high

frequencies, which emphasizes the role of mechanical connections, also known as sound

bridges, in creating transmission paths and thus reducing insulation improvements [3,

172]. No extraordinary effects have been identified for the sound insulation of resilient

channels, except at extremely high frequencies. However, the distance between resilient

channels has a recognizable impact in middle and high-frequency ranges. The total

thickness of a façade affects the predictions at all frequencies, which is affirmed in [162].

Furthermore, the total density has the most influence across all frequencies, as indicated

in [83]. The attribution spectrum of the total density of a façade reveals a peak near

150 Hz and a dip near 1.25 kHz, likely due to the effects of fundamental and critical

frequencies, respectively. This is probably caused by the coupling of resonant façade

components, allowing energy to be exchanged between elements [152]. This happens

when the elements are physically connected and have sufficiently close natural or critical

frequencies. This intensifies the radiations from components, negatively affecting the

insulation [3].
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The plots in Figure 6.8 show how the thickness and density of the interior, main, and

exterior parts of the façade wall affect the insulation curves. The density and thickness

significantly impact the estimations across all frequencies. The same trends are seen for

the total density of the façade (Figure 6.7), as well as for the total density of the exterior

part. The effects of the fundamental and critical frequencies are also noteworthy for the

total density of the interior and main parts but with a lower scale.

Figure 6.8: Feature attributions of interior, main, and exterior parts façade walls to
insulation predictions.

Table 6.4 presents the error distribution of the predicted airborne insulation curves in

three frequency ranges: low (50 Hz − 200 Hz), middle (250 Hz − 1 kHz), and high

frequency (1.25 Hz − 5 kHz) by using the (RMSE) function. The results show that the

best accuracy is obtained in the middle frequencies, with an error of 3.52 dB. However,

the errors become more significant at low and high frequencies, yielding RMSE values of

4.67 and 4.99 dB, respectively. These higher deviations can be attributed to fundamental

and critical frequencies.

Another reason that can affect the accuracy is that the ANN model does not consider

uncertainties (that could be presented in acoustic measurements). This is reflected in

the results of research of a European project that conducted acoustic measurements
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for lightweight partitions using 19 different European laboratories [173]. The authors

highlighted that the measured acoustic performance of structures could differ from one

laboratory to another based on factors such as the installation details of the partitions,

the laboratory design, the number of diffuses, etc. [173]. Additionally, the accuracy of

acoustic measurements can be affected by the person performing them, depending on

their knowledge and experience [174]. These factors are not considered when developing

an ANN and thus may influence its predictive capability.

Table 6.4: Error distributions in the airborne sound reduction index R prediction
considering three frequency regions.

Root-mean-square errors in dB

Frequency bands Low Middle High

50 Hz − 200 Hz 250 Hz − 1000 Hz 1250 Hz - 5000 Hz

R (airborne sound) 4.67 3.52 4.99

6.4 Conclusion

This Chapter explores the potential of a prediction model using artificial neural

networks to forecast airborne insulation curves based on 100 laboratory measurements of

different lightweight façades. The model depicts reliable results with a root-mean-square

error (RMSE) of 2.19-5.73 dB for estimating the sound insulation curves of various

façades in the frequency bands 50 Hz − 5 kHz. When the comparison considers the

single-number quantity, the weighted sound reduction index Rw, prediction accuracy is

further improved with 0-3 dB errors.

The model showed more accurate mid-frequency predictions (250 Hz - 1 kHz).

However, the estimation of R( f ) at fundamental and critical frequencies for some tested

façades revealed inconsistencies, indicating the influence of resonance on the sound

insulation performance of façades and the inadequacy of the model to forecast in those

frequency ranges.

A sensitivity analysis is conducted to evaluate the influence of building parameters

on the estimated airborne insulation curves. It is shown that the density of CLT panels
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is significant in all frequency bands. Additionally, the thickness and density of the

insulation material, as well as the total thickness and density of interior, main, and

exterior parts of façades, all have a significant effect on the prediction in all frequencies,

with higher contribution from the exterior part’s total density. The interaction between

the various façade components - resulting from each component’s fundamental and

critical frequencies - significantly affects the prediction.

The present model offers a valuable tool for engineering work on sound insulation

in buildings as it can predict Rw with a maximum error of 3 dB; this is a significant

improvement, as differences of 1 to 2 dB are barely noticeable in terms of noise levels.

Furthermore, this predictive model could save time and cost associated with acoustic

measurements for various partitions.
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Chapter 7

MODELING FIELD
MEASUREMENTS OF SOUND
INSULATION PERFORMANCE FOR
MULTI-LAYERED CLT-BASED
FLOOR SYSTEMS: A MEANS OF A
PREDICTION MODEL USING
ARTIFICIAL NEURAL NETWORKS

Résumé

Un outil de prédiction basé sur l’approche des réseaux neuronaux artificiels est

développé pour prédire les différences de niveau normalisées et le niveau de pression

acoustique d’impact normalisé pour les systèmes de planchers multicouches à base

de CLT. Les données collectées sont 104 mesures d’isolation acoustique sur le site

dans des bandes de tiers d’octave allant de 50 Hz à 5 kHz. Les mesures acoustiques

ont été effectuées dans 15 bâtiments différents en Europe et dans des chambres de

fonctions et de dimensions différentes. Pour développer le modèle de réseau, divers

paramètres structurels ont été organisés, tels que les composants du plancher, les

types de murs environnants et leurs composants, les types de jonction et leur couche

viscoélastique intermédiaire, le volume de la pièce réceptrice, la surface de séparation,

etc. Le réseau développé donne des résultats satisfaisants dans la prédiction des courbes

normalisées d’isolation aux bruits aériens et aux bruits d’impact sur le terrain, pour



toutes les fréquences. La différence de niveau normalisée pondérée DnTw est estimée avec

une variation de 1 dB, tandis qu’elle atteint 2 dB pour le niveau de pression acoustique

d’impact normalisé L
′

nTw. Une bonne corrélation est mise en évidence pour les estimations

des bruits aériens dans les fréquences moyennes (200 Hz − 1000 Hz), alors que les

fréquences plus élevées révèlent souvent quelques écarts. Cependant, les estimations

de l’isolation par impact ont montré une meilleure précision dans la gamme des hautes

fréquences (1,25 kHz − 5 kHz). Une étude de sensibilité est réalisée pour comprendre

les paramètres sur lesquels le modèle s’appuie. Dans les deux types d’estimations, le

trajet direct du son à travers le sol est dominant. Ensuite, les trajets latéraux affectent les

estimations au deuxième ordre. En outre, le volume de la pièce réceptrice joue un rôle

important dans les basses fréquences pour les estimations d’impact. Les résultats ont

également mis en évidence l’importance de la couche viscoélastique intermédiaire entre

les jonctions pour les prédictions aériennes dans toutes les gammes de fréquences.

Mots clés: acoustique des bâtiments, mesures sur site, isolation acoustique, modèle de

prédiction, réseaux neuronaux artificiels
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Abstract

A means prediction tool based on an artificial neural network approach is developed to

predict standardized level differences and impact sound pressure levels for multi-layered

CLT-based floor systems. The collected data are 104 field sound insulation measurements

in one-third-octave bands from 50 Hz to 5 kHz. The acoustic measurements were carried

out in 15 different buildings in Europe and for different room functions and sizes. Various

parameters were categorized to develop the network model, such as floor components,

surrounding wall types and their components, junction types and their visco-elastic

interlayer, receiving room volume, and surface separating area. The developed network

demonstrates satisfactory results in predicting airborne and impact sound insulation

curves (considering field conditions) across all frequencies. The weighted standardized

level differences DnTw is estimated with 1 dB variation, while it is up to 2 dB for

standardized impact sound pressure level L
′

nTw. A good correlation is highlighted for

airborne estimations in the middle frequencies (200 Hz − 1000 Hz), while higher

frequencies often reveal deviations. However, impact insulation estimations showed

higher accuracy in the high-frequency range (1.25 kHz − 5 kHz). A sensitivity study

is carried out to understand which parameters the model relies on. In both estimations,

the direct path of the sound through the floor is the dominant, followed by the flanking

paths. Additionally, the volume of the receiving room plays a significant role at low

frequencies for sound impact predictions. The results also highlighted the importance of

the visco-elastic interlayer between the junctions for airborne predictions in all frequency

ranges.

Keywords: building acoustics, field measurements, sound insulation, prediction model,

artificial neural networks



7.1 Introduction

Recently, the rise of environmental awareness has been the critical factor in driving the

use of more sustainable materials, such as wood, in building construction [175, 176]. Of

the many renewable materials available, engineered wood products (EWPs) are some of

the most sustainable in the sector [177]. Their utilization leads to a significant decrease in

carbon emissions [178], as well as offering advantages such as thermal insulation [164]

and easy installation [179]. Cross-laminated timber (CLT) was first developed in Europe

in the 1990s and has recently gained recognition in the North American building market

[167,180]. CLT panels are known for their good mechanical properties and can be directly

used on roofs, walls, and floors.

Wood has many advantages as a construction material, but its relatively low stiffness

and mass lead to lower subjective sound insulation quality compared to heavier materials

like concrete [123]. It is necessary to use additional elements to supplement CLT panels

to fulfill the sound insulation requirements [181]. Diverse materials are developed as

complemented elements to improve the sound insulation performance of CLT-based

assemblies. Testing is necessary to determine the acoustic performance of assemblies,

which can be costly and time-consuming. The ISO standard 12354 Part 1 [29] provides

an estimation tool, but it is based on a heavy monolithic element and unsuitable for

lightweight multi-layered structures. Furthermore, the variety of construction materials

makes the process challenging. Additionally, the acoustic performance of tested

structures may differ between laboratory and on-site measurements [26]. Laboratories

measure direct sound transmission paths, while in real buildings, sound can also be

transmitted through walls, ceilings, or common junctions [27]. This is called sound

flanking transmission, which can significantly lower construction acoustic performance.

Creating an accurate prediction tool is a challenging endeavour, especially when it

comes to simulating field sound insulation measurements. Variations and discrepancies

in sound insulation measurements are usually attributed to the construction system,

craftsmanship, and testing implementation. This can be a significant concern for
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building contractors, who ensure a large safety margin when project decisions are

taken to meet the sound insulation requirements. Qian has studied the uncertainties

generated by material properties such as Young’s and shear modulus and their effect

on FEM modeling [15]. These uncertainties affect the development of a reliable

prediction tool. Various prediction tools have been developed to assess sound insulation

performance, such as theoretical models [8–11], numerical approaches [12–14], or

artificial intelligence applications [17, 18]. Nevertheless, several deficiencies remain in

some of these models [13, 19–22]

Recently, artificial intelligence algorithms have enabled a range of technological

advancements in fields that were previously challenging, such as language translation

[171, 182], image and speech recognition [183, 184], and building acoustics [17, 18].

This approach involves creating methods that can learn from samples to improve the

accuracy of a set of tasks. By providing a large and varied set of data, the predictive

capabilities of these algorithms can be greatly increased. This is especially true for

artificial neural network models (ANN), which have seen a wide range of applications,

such as estimating acoustic properties of materials [185], evaluating interior vehicle

noise [134], and modeling environmental noise [186].

A limited number of studies have been conducted in the literature concerning

building acoustics using artificial neural networks. For example, a convolutional neural

network model was developed to classify inter-noise floors between apartment houses

by recording noise for 24 hours [78]. Another study used ANN to predict weighted

sound reduction index (Rw) and sound transmission class (STC) for sandwich partition

panels [79]. The results showed good accuracy, with errors in the estimations within ±3

dB. A further investigation used ANN to predict Rw for wooden windows using limited

technical parameters and a number of measurements [80]. Nevertheless, these models

were only able to predict single-number-quantities (SNQ), and full-spectrum insulation

curves were beyond their scope.

Using ANN estimations to predict 1/3-octave-band curves, a model was developed

for monolithic brick walls based on 34 sound insulation measurements [17]. Similarly,
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49 types of aramid honeycomb sandwich panels were studied in the 100 - 6300 Hz [81].

It is essential to extend the evaluation of the acoustic performance of lightweight wooden

structures (floors and façades) down to lower frequency ranges (50 Hz - 5 kHz) since the

most noise annoyance in these structures comes from low-frequency ranges. The authors

published two studies using lab-based measurements to bridge the gap of limitation in

broader frequency evaluation and data number [82–84]. The models developed from

252 and 100 lab-based acoustic measurements for floors and façades, respectively,

demonstrated good results with maximum differences of 1 and 3 dB in the estimation

of Rw. However, the deviation was up to 5 dB in the prediction of Ln,w (weighted

normalized impact sound pressure level). Although lab-based measurements have been

used to develop ANN models for the acoustic performance of lightweight wooden

structures where the direct sound transmission paths control the insulation, no research

has attempted to simulate the field sound insulation for such structures using ANN.

This chapter aims to create a prediction model using an artificial neural network

(ANN) approach to estimate the field sound insulation of multi-layered cross-laminated

timber (CLT) floor systems. 104 field sound insulation curves are used that are on-site

measurements of airborne and impact sound insulation in different real buildings located

in Europe. The data is collected in one-third octave bands ranging from 50 Hz to 5 kHz.

A sensitivity analysis is conducted to explore the correlations between the simulated

parameters and sound insulation estimations.

7.2 Materials and methods

7.2.1 On-site acoustic measurements

This database collection consists of 104 acoustic field measurements of airborne and

impact sound insulation in one-third-octave bands (50 Hz − 5 kHz) for various multi-

layered CLT-based floor systems in different buildings in Europe, as depicted in Figure

7.1. These measurements were conducted according to ISO 16283 (Part 1 & 2) [33, 34]

and ISO 717 (Part 1 & 2) [37, 38]. Of the 104 measurements, 51 are airborne, and 53
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are impact sound insulation. The 15 wooden buildings’ floor structures consist of two

different construction systems: wet and dry-rise solutions. A wet system is characterized

by a CLT-based floor with a continuous floating concrete topping (see components of test

floor #1 in Figure C3 in Annex C). The dry-rise system does not have a concrete topping

and instead features boards on top of point supports with integrated resilient interlayers

that separate the toppings and the CLT panel with an insulation layer in between (Figure

C3). Out of the 15 buildings, five utilize wet floor systems, and the remaining ten are

equipped with dry-rise systems (Figure 7.1). Altogether, 38 acoustic measurements were

taken on wet-floor systems (21 airborne and 17 impact curves), and 66 measurements

were carried out on dry-rise systems (30 airborne and 36 impact curves). Figures C1

and C2 in the Annex represent the field sound insulation measurements that are used to

develop the network model.

Figure 7.1: A detailed description of acoustic measurement number, constructional
solution system types, and measurement types.

The database includes several parameters of the measured floors, walls, and junctions

between them. These parameters include the materials of each floor and wall, their

installation orders, thicknesses, densities, floor construction systems, wall types, junction

types, and thickness of visco-elastic interlayer. Additionally, the area of each test floor

and the volume of the receiving room are also included in the classification. However,

openings in the linked walls are not considered in the modeling. Table 7.1 provides a
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detailed list of the categorical variables that are considered in the modeling. Figure 7.2

shows a T-junction and an X-junction configuration, along with their construction and the

locations of visco-elastic interlayers. Despite the importance of certain elastic material

properties in the calculation of sound insulation, some structural properties, such as elastic

modulus and dynamic stiffness, are not taken into account in the simulation due to lack of

information in the acoustic reports.

Table 7.1: Structural variables utilized in the database served as inputs for the
network model.

Structural parameter Unit Class
− floor system — wet, dry-rise solution system
− junction type — T-junction, X-junction
− surrounding wall type — façade, load-bearing, non-load bearing wall
− building material for floor and wall components — i.e., CLT panel, gypsum board, etc.
− material installation order — 1st, 2nd, . . .
− material thickness mm —
− material density kg/m3 —
− visco-elastic inter-layer thickness mm —
− floor separating area S m2 —
− volume of the receiving room V m3 —

Figure 7.2: Junction types and the visco-elastic interlayer that are modeled in the network
model.
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7.2.2 Artificial neural networks modeling

A multi-layer perceptron (MLP) ANN model with three hidden layers (consisting of

100, 75, and 50 neurons, respectively) is developed for this study. To prevent overfitting

and validate the network model, cross-validation and dropout techniques are employed

[145, 146]. The LeakyReLU activation function is used for the hidden layers. The Adam

optimizer algorithm [149] is employed for training the network. Figure 7.3 demonstrates

how the structural parameters are transformed into a single matrix that serves as the

input of the ANN model (for training, validation, and testing of the network). Each

measurement is represented by a row that includes all the input parameters and acoustic

spectrum.

The total number of measurements is split into three subsets: 80%, 10%, and 10% of

the data are allocated to the training, validation, and testing sets, respectively. The training

set is used to set up the parameters of the model (bias, weights, etc.), the validation set

is used to optimize the hyper-parameters of the model (number of neurons and hidden

layers), and the testing set is used to evaluate the predictive ability of the model. Table

7.2 summarizes the number and type of measurements used in each set. The root-mean-

square error (RMSE) is used as the cost function to assess the accuracy of the model’s

predictions.

RMS E =

√√
1
n

n∑
i=1

(ŷi − yi)2, (7.1)

where the number of observations is represented by n. The measured and predicted values,

respectively, are denoted by ŷi and yi. A cost function is used to evaluate the model’s

accuracy to provide a single error number for all test samples. To analyze the results in

greater detail, however, the RMSE function is used to measure the deviation between each

measured and predicted curve from 50 Hz to 5 kHz rather than just one error indicator.

This assists in comprehending the strengths and shortcomings of the model in predicting

different floor configurations.
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Figure 7.3: A schematic illustrates how the structural variables are organized and
classified into an ANN input matrix for each acoustic measurement.

An ANN model that uses the two types of measurements (airborne and impact) yields

unreliable results due to the limited number of measurements, making it difficult to

differentiate between insulation curve types. The same model is used to predict the

acoustic performance of floors using each measurement type separately, as shown in

Table 7.2.

Table 7.2: A division summary of the acoustic measurement numbers used to develop the
ANN model for airborne and impact estimations.

Measurement type Airborne Impact
Total number 51 53
ANN set type training validation testing training validation testing
Set numbers 41 5 5 43 5 5
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7.3 Results and discussion

7.3.1 Sound insulation estimations

The ANN model was developed to separately predict the acoustic performance of

based-CLT floors using airborne and impact measurements. The model was trained and

validated on 80% and 10% of the total measurement number for airborne insulation (41

and 5 measurements, respectively) and impact sound (43 and 5 curves, respectively; see

Table 7.2). Five floors from different buildings are chosen as a test set for airborne and

impact. These included two bedrooms, two living rooms, and one studio (see Figure C3

in the Annex for a plan view of each test floor, space function, and the constructional

materials of each structure). The model’s overall Root Mean Squared Error (RMSE) for

the test data is 3.24 dB for airborne estimations and 3.77 dB for impact cases across all

frequencies. To better understand the network’s behavior, each measured curve’s error

against its prediction in each 1/3-octave band will be analyzed.

Figure 7.4 illustrates five test floor systems’ measured and predicted insulation curves.

The gray area in the background of each sub-figure indicates the mean and standard

deviation values of the curves used to train the network model. Test floor #1 is a

wet-solution structure, while the four test floors have different dry-rise systems. The

model offers reliable estimations for airborne and impact cases, with minor deviations at

certain frequencies. The most significant variation is 3.54 dB in test floor #2 for airborne

estimations and 4.58 dB for test floor #1 for impact cases in the entire frequency range (50

Hz − 5 kHz). Moreover, the network model did not predict outliers across all frequencies,

even when the measured curves were outside the mean and standard deviation values

utilized to develop the model (gray areas in Figure 7.4). This demonstrates the model’s

capacity to recognize general trends in sound insulation predictions.

For the wet solution system (test floor #1), the estimations are close to measured

values for airborne and impact noise, with better accuracy for airborne predictions. The

model also shows good predictive capabilities for the dry-rise system and both estimation

types. Good correlations in the results are found at low frequencies (below 200 Hz),
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where the first eigenfrequencies (fundamental natural frequencies) occur, as well as in

high-frequency ranges (1.25 kHz − 3 kHz), where the critical frequencies of lightweight

structures usually exist. This is also known as the coincidence frequency, at which the

wavelength of the bending wave in the plate matches the incident acoustic wavelength

projected onto the plate [152]. A coupling or matching enables the plate to radiate sound

efficiently. Compared to other studies [17, 83, 84], estimations near the fundamental and

critical frequencies agree. However, deviations between the predicted and measured

curves are noticed at mid and very-high frequencies in certain cases. This may be

attributed to sound flanking transmission paths, which usually exist in those ranges in

field measurements. Additionally, some variations are found at high frequencies for

particular dry-rise test floors (#2 and #5) with a suspended ceiling for airborne predictions

(see the configurations in Figure C3). This indicates the limitations of the network in

predicting accurate values at those ranges with the presence of the ceiling.

Tables 7.3 and 7.4 show the SNQs, spectrum adaption terms, and RMSE values for

each acoustic curve. The maximum difference in predicting weighted standardized level

differences (with or without correction terms) is 1 dB (test floor #4). For the weighted

standardized impact sound pressure level, the maximum difference is 2 dB (test floor #1

and #3), and this increases to 4 dB when adaption terms are included (test floor #3).
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Figure 7.4: A graphical representation of the differences between the predicted and
measured airborne and impact sound insulation curves for five test floors is shown with
the mean and standard deviation values of the trained data indicated by the gray area in
the background.

Table 7.3: Predicted and measured weighted standardized level differences of test floors
and their spectrum adaption terms (in dB).

Floor no. RMSE DnTw C C50–3150 DnT,wPred CPred C50–3150 Pred

1 3.44 54 0 0 54 −1 −1
2 3.56 58 −2 −2 58 −2 −3
3 2.97 51 −1 −1 51 −2 −2
4 2.90 54 −1 −2 55 −1 −2
5 3.34 60 −2 −3 60 −2 −3
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Table 7.4: Predicted and measured weighted standardized impact sound pressure level of
test floors and their spectrum adaption terms (in dB).

Floor no. RMSE L′

nTw CI CI,50−2500 L′

nT,wPred CIPred CI,50−2500 Pred

1 4.58 45 0 3 47 2 4
2 1.61 51 0 3 52 1 3
3 2.90 53 1 4 55 1 2
4 2.26 50 1 5 49 0 5
5 3.34 54 1 4 53 2 3

Table 7.5 shows the distribution of errors when predicting airborne and impact

insulation curves in three different frequency ranges (low (50 Hz − 200 Hz), middle (250

Hz − 1 kHz), high (1.25 kHz − 5 kHz), and the whole frequency range (50 Hz − 5 kHz))

to provide an in-depth evaluation. For airborne sound predictions, the highest deviations

are in the high-frequency range, which is likely due to the involvement of flanking

transmission paths. The ANN model is unable to predict sound transmission around

these bands accurately. In comparison, the most remarkable errors for impact predictions

are in the low-frequency range. Since there are fewer impact sound transmission paths

than airborne sound, the model’s inaccuracy, in this case, can be attributed to inadequate

structural parameters that are involved in the modeling. Moreover, low-frequency bands

tend to have more significant measurement uncertainties due to the influence of receiving

room effects. These effects depend on the Schröder frequency, where the diffuse sound

field is present above that frequency [156, 157]. To more accurately simulate the

sound transmission phenomena, it is essential to consider complementary structural

parameters such as dynamic stiffness, elastic modulus, and vibration reduction index of

the junctions. Previous studies have also reported the effect of insufficient parameters on

the results [83, 84]. Furthermore, field measurements are more likely to have flanking

paths than laboratory measurements, so additional information must be considered.
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Table 7.5: A comparison of the measured and predicted sound insulation curves
(standardized level differences DnT and standardized impact sound pressure level L

′

nT)
divided into three frequency ranges: low, medium, and high.

Root-Mean-Square Errors in dB

Frequency (Hz) Low Middle High Full range

(50 − 200) (250 − 1000) (1250 − 5000) (50 − 5000)

DnT 3.43 2.27 3.85 3.24

L
′

nT 3.54 3.07 2.65 3.77

Fig. 7.5 shows the probability density function of errors for both airborne and impact

sound estimations across all frequency bands (50 Hz − 5 kHz). The errors are mostly

found in the range of -5 to 5 dB. Additionally, the peak of the error density is higher for

airborne insulation curves than impact cases, which suggests that the network predicts

airborne insulation curves more accurately than impact cases. This is also reflected in the

rating values in Tables 7.3 and 7.4.

(a) (b)

Figure 7.5: Histograms show the error distribution in predicting sound insulation curves
across all frequencies. (a) standardized level differences DnT. (b) Standardized impact
sound pressure level L

′

nT.
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7.3.2 Sensitivity analysis of the structural parameters on the sound

insulation estimations

A feature attribution analysis is employed to assess the contribution of the structural

parameters listed in Table 7.1 to the ANN model’s ability to estimate acoustic sound

insulation curves. This type of analysis is necessary to evaluate the model’s performance

and guarantee its predictive accuracy. Furthermore, sensitivity analysis is essential to

investigate the connections between the parameters and their effect on the predictions.

The advantage of this approach is that it offers insight into the influence of the parameters

on each frequency band.

The feature attribution analysis of the model focused on the field measurements will

consider certain parameters that are considered to have a higher value of importance in this

type of simulation. Figure 7.6 shows the size effect of the floor and its surface area, along

with the effect of surrounded walls, visco-elastic interlayer thickness, and the volume of

the receiving room. The effects of thicknesses, densities, and the installation order of the

materials are grouped for each structure (floor or surrounded walls) to determine their total

effect on the estimations. Therefore, when discussing the effect of façade, load-bearing,

and non-load-bearing walls, it is meant that all of the material components of that kind of

wall are taken into account, and their effects are evaluated as a whole.

The results of Figure 7.6 (a) demonstrate that the direct path (which encompasses

the effects of thickness and density) is dominant at all frequencies and tends to increase

at higher frequencies. This can be attributed to mass and coincidence-control regions,

where the masses and thicknesses of the structural components take control of sound

insulation at those frequencies [3]. Additionally, the effects of flanking transmission paths

(façade and load-bearing walls) become more evident at higher frequencies, which could

explain the large deviations in airborne insulation predictions at higher frequencies. This

highlights the importance of including more parameters to make the prediction of sound

insulation more accurate with the ANN model. No notable differences were observed

for non-load bearing or internal separating walls since these walls are typically installed

in the room without junctions between them and the connected floor, thus reducing the

142



chance for the sound to travel through. Furthermore, a minor effect was noted for floor-

separating areas, as has been reported in prior studies [83, 84, 162]. The volume of the

receiving room affects sound attenuation at all frequencies, particularly in higher ranges.

This is because the energy exchanged between the particles of air and the sound wave can

be released after a delay, leading to a decrease in sound energy [3]. This phenomenon is

more likely to occur in larger rooms or/and higher frequency ranges. This finding was also

highlighted in a previous study by the authors [84]. At lower frequencies, the visco-elastic

interlayer between junctions has a minimal effect on sound transmission loss. However,

the predicted standardized level differences become frequency-dependent and increase

with frequency [152]. This is because the transmission loss is frequency-independent and

similar to a rigid connection. The study did not consider the relationship between visco-

elastic interlayers and the applied load. It has been observed that the vibration reduction

index of a junction decreases globally with increasing load [187]. This can be attributed

to the increase in stiffness of the interlayer when the applied load is reset. The latter was

also investigated in a study that linked the building height and the applied load on the

airborne sound insulation [188].

Figure 7.6 (b) shows the sensitivity analysis of floor structural parameters in predicting

standardized impact sound pressure level. It can be observed that the direct path is the

primary factor in all frequencies, particularly at low frequencies. This agrees with the

mass-spring-damping system approach, which states that impact sound transmission is

mainly determined by the stiffness at low frequencies [3]. The influence of the flanking

paths follows the same trend as the direct path but with a lower attribution. Non-load-

bearing internal walls have no significant impact on the estimations. The receiving room

volume is crucial in low-frequency predictions due to the high uncertainties in this range,

which could significantly impact the estimations. This was highlighted by [189] and

reported in previous studies [83, 84]. The same trend is also noted for the visco-elastic

interlayer at the junctions. However, the area of the separating surface of the floor has

little effect on the estimations.
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(a) (b)

Figure 7.6: Feature attribution analysis illustrates the importance of floor structural
parameters in developing the ANN model. (a) attributions on standardized level
differences. (b) attributions on standardized impact sound pressure level.

7.4 Conclusions

In this chapter, a neural network approach is presented to predict on-site acoustic

insulation curves (standardized level differences DnT and standardized impact sound

pressure level L
′

nT) for CLT-based floor systems. The network model is developed

using various structural parameters from 104 field acoustic insulation curves. The

ANN model proved effective in estimating field sound insulation performance, with

a maximum RMSE of 3.56 dB for airborne curve predictions and 4.58 dB for impact

estimations across all frequencies (50 Hz − 5 kHz). For single-number-quantities, the

highest deviation is 1 dB in estimating weighted standardized level differences DnTw.

In comparison, it is 2 dB for weighted standardized impact pressure level L
′

nTw. These

results suggest acoustic designers may be able to use the network model for practical

engineering works, as differences up to 2 dB are deemed unnoticeable to humans for

noise levels. Furthermore, the model can be used to save the cost and time of acoustic

measurements.

The predictive accuracy of the network model was better in estimating the standardized

level differences except at higher frequencies (1.25 kHz − 5 kHz), where the flanking

transmission paths are more common. There were higher deviations in the low frequency
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(50 Hz − 200 Hz) range for the standardized impact sound pressure level predictions

where more significant measurement uncertainties are present. Additional parameters

should be incorporated into the modeling. This could include more detailed information

about the junctions, vibration reduction indices, elastic material properties, connection

type between structure material components, and an increased number of measurements

to ensure the reliability of the network model.

A sensitivity analysis was conducted to examine structural parameters’ impact on

the insulation curves’ prediction. The results showed that the direct transmission path

(floor structure) effect was the most significant, followed by the effects of flanking paths.

Additionally, the receiving room volume, the area of the separating surface of the floor,

and the visco-elastic interlayer in the junctions also had considerable effects on the

forecast.
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Chapter 8

CONCLUSION AND FUTURE
PROSPECTS

8.1 Conclusion

The presented thesis reveals the potential to develop prediction models using artificial

neural networks to forecast sound insulation curves based on laboratory and field

measurements of lightweight wooden structures. Three models have been developed

to predict the insulation performance of lightweight wooden structures, particularly

floor, and façade constructions. Two models (in Chapters 5 and 6) were developed

based on laboratory measurements to predict the insulation curves of floors and façades.

However, the third model (in Chapter 7) was used to simulate the acoustic performance

of CLT-based floors considering field conditions. The ANN models were utilized to

predict the acoustic spectra for the frequency bands 50 Hz − 5000 Hz, and the single

number quantities were also calculated and compared to real values to estimate the

predictive capability of the models. Physical and geometric characteristics of each

structure (materials, thickness, density, dimensions, mass, and more) are utilized as input

parameters in the developed model.

The first model (Chapter 5) has been developed to estimate acoustic performance

for lightweight wooden floors’ airborne and impact sound insulation curves. The

model is based on 252 standardized laboratory measurement curves in one-third octave

bands (50 Hz − 5000 Hz), which utilize physical and geometric characteristics of

each floor structure (materials, thickness, density, dimensions, mass, etc.) as network



parameters. The model can predict the airborne sound more accurately than the impact

sound, especially in the middle-frequency range (250 Hz − 1000 Hz). The model’s

prediction of the weighted airborne sound reduction index Rw had a maximum error

of 2 dB. In contrast, the error increased to 5 dB in the worst-case prediction of the

weighted normalized impact sound pressure level Ln,w. The model had high variations

near fundamental and critical frequency areas, which affected its accuracy. A feature

attribution analysis was conducted to identify the significant parameters in estimating

sound insulation. The thickness of insulation materials, the density of cross-laminated

timber slabs and concrete floating floors, and the total density of floor structures were

found to have the most influence on the predictions. A comparison between wet and

dry floor solution systems highlighted the importance of the upper part of floors for

estimating airborne and impact sound in low frequencies.

The second artificial neural network-based prediction model (Chapter 6) was created

to calculate the acoustic performance of lightweight wooden façade walls concerning

airborne sound insulation. One hundred measurements of insulation curves were used for

the model’s development, and laboratory data gathered in one-third-octave bands (50 Hz −

5 kHz) from each façade wall were used as input parameters. The model exhibited a good

capacity of accurately predicting airborne sound reduction, with an overall maximum

difference of 3 dB in the weighted airborne sound reduction index (Rw). The model

showed the most precision in middle frequencies (250 Hz − 1 kHz), while higher and

lower frequency ranges showed more significant variance. The sensitivity analysis study

found that the material density, insulation material thickness, thickness, spacing between

interior studs, and total density of façades all had a considerable impact on predictions.

Additionally, the thickness of the façades and the total density of the exterior layers were

highlighted as essential factors in the model’s precision.

The third neural network-based prediction tool (Chapter 7) was developed to predict

the standardized level differences and impact sound pressure levels of multi-layered CLT-

based floor systems. The data used for the model was 104 acoustic measurements from

15 different buildings in Europe, measured in one-third-octave bands from 50 Hz to 5
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kHz. The structural parameters of the buildings, such as floor components, surrounding

wall types, junction types, and their visco-elastic interlayers, receiving room volume,

and surface separating area, were considered for the network model. The model showed

satisfactory results in predicting the standardized airborne and impact sound insulation

curves across all frequencies, with a variation of 1 dB for the weighted standardized level

differences DnTw and up to 2 dB for the weighted standardized impact sound pressure

level L
′

nTw. The best correlation was highlighted in the middle frequencies (200 Hz −

1 kHz) for airborne estimations and at high frequencies (1.25 kHz − 5 kHz) for impact

estimations. The sensitivity study showed that the direct sound path through the floor is

the most influential, followed by the flanking paths. The volume of the receiving room

was found to be a critical factor for impact estimations at low frequencies. Additionally,

the visco-elastic interlayer between the junctions was found to be essential for airborne

predictions across all frequency ranges.

8.2 Future work

The presented research has demonstrated using an artificial neural network approach

in predicting sound insulation curves for lightweight wooden structures. Despite the three

ANN models’ good performance, some discrepancies were observed in the prediction

results. The latter discrepancies could be addressed due to insufficient parameters in

developing the ANN models. Regardless of the fundamental role of specific elastic

properties on sound transmissions, such as dynamic stiffeners and the modulus of

elasticity of each material, they are not considered in the input parameters due to

the lack of information in acoustic measurement reports. Moreover, sound insulation

measurements are implemented in different places, such as laboratories (lab-based

measurements) and buildings (on-site acoustic tests). In addition, uncertainties could

also be present in the measurements due to the construction system, workmanship, and

measurement implementations. It is worthy to mention that the artificial neural networks

approach does not take into account the uncertainties present in acoustic measurements,

which may have an effect on the accuracy of the model’s predictions. To overcome such
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limitations, controlling the quality of sound insulation measurements is vital.

Further investigation could be interesting by adding complementary parameters in

the modeling to overcome such prediction limitations. The studied parameters could

be complemented by the inclusion of detailed information about the junctions, vibration

reduction indices, elastic material properties, connection type between structure material

components, a bigger measurement number, and the measurements should be carried out

in one place and by the same person in order to increase the reliability of the network

model.

It is necessary to conduct an optimization study for this type of modeling to get the best

results and highlight the most important parameters. In order to successfully implement

this study, it is essential to have sufficient parameters to simulate the sound insulation

phenomenon accurately. The optimization study would provide informative and reliable

results if the additional parameter adequate parameters are included.
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ANNEX A: Laboratory sound insulation measurements

for floor structures

Figure A1: Standardized laboratory measurements for airborne sound reduction index
for floor structures.



Figure A2: Standardized laboratory measurements for normalized impact sound pressure
levels for floor structures.
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Figure A3: Test floor configurations used to evaluate the predictive accuracy of airborne
and impact sound insulation curves based on laboratory measurements.
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ANNEX B: Laboratory sound insulation measurements

for façade structures

Figure B1: Standardized laboratory curves for airborne sound reduction index of façade
walls.



Figure B2: Structural components of the selected test façads for testing the ANN network.
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ANNEX C: Field sound insulation measurements for floor

structures

Figure C1: Field sound insulation measurements for standardized level deference curves.
Curves in gray represent curves that are utilized to train and validate the network model.



Figure C2: Field sound insulation measurements for standardized impact sound pressure
level curves. Curves in gray represent curves that are utilized to train and validate the
network model.
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Figure C3: A schematic layout and section drawing of each test floor structure shows
the function of each room, surface area (S), volume of the receiving room (V), and floor
configurations.
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