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Abstract: Many power transformers throughout the world are nearing or have gone beyond their
theoretical design life. Since these important assets represent approximately 60% of the cost of the
substation, monitoring their condition is necessary. Condition monitoring helps in the decision to
perform timely maintenance, to replace equipment or extend its life after evaluating if it is degraded.
The challenge is to prolong its residual life as much as possible. Dissolved Gas Analysis (DGA) is a
well‑established strategy to warn of fault onset and to monitor the transformer’s status. This paper
proposes a new intelligent system based on DGA; the aim being, on the one hand, to overcome the
conventional method weaknesses; and, on the other hand, to improve the transformer diagnosis effi‑
ciency by using a four‑step powerful artificial intelligence method. (1) Six descriptor sets were built
and then improved by the proposed feature reduction approach. Indeed, these six sets are combined
and presented to a Kohonen map (KSOM), to cluster the similar descriptors. An averaging process
was then applied to the grouped data, to reduce feature dimensionality and to preserve the complete
information. (2) For the first time, four direct Multiclass Support Vector Machines (M‑SVM) were in‑
troduced on the Generic Model basis; each one received the KSOM outputs. (3) Dempster–Shafer
fusion was applied to the nine membership probabilities returned by the four M‑SVM, to improve
the accuracy and to support decisionmaking. (4)An output post‑processing approachwas suggested
to overcome the contradictory evidence problem. The achieved AUROC and sensitivity average per‑
centages of 98.78–95.19% (p‑value < 0.001), respectively, highlight the remarkable proposed system
performance, bringing a new insight to DGA analysis.

Keywords: DGA; probabilistic M‑SVM; Generic M‑SVM Model; Dempster–Shafer Rule; Kohonen
Map

1. Introduction
Indicators of sustainability focusing on energy are crucial tools used to assess and

monitor progress toward guaranteeing electricity delivery to end‑users [1]. In the last
decades, power grids have been facing growing interest in deploying new and intelligent
technologies to obtain improved reliability and availability of power supply. This is im‑
portant in meeting new challenges due to accelerating urbanization and evolving require‑
ments to ensure smart cities. The smart city concept mostly relies on cameras, sensors
and monitoring tools to maintain or support human well‑being continuously over time.
The data collected are processed and analyzed to improve operational efficiency of major
equipment such as power transformers, public safety, life quality, and also ensure efficient
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electrical installations [2,3]. In this context, accurate monitoring of major assets is essen‑
tial. Power transformers, which are the most essential and expensive devices in the power
transmission and distribution networks, are aging worldwide ahead of their theoretical
design life. Their role is to facilitate the transition between the different electrical network
levels (production, transport and distribution), while minimizing losses from the Joule ef‑
fect. Due to their importance in an electrical structure, their reliable operation guarantees
a good efficiency to the entire distribution network. In particular, when a power trans‑
former suddenly explodes due to various factors, it may affect the generator output, which
causes significant damage to the electric company’s economy and to the user’s property,
and may also cause irreversible damage to human safety, especially to maintenance per‑
sonnel. Thus, it is necessary to ensure an excellent monitoring of the power transformer’s
condition in order to avoid sudden catastrophic failures [4,5].

Throughout their operation, power transformers are continuously subjected to dif‑
ferent stresses (electrical, thermal and mechanical) and aggressive chemical byproducts.
Excessive transformer stresses adversely impact insulating materials (solid insulation and
oil), leading to an internal transformer failure [6]. This failure can be observed by analyzing
the combustible and non‑combustible gases formed and dissolved in the transformer’s oil,
such as: Hydrogen (H2), Oxygen (O2), Nitrogen (N2), Carbon Monoxide (CO), Methane
(CH4), Carbon Dioxide (CO2), Ethylene (C2H4), Ethane (C2H6), Acetylene (C2H2), etc. It
is therefore essential to regularly analyze the oil’s condition to detect potential defects.
This is done by measuring the dissolved gas concentrations [1,7]. To date, several strate‑
gies have been proposed for transformers condition monitoring from oil (Furan analysis,
Physico‑chemical analyses, Dissolved gas analysis (DGA), etc.). Among these, DGA is the
most widely used approach for power transformer diagnosis, since it is non‑invasive, very
simple to implement, inexpensive and above all effective.

In the last decades, a large number of DGA‑based approaches have been proposed.
These approaches can be subdivided into two categories: traditional methods and Ar‑
tificial Intelligence (AI)‑based techniques. Traditional methods mainly include: Duval’s
Triangle (D‑T) and Pentagons [8], Rogers Ratios (R‑R) [9], Dornenburg Ratios (D‑R) [10],
IEC Ratios (IEC‑R) [10] and Key Gases (K‑G) [11]. However, conventional DGA methods
mainly perform diagnosis by coding, which leads to problems such as absolute code lim‑
its, missing codes and sensitivity to gas volume fraction fluctuations, etc. For example, the
IEC‑R precision is of concern for incomplete coding reasons (it is, for example, impossible
to differentiate between low‑ and high‑energy discharge). R‑R are only effective for detect‑
ing thermal faults and are ineffective for detecting other faults. The D‑R generally detects
three fault categories and is not able to return the fault severity. D‑T is mainly based on
the use of five triangles, and triangles 4 and 5 are in several cases contradictory [7]. The
reason why the different approaches can give contradictory answers for the same sam‑
ple is unclear, and it is difficult for the expert to prioritize an answer. This can induce
misinterpretation, leading to incomplete and/or uncertain classification. Hence, there is a
need to find powerful alternatives that are not limited by the programmer’s intelligence
and that are able to learn and to improve by examples and face situations never seen be‑
fore, such as AI alternatives. Indeed, these methods are mainly based on the definition
of one/or more decision boundaries based on very powerful mathematical models and
take into account a sample global (non‑partial) exploration. In this sense, several inge‑
nious studies based on AI approaches have been proposed (separately or combined with
conventional methods) [1,7,12–14] and have proven their effectiveness in comparison to
conventional methods.

In this contribution, a new approach for monitoring the power transformer’s con‑
dition is presented. The approach is based on a two‑stage hybrid system: a descriptor
extraction and construction stage, and a discrimination and outputs merging stage. The
block diagram of the proposed Power Transformer Diagnosis (PTD) approach is depicted
in Figure 1.
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Figure 1. Block diagram of the proposed PTD approach.

‑ In the first stage (Stage‑1), a relevant descriptor space is constructed. Six descriptor
sets extracted according to six distinct DGA techniques are firstly retained: K‑G, IEC‑
R, R‑R, D‑R, D‑T and Gases Percentage (G‑P). These parameters are then combined.
This is followed by a redundant parameters elimination phase. After that, a standard‑
ization process is considered to formalize all the parameters to the same interval. Fi‑
nally, a novel descriptor reconstruction stage based on the Kohonen Self‑Organizing
Maps (KSOM) [15] is proposed to decrease the data model and facilitate the discrim‑
inator’s work while keeping all the information.

‑ In the second stage (Stage‑2), four direct probabilistic Multiclass Support Vector Ma‑
chines (M‑SVM) are implemented for the first time, via a GenericM‑SVMModel (GM‑
SVM) [16]: the Weston and Watkins (WW) model [17], the Crammer and Singer (CS)
model [18], the Lee et al. (LLW) model [19], and the Quadratic Loss Multi‑Class Sup‑
port Vector machine (M‑SVM2) model [20]. These four models are used as a solu‑
tion to overcome the weaknesses of the indirect M‑SVM models widely used in this
problem. Each used M‑SVM considers the returned parameters set by Stage‑1, and
calculates the belonging probabilities to each of the considered nine classes.

‑ Then, to approve the final outputs, the Dempster–Shafer (DS) [21,22] fusion is applied
to combine the four M‑SVM outputs within the beliefs and evidence model frame‑
work. Also, this stage proposes an alternative to post‑process the after‑fusion out‑
puts: the example is considered well‑classified if its probability exceeds a decision
threshold; otherwise, the example is assigned to the reject class.

Thus, the proposed system has a primary objective to improve the descriptor extrac‑
tion step with the proposed KSOM parameters reconstruction approach. The latter effec‑
tively minimizes the information loss as much as possible, unlike the traditional function‑
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alities selection approaches. The second objective focuses on implementing the four direct
M‑SVM through the Generic M‑SVMModel, with the aim of overcoming the limits of tra‑
ditional M‑SVM based on decompositionmethods (minimize the classifier complexity and
save execution time). Finally, the proposed system has the final objective of strengthening
the final decision making by merging four M‑SVM by DS Fusion. After that, an approach
to solve the contradictory evidence problem, linked to DS fusion, is proposed. Section 2
describes in detail the motivations and the originality of the approach taken.

The paper is organized as follows. Section 2 exposes the foundations, the motivations
and the innovations of the study. Section 3 explains the adopted parameter extraction
approaches, as well as the considered data reconstruction approach. Section 4 exposes
the theoretical framework of probabilistic direct M‑SVM and the theoretical framework of
the DS fusion model. Section 5 presents the used database description, the M‑SVM hyper
parameters selection, plus the performance enumeration and their statistical analysis. The
paper is terminated with a conclusion and perspectives in Section 6.

2. Study Motivations and Innovations
One of the key points of a PTD method lies in the dissolved gases representation do‑

main assortment (choice) through the parameter extraction. This is due to the fact that the
discriminator generalization strongly depends on the parameter space. Different represen‑
tations have been exposed in the literature, such as: K‑G [7,14,21–24], IEC‑R [14,25,26], Per‑
sonalized Ratios [14,25], R‑R [25,26], Logarithmic Data Transformation [23], G‑P [23,26],
DGA code [27], Standardized Data [23], D‑R [26], D‑T [25], etc. Also, several compara‑
tive studies between these descriptors [23–26] have been carried out, but each of these
approaches has advantages and disadvantages [7]; it would be more interesting to take
the benefits of each one through a combination.

However, PTD applications are often characterized by a low learning vector number,
and a large vector dimension necessarily accentuates the curse of dimensionality. Indeed,
the phenomenon is induced by the fact that there is a strong dissimilarity between the ob‑
servations and a great divergence among the training examples. This lack of data density
inevitably affects and alters the discriminator generalization, whose foundation is essen‑
tially based on statistical significance. The dimensionality reduction appears as the main
reflection in the face of the curse of dimensionality. There are two categories of dimension‑
ality reduction approach: the variable selection approaches, which consist of electing a de‑
scriptor sample from the global variables set; and the variable transformation approaches,
which consist of reconstructing a new descriptor set based on the similarity characteristics
of the initial variables. The first method category generates a loss of useful information
(partial data exploitation), which makes it suboptimal compared to the second [28,29].

For dimensionality reduction, few previous works have been proposed, and to the
best of our knowledge, the work carried out in this context is based on the descriptor selec‑
tion approaches. For example, the authors in [14] proposed a Practical Swarm Optimiza‑
tion (PSO) algorithm for feature selection. Xie et al. [12] proposed an approach based on
relief algorithms for parameter reduction. Finally, one study [30] proposed a parameter
selection method based on the Genetic Algorithm (GA). The current paper first exposes
the use, for the first time, of a very powerful AI approach: KSOM, for merging and recon‑
structing six descriptor sets that are the most used in real applications (K‑G, IEC‑R, R‑R,
D‑R, G‑P, D‑T); the objective being to reduce the descriptor space and to preserve the data
entirety contribution.

The issues related to a classificationmethod choice are also very important. The choice
must be related to several parameters, more particularly: the nature of the data (noisy,
overlapping, redundant, and/or disordered) and the learning set size and nature (small
or large). Generally, in PTD applications one encounters non‑linear data, a very small
training set (as earlier reported), non‑equiprobable categories and a significant correlation
between the distinct category examples. In this case, the SVM are more efficient than neu‑
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ral networks and offer remarkable generalization results due to their advantages. A few
possibilities can be explored:
‑ Embedded in real‑time processes (low execution time);
‑ Applied to randomly distributed and unknown data;
‑ Ensure a global optimum due to the convex optimization principle;
‑ Do not suffer from overfitting and over‑learning problems;
‑ Decrease the curse of dimensionality.

Therefore, several previous studies have proposed SVM‑based PTD systems [1,21,30–
32].

The PTD is a multi‑class discrimination problem, but SVM were induced by Cortes
and Vapnik [33] to cover two‑category discrimination problems. Unlike other machine
learning approaches, where switching to the polytomy case is intuitive, SVM inmost cases
use decomposition methods (one‑against‑one, one‑against‑all, etc.). These dichotomous
approaches generate significant complexity, which leads to a considerable execution time
(final decision making, training algorithm), especially when dealing with large category
classification problems. To overcome this problem, researchers are currently working on
proposing newdirect intuitivemodels that consider a singleM‑SVM for uniquemulti‑class
learning problem resolution. And to this date, four powerful models have been proposed,
namely: the WW model, GS model, LLW model and M‑SVM2 model. Geurmeur then
proposed an innovative GM‑SVM model, which brings together the four direct M‑SVM
offered to date. This research presents, as a second contribution, the introduction of the
four direct M‑SVM models in the PTD application via the GM‑SVMmodel.

Also, serval information sources fusion is strongly recommended in discrimination
problems, especially if false prediction stakes exert influence in a consistent way, such
as in the case of this application. It is indeed much more informative to make a decision
knowing that several sources agree. This study fits into the evidence theory context, which
takes into consideration ambiguity and vagueness, credibility and the conflict of different
independent proofs, and then produces a certain and a confident result. A number of previ‑
ous works have studied DS fusion, whether to interpret the relationship between different
data sources (DGA [14], Ratio methods [28], etc.), or the merging of several discriminator
outputs [1,7,31,32], and have highlighted the theory contribution in the PTD problem.

For DS theory, when the classifiers are in perfect agreement or the conflict between
them is weak, confidence in the final decision is reinforced by a higher recognition rate.
However, if the discriminators are in strong conflict, the final decision is translated into
a random result, which is necessarily questioned (one of the major DS law criticisms). To
overcome this problem, the authors in [32] proposed to symbolize the reliability differences
between the discriminator outputs by weighting coefficients; the latter allow reconstruct‑
ing the base probabilities according to the attributed priority to the proofs. Nevertheless,
the four direct M‑SVM models implemented in this contribution offer theoretically the
same performances, and each model has its own advantages and disadvantages. It is then
practically impossible to prioritize one model. On the contrary, it would be more inter‑
esting to exploit the performances of each of them in order to reconstruct a more robust
model—hence the interest in the merger. The third contribution of this study consists of
theDS fusion of four directM‑SVMandproposition of an output post‑processing approach
to solve the contradictory evidence problem.

Thus, by implementing the proposed intelligent fault diagnosis system, it is hoped to:
‑ Increase the four M‑SVM performance by facilitating their classification task, thanks

to the proposed descriptors reconstruction approach;
‑ Reduce complexity and save execution time by implementing direct M‑SVM instead

of M‑SVM based on decomposition methods;
‑ Strengthen M‑SVM outputs by translating them into posterior probabilities;
‑ Strengthen decision‑making, gain sensitivity and minimize false alarms by applying

the DS fusion and the rejection class introduction.
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3. Features Extraction and Reconstruction Methods
This section defines the adopted methodology for the input model construction (of

the four direct M‑SVM from DGA samples, which includes the following steps:

3.1. Feature Extraction Approaches
The literature exposes a multitude of interpretative‑based DGA approaches to deter‑

mine the condition of oil‑immersed transformers. In this contribution, the following six
approaches are considered:

3.1.1. Key Gases (K‑G)
The first data set is built from nine type of gases: H2, O2, N2, CO, CH4, CO2, C2H4,

C2H6, C2H2. The latter intervene in an effective way for the considered power transformer
fault interpretation, according to IEC 60599 standard [23].

3.1.2. Gases Percentage (G‑P)
The second set is based on nine gas percentage concentrations (retained in the first

set): %H2, %O2, %N2, %CO, %CH4, %CO2, %C2H4, %C2H6, %C2H2; relative to the total
combustible and non‑combustible gases sum (TG): ∑(H2, O2, N2, CO, CH4, CO2, C2H4,
C2H6, C2H2).

3.1.3. IEC Ratios (IEC‑R)
The third set of data counts three ratios, which are generated from five key gases

as follows:
R1 = C2 H2 /C2 H4 (1)

R2 = CH4/H2 (2)

R3 = C2 H4/C2 H6 (3)

3.1.4. Rogers Ratios (R‑R)
The fourth descriptors set that is used considers the same ratios as those of the IEC

method, in addition to the following ratio:

R4 = C2 H6/CH4 (4)

3.1.5. Dornenburg Ratios (D‑R)
The fifth features set is a vector with four elements R1 and R2 of the IECmethod, plus

the two following ratios:
R3 = C2 H2/CH4 (5)

R4 = C2 H6/C2 H2 (6)

3.1.6. Duval’s Triangle (D‑T)
The last set of descriptors is expressed as a percentage of three key%CH4, %C2H2, and

%C2H4, relative to their total concentration (TS): (CH4, C2H2, C2H4). The reader is invited
to see reference [28] for more details on the graphing approach via Duval’s Triangle 1.

3.2. Features Combination and Redundant Features Elimination
Once all six features are defined by the selected diagnostic criteria application, a con‑

catenation process is applied to generated vectors. This allows obtaining a global vector
made up of 32 descriptors. The redundant parameters are then eliminated in order to pro‑
duce a final vector composed of 27 parameters; these are considered input features to a
KSOMmap.
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3.3. Features Standardization
For the purpose of an efficient preparation of discriminator inputs, it is generally rec‑

ommended to implement a standardization process (to ensure optimal data modeling).
This consists in using a common scale for all descriptors while preserving an identical gen‑
eral distribution and a similar ratio to those of the original parameters. In this sense, a
centered/reduced type standardization process is applied:

x̃ij =

(
xij − xj

)
σxj

(7)

Note that xj and σxj represent, respectively, the mean and the standard deviation of
the jth descriptor vector parameter.

Note: the standardization phase was carried out before the new dataset reconstruc‑
tion, to facilitate the Vector Quantification (VQ) process by minimizing data dispersion.

3.4. Kohonen Self‑Organizing Map Reduction
This research presents the implementation of an unsupervised learning SOMmap (see

Definition 1) to project the initial parameters space (of 27 descriptors) onto a reduced pa‑
rameters space (of nine descriptors) based on the VQ principle (without information loss).
The new descriptors are given by the external weights, which connect the map neurons to
the input vectors. The learning consists of finding the weights which best cover the input
space by applying the illustrated algorithm in Definition 1.

Definition 1 (Kohonen map unsupervised learning problem) [15]. Considering a M
dimension learning set, where each learning vector consists of N descriptors. Let
(x1, x2, . . . , xM) be a set of input vectors of N dimension. Let vj =

(
vj1, vj2, . . . , xjN

)
be an

external weights vector that connects neuron j ∈
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Based on the Generic model unification, Table 3 illustrates the hyper parameter char-
acteristics relating to each of the four M-SVM models. 

Table 3. Specifications of the four M-SVM as instances of the GM-SVM model. 

M-SVM M p K1 K2 K3 

WW Model 𝐼 𝑍  1 1 1 0 

CS Model 
1𝑄 − 1 𝐼 𝑍  1 1 1 1 

LLW Model 𝐼 𝑍  1 0 
1𝑄 − 1 0 

M-SVM2 (𝑀)  2 0 
1𝑄 − 1 0 

For this experiment implementation, an open-source software package (MSVMpack) 
[35] based on the GM-SVM model is used. 

4.1.2. Probabilistic Direct M-SVM 
Power transformer automatic diagnosis is a critical and complex task; the discrimi-

nation error costs are in most cases asymmetrical, difficult to quantify and differ between 
experts and transformers. Thus, it is desirable and more reliable to consider classifiers that 
return a posteriori probability estimates, instead of a deterministic classification, which 
returns the membership class label (this allows associating a confidence degree with the 
final decision, for example knowing that the probability that the transformer presents a 
fault is 80% is better than not having any indicators). These probabilistic estimations can 
then be joined to other information sources for complex but more credible final decision 
making. However, SVM are at their basis deterministic discriminators. Nevertheless, it is 
possible to obtain a M-SVM posterior probability estimator by adapting Platt’s binary case 
solution [36] to the multi-class case, as follows: 

to an input vector xi; and let wjl
be an internal weights vector (obtained through the “Mexican hat” function) that connects
neuron j to all these neighbors l ∈
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\j. The KSOM unsupervised learning occurs
in three steps:
‑ Step 1: Elect cluster with maximum response.

• Apply to the map input a learning vector xi.
• Determine the best matching unit j,whose vector vj is closest to the input xi:

dj(t) = min
1<k<n×m

(
N

∑
i=1

∥xi(t)− vik(t)∥
)

• Winning neuron j activation.
‑ Step 2: neighborhood construction around the winning neuron.
‑ Step 3: adaptation of winning cluster weights:

vj(t + 1) = vj(t) + α(t)∥xi(t)− vij(t)∥

vl(t + 1) = vl(t) + α(t)∥xi(t)− vil(t)∥

where (α < 1) is the learning step which decreases according to the iterations t.
‑ Back to step 1 until the algorithm converges.

Figures 2 and 3 show these weights at the start and at the end of training. When the
algorithm starts, the weights of all the neurons in the map are grouped and initialized
to low values. During the iterations, they begin to occupy the input space; the learning
ends up by taking into account all of this space. Thus, each neuron represents a part of
this space.
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Figure 3. KSOM weight positions at the end of the training.

To select the retained map size, six (n × m), different configurations were evaluated
(with n and m ∈ [2, 5]). Each of these configurations generated fifteen epochs. Each epoch
was then evaluated by a MultiLayer Perceptron (MLP) to choose the most efficient among
the fifteen (from a generalization rate view point). Figure 4 shows the parameter distri‑
bution around the clusters for the six selected configurations. Also, Table 1 illustrates the
classification rates relating to these same topologies. It can thus be possible to report the
following information:
‑ Theminimum extreme dimension choice (the number of neurons in themap) is based

on the fact that the majority of conventional methods use on average four ratios for
decision‑making. So a set of four parameters is to be reconstructed.

‑ The maximum extreme dimension choice is fixed after dead neurons’ appearance,
whose external connections do not represent any parameter; just as it is important to
not go beyond the initial parameter number (final set < initial set).

‑ The final map choice (3 × 3 configuration) among the six selected topologies is based
on a trade‑off between the neuron number and themaximumgeneralization rate, plus
the dead neurons’ absence.

‑ The new vector dimension is equal to the retained final map neuron number (for a
total of nine parameters).

‑ The value of each new descriptor is obtained by averaging the parameters associated
with a given cluster.
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Table 1. The six retained configuration classification rates.

Map Size Generalization Rate (%) Map Size Generalization Rate (%)

2 × 2 Map 82.94 4 × 3 Map 88.10
3 × 2 Map 85.32 4 × 4 Map 87.30
3 × 3 Map 88.10 4 × 5 Map 87.30

Table 2 exposes the new descriptors after learning according to the initial parame‑
ters. It can thus be possible to see that some map neurons cover only one input descriptor,
for example:
‑ Neuron 2 (D2) represents the initial descriptor C2 H2/C2 H4. This ratio is used by the three

conventional methods: IEC‑R, R‑R and D‑R, which considers it important.
‑ Neuron 4 (D4) evokes the initial Dornenburg R3 report, considered very important

for detecting the low‑energy thermal fault category from other categories.
‑ Neuron 6 (D6) is seen as being a support and confirmation element of the partial

discharge fault if it is greater than 30%.

Table 2. The new descriptors given by the card after learning.

The Nine New Descriptors Initial Descriptors They Represent

D1 H2, H2/TG

D2 C2H2/C2H4

D3 CH4/TS, C2H2/TS, C2H4/TS

D4 C2H6/CH4

D5 C2H2

D6 CH4/H2

D7 O2, N2, CO, CO2, CO/TG

D8 CO2/TG

D9 CH4, C2H4, C2H6, O2/TG, N2/TG, CH4/TG, C2H4/TG, C2H6/TG, C2H2/TG, C2H4/C2H6, C2H2/CH4, C2H6/C2H2

Also, other neurons cover several old descriptors, which are generally strongly corre‑
lated (information redundancy). For example:
‑ Neuron 1 (D1) brings together the two descriptors H2, H2/TG, which model the same

information revealing the presence of the partial discharge type defect.
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‑ Neuron 7 (D7) brings together five descriptors involved in an insulation fault
identification.
All of these findings confirm the coherence of the groups obtained after Kohonen

map application.

4. Discrimination and Outputs Merging Stage
In this section, the mathematical foundations of direct probabilistic M‑SVM, as well

as the theoretical framework of the DS merging rule, are described.

4.1. Direct Probabilistic Multiclass Support Vector Machines (M‑SVM)
Nowadays, SVM finds applications in various fields, and those because of their ad‑

vantages. The SVM do not consider multi‑category classification natively; they are created
to calculate dichotomies. Thus, for multi‑class applications, two categories of M‑SVM can
be considered; the first category (indirect M‑SVM) is based on the use of decomposition
techniques, while the second category (direct M‑SVM) is based on a multivariate affine
model and currently has four models: the WW model, GS model, LLW model, and M‑
SVM2. Geurmeur then devised a Generic GM‑SVMmodel, which is a statistical properties
unified representation of the four direct M‑SVM. The GM‑SVMmodel is considered in this
paper to present in a global way the learning problem of each direct M‑SVM.

4.1.1. Generic M‑SVMModel
Direct M‑SVM belong to the class of kernel learning algorithms and are considered

as a direct generalization of binary SVM for the multi‑category case (without using the
decomposition approaches). Therefore, direct M‑SVM operate in a specific function class
Hk,Q deduced from another function Hk.

Definition 2 (Class of functions Hk,Q). Let X = {x1, x2, . . . xn} be a set of vectors, where
each vector is labelled according to (yi ∈
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return a posteriori probability estimates, instead of a deterministic classification, which 
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final decision, for example knowing that the probability that the transformer presents a 
fault is 80% is better than not having any indicators). These probabilistic estimations can 
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making. However, SVM are at their basis deterministic discriminators. Nevertheless, it is 
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[35] based on the GM-SVM model is used. 

4.1.2. Probabilistic Direct M-SVM 
Power transformer automatic diagnosis is a critical and complex task; the discrimi-

nation error costs are in most cases asymmetrical, difficult to quantify and differ between 
experts and transformers. Thus, it is desirable and more reliable to consider classifiers that 
return a posteriori probability estimates, instead of a deterministic classification, which 
returns the membership class label (this allows associating a confidence degree with the 
final decision, for example knowing that the probability that the transformer presents a 
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making. However, SVM are at their basis deterministic discriminators. Nevertheless, it is 
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) ∈ Y, with Q ≥ 3. Let H be a Hilbert space
endowed with its scalar product ⟨., ⟩.H , and

(
Hk⟨, ., ⟩.Hk

)
be the homologous Reproducing

kernel Hilbert Space (RKHS) induced by a positive k kernel [34]. The direct M‑SVM class
functions associated with the kernel k are represented as follows:

Hk,Q = (Hk ⊕ {1})Q

knowing that:
{1} : be the space of real‑valued constant functions on X.
and

∀ h ∈Hk,Q, ∀ x ∈ X, h(x) = h(x) + b =
(
⟨hk, k (x, .)⟩Hk

+ bk

)
1≤k≤Q

With:
h = (hk)1≤k≤Q ∈ HQ

k

b = (bk)1≤k≤Q ∈ RQ

(for more details see the Definitions 1–3 provided in Section 2.1 of [34]).

Definition 3 (Generic M‑SVMmodel, Section 2.1 Definition 4 in [16]). Let a learning set
zm = {(xi, yi); i = 1, m} with xi ∈ X and yi ∈
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Power transformer automatic diagnosis is a critical and complex task; the discrimi-

nation error costs are in most cases asymmetrical, difficult to quantify and differ between 
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\{yi}, (2 − p)ξ(i−1)Q+k ≥ 0

(1 − K1)∑Q
k=1 hk = 0

where:
The bounded operator PHk : defines an orthogonal projection from Hk,Q into Hk.
ξ ∈ RQm(Zm) are the slack variables, with (ξ(i−1)Q+yi

)
1≤i≤m

.

(λ, p, K2 ) ∈ R∗
+ and (K1, K3) ∈ {0, 1}2.

The matrix M[Qm, Qm] rank is equal to (Q − 1)m, and it is a diagonal matrix if

p = 1.

Let δ be the Kronecker symbol; so, let us specify the general term of IQm and
(M)2, respectively:

mij,jl = δi,jδk,l

(
1 − δyi ,k

)
.

m(2)
ij,jl = s

(
1 − δyi ,k

)(
1 − δyi ,l

)
δi,j(δk,l +

√
Q − 1

Q − 1
) (8)

Based on the Generic model unification, Table 3 illustrates the hyper parameter char‑
acteristics relating to each of the four M‑SVMmodels.

Table 3. Specifications of the four M‑SVM as instances of the GM‑SVMmodel.

M‑SVM M p K1 K2 K3

WWModel IQmZm 1 1 1 0

CS Model 1
Q−1 IQmZm 1 1 1 1

LLWModel IQmZm 1 0 1
Q−1 0

M‑SVM2 (M)2 2 0 1
Q−1 0

For this experiment implementation, an open‑source software package (MSVM‑
pack) [35] based on the GM‑SVMmodel is used.

4.1.2. Probabilistic Direct M‑SVM
Power transformer automatic diagnosis is a critical and complex task; the discrimi‑

nation error costs are in most cases asymmetrical, difficult to quantify and differ between
experts and transformers. Thus, it is desirable andmore reliable to consider classifiers that
return a posteriori probability estimates, instead of a deterministic classification, which
returns the membership class label (this allows associating a confidence degree with the
final decision, for example knowing that the probability that the transformer presents a
fault is 80% is better than not having any indicators). These probabilistic estimations can
then be joined to other information sources for complex but more credible final decision
making. However, SVM are at their basis deterministic discriminators. Nevertheless, it is
possible to obtain a M‑SVM posterior probability estimator by adapting Platt’s binary case
solution [36] to the multi‑class case, as follows:

k ∈
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4.2. Dempster–Shafer (DS) Theory
Developed byDempster [21] and formalizedmathematically by Shafer [22], belief the‑

ory (or evidence theory) allows imprecision and uncertainty to bemodeled simultaneously
based on the belief function (Bel) and the plausibility function (Pl); the latter are deduced
from the mass functions (m). Below, the Mass, Plausibility and Belief functions, as well as
the merging and the final decision rules, are explained.

4.2.1. Mass, Plausibility and Belief Functions
Let
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= {∅, w1, w2, . . . , wN} be the set subspaces (focal elements) of the discernment
frame. The liveness relative to a proposition A (for a given source S) can be quantified by
a mass function “m” (coryance measurement) m : 2Ω → [0, 1] and must respect the two
following properties: m(∅) = 0 and ∑A⊆Ω m(A) = 1.

From the mass function, it is easy to deduce Bel and Pl functions attributed to the
focal element A, in accordance with the following two mathematical equations:

∀ A ∈ 2Ω, Bel(A) = ∑
B⊆A ̸=ϕ

m(B) (10)

∀A ∈ 2Ω, Pl(A) = ∑
B∩A ̸=ϕ

m(B) = 1 − Bel
(

A
)

(11)

With A being the opposite event of the proposition A. The quantity Bel(A) illustrates
the belief strength in A, justified by the evidence information taken into consideration.
Plausibility is the credibility dual function; its quantity Pl(A) is considered as an upper
bound on the belief strength likely to be attributed to A following new data.

4.2.2. Merging Rule
The merging rule can be generally applied at three levels, namely: low level (consid‑

ering the raw data), intermediate level (descriptor merging) and high level (discriminator
merging). In this work, a fusion at the high level is retained.

Masses combination on the basis of DS law is achieved byDempster’s orthogonal sum;
thus, for two masses functions m1 and m2 and for all A ∈ 2Ω, it yields:

m(A) = (m1 ⊕ m2)(A) =
∑B1∩B2=A m1(B1)·m2(B2)

1 − K
(12)

where K represents the conflict:

K = ∑
B1∩B2=ϕ

m1(B1)·m2(B2) (13)

In this study, probabilistic classifiers are considered, so themasses (of the combination
rule) are replaced by posterior probabilities [32].

4.2.3. Final Decision Rule
Instead of providing a final decision on singleton hypotheses, and based on the high‑

est probability rule as the decision criterion, the DS rule returns the final decision based on
the overall expert responses.

The DS theory operation principle consists of both approving and consolidating; the
proofs answer if they are in agreement or return an unfounded result that does not coincide
with the desired target, in a significant conflict event between proofs. To overcome this
problem, a post‑processing process is proposed; the latter is applied to what is generated
after merging outputs. Let X be the input data space and Y the output data space, where
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each observation xi in X is associated to labels of Y with a posterior probability h̃k. The
proposed dh̃ rule for post‑processing outputs is as follows:

∀ x ∈ X

{
i f ∃ k ∈
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: h̃k(x) ≥ 0.70, then dh̃(x) = k

else dh̃(x) = X∗
(14)

If one of the outputs is greater or equal to 0.70, the example is considered well clas‑
sified; otherwise, the example is assigned to the reject class X∗. Indeed, it appears more
logical and more prudent to reject an example with an uncertain assignment than to force
an expert to give an answer through weighting biases.

The decision threshold has been set at 0.7, so that the gap between the dominant class
and the next class always exceeds 0.4 = 1 − 0.7. This threshold is judged quite sufficient
and even severe, so that there is no confusion between classes. In other words, since the
dominant class alwayswins a probability higher than 0.7, the eight other remaining classes
only win together a probability lower than 0.3.

Furthermore, establishing the rejection class can return important information on the
data quality and uncertainty/certainty (the data are erroneous and inconsistent). Indeed,
a rejection is generally observed after the merger in two situations:
‑ Two or more classifiers are in conflict and do not agree on the class to which the

example belongs, despite the fact that each classifier individually indicates a high
probability of membership (the existence or not of a defect). In this case, the result
provided by the classifiers lacks precision; and by classifying it as a rejection, the
merger calls out the need to seek expert advice.

‑ The classifiers entirely agree on a dominant class absence and distribute the output
probabilities in a uniform manner across several categories. In this case, the data
reliability concerning the example is strongly called into question.

5. Results and Discussion
This section provides details on the used database, the M‑SVM hyper parameter se‑

lection, the statistical evaluation parameters and the obtained results.

5.1. DGA Training, Validation and Evaluation Data
Dissolved Gas Analysis (DGA) is a technique developed to detect certain categories

of incipient failures affecting oil‑immersed equipment that cannot be easily detected by
other conventional methods. This technique is considered one of the most used diagnostic
and preventive monitoring tools today. The DGA database used in this study consists of
252 samples. Firstly, in the data collection part, 148 real mineral oil samples were collected
from about 50 power transformers belonging to the Algerian utility “Sonelgaz Transport
Electricity (STE)”. The DGA database was interpreted by an expert in the field and sub‑
sequently subdivided into eight fault categories: Partial Discharge (PD: 16 samples), Low
Energy Discharge (LED: 24 samples), High Energy Discharge (HED: 12 samples), Thermal
fault (t < 700 ◦C) (OH1: 16 samples), Thermal fault (t > 700 ◦C) (OH2: 16 samples), Cellulose
Degradation (CD: 20 samples), Thermal (t > 700 ◦C) and Cellulose Degradation (OH2‑CD:
eight samples), Energy Discharge and Cellulose Degradation (ED‑CD: 12 samples) plus a
healthy samples category (N: 24 samples). Secondly, the lines that give the gas concentra‑
tions in an inequalities form (Table 4) are duplicated. A database containing 252 examples
is therefore used for discriminator learning, validation and testing.

5.2. M‑SVM Hyper Parameters Selection
In this study, four cross‑validation levels were carried out. The database was firstly

split randomly into four separate sets. Then, for each validation level and for eachM‑SVM
model, two sets were used for training, one set was used for the best hyper parameter
selection and one set was used for testing. Thus, all the database samples were considered
during the training process and were tested during the evaluation process.
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It is, of course, affirmative to validate an approach on all the samples than on a set
portion (indeed, it could be that the results obtained with this portion are better than the
results, which could be obtained with the other portions).

Table 4. Duplicating process for an ED‑CD defect type.

H2 CO O2 N2 CO2 CH4 C2H2 C2H4 C2H6

127 847 16,973 89,517 3726 17 67 <1 3
⇓

127 847 16,973 89,517 3726 17 67 0.2 3
127 847 16,973 89,517 3726 17 67 0.4 3
127 847 16,973 89,517 3726 17 67 0.6 3
127 847 16,973 89,517 3726 17 67 0.8 3
127 847 16,973 89,517 3726 17 67 1 3

The appropriate hyper parameter selection is a crucial step to build an efficient classifi‑
cationmodel. For anM‑SVM typemodel, the hyper parameters to be optimized depend on
the selected kernel type (in addition to the penalty parameters). The MSVMpack includes
three kernels (linear, polynomial and radial) with which the experts can implement. In
this study, the radial kernel, which allowed bringing out a more adequate separation, was
used. For an M‑SVM model selection (with radial kernel), two regularization parameters
must be optimized among a grid of values: the kernel parameter γ and the penalty param‑
eter C. Thus, at each validation level, 255 combination pairs (C, γ) were evaluated with γ
and C included respectively in the intervals

[
24, 23, . . . , 2−10] and [212, 211, . . . , 2−2] [37].

Then, each combination performance was reported by performing the learning on the
training data and the evaluation on the validation data. The best combination was then
retained for the final discrimination: the training was always done with the same learning
data and the discrimination was based on the test data.

5.3. Statistical Evaluation Parameters
Seven statistical metrics are selected; all are deduced from a confusionmatrix, Table 5,

as follows:
‑ Receiver Operating Characteristic (ROC) curve: is a graphical representation that

illustrates the classifier performances (Sensitivity and 1‑Specificity) variation at all
probability thresholds.

‑ Area Under the ROC Curve (AUROC‑95\% CI): returns an overall performance esti‑
mate for all possible discrimination probability thresholds. A confidence interval is
also associated to each measurement.

‑ Sensitivity and Specificity: these are two elementary and complementary metrics for
the expert‑performance evaluation. In fact, they are based on all the confusion matrix
elements and constitute the ROC curve base.

Table 5. The confusion matrix.

Predicted

Considered category Other categories

Re
al
ity Considered category True positive (TP) False negative (FN)

Other categories False positive (FP) True negative (TN)

The sensitivity or True Positive Rate, (TPR) =
TP

TP+ FN
, predicts the expert’s abil‑

ity to discern the positive population; while specificity or True Negative Rate, (TNR) =
TN

FP+ TN
, predicts the expert’s ability to discern the negative population.
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‑ Positive Predictive Value (PPV): returns the truly positive individual proportion

within a population classified as positive, PPV =
TP

TP+ FP
.

‑ Negative Predictive Value (NPV): returns the truly negative individual proportion

within a population classified as negative, NPV =
TN

TN+ FN
.

‑ False Negatives (FN): is a positive population for which the test is negative,
FP = 1 − NR.

‑ False Positives (FP): is a negative population for which the test is positive
FN = 1 − TPR.

5.4. Obtained Results
The statistical performances of the proposed fusion method as well as those obtained

by the implemented probabilistic direct M‑SVM are shown in Tables 6 and 7 (for compari‑
son). Also, Figures 5 and 6 reported the ROC curve evolution according to the five experts
(for the NC class and the HED class). Focusing on these results, the following findings
are reported:

Table 6. M‑SVM and proposed DS‑fusion model performances (all p‑value < 0.001).

Class Statistical
Parameters (%) WW‑MSVM LLW‑MSVM MSVM2 CS‑MSVM Fusion

N

AUROC 0.938
[0.883–0.993]

0.963
[0.927–0.999]

0.984
[0.969–0.999]

0.991
[0.980–1.000]

0.994
[0.985–1.000]

Sensitivity 87.5 90.62 93.75 100 100 (1 Reject)
Specificity 97.73 98.18 98.18 98.18 98.58

False positive 2.27 1.82 1.82 1.82 1.42
False negative 12.5 9.38 6.25 0 0

VPP 84.85 87.88 88.24 88.89 91.18
VPN 98.17 98.63 99.08 100 100

PD

AUROC 0.956
[0.901–1.000]

0.970
[0.935–1.000]

0.940
[0.896–1.000]

0.975
[0.940–1.000]

0.985
[0.960–1.000]

Sensitivity 90.62 87.50 87.50 90.62 93.54 (1 Reject)
Specificity 98.63 98.63 99.09 100 100

False positive 1.37 1.37 0.91 0 0
False negative 9.38 12.50 12.50 9.38 6.46

VPP 90.63 90.32 93.33 100 100
VPN 98.64 98.19 98.64 98.65 99.53

LED

AUROC 0.966
[0.937–0.996]

0.959
[0.925–0.993]

0.968
[0.941–0.996]

0.968
[0.938–0.998]

0.977
[0.949–1.000]

Sensitivity 87.5 93.75 90.62 90.62 90.32 (1 Reject)
Specificity 98.63 99.10 98.18 98.18 99.05

False positive 1.37 0.90 1.82 2.82 0.95
False negative 12.5 6.25 9.38 9.38 9.68

VPP 90.32 93.75 87.88 87.88 93.33
VPN 98.18 99.09 98.63 98.63 98.59

HED

AUROC
(95% CI)

0.968
[0.925–1.000]

0.971
[0.943–1.000]

0.938
[0.867–1.000]

0.958
[0.916–1.000]

0.986
[0.970–1.000]

Sensitivity 83.33 87.5 83.33 79.16 86.96 (1 Reject)
Specificity 98.24 98.24 98.68 99.12 99.54

False positive 1.76 1.76 1.32 0.88 0.46
False negative 16.67 12.5 16.67 20.84 13.04

VPP 83.33 84 86.96 90.47 95.24
VPN 98.25 98.68 98.25 97.84 98.65

OH1

AUROC (95% CI) 0.962
[0.931–0.993]

0.971
[0.934–1.000]

1.000
[1.000–1.000]

0.996
[0.989–1.000]

0.999
[0.996–1.000]

Sensitivity 89.28 92.85 100 96.42 96.42
Specificity 98.66 100 100 100 99.53

False positive 1.34 0 0 0 0.47
False negative 10.72 7.15 0 3.58 3.58

VPP 89.29 100 100 100 96.43
VPN 98.66 99.12 100 99.56 99.53
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Table 6. Cont.

Class Statistical
Parameters (%) WW‑MSVM LLW‑MSVM MSVM2 CS‑MSVM Fusion

OH2

AUROC
(95% CI)

0.965
[0.935–0.995]

0.966
[0.928–1.000]

0.981
[0.955–1.000]

0.994
[0.955–1.000]

0.999
[0.996–1.000]

Sensitivity 82.14 89.28 96.42 96.42 100 (2 Rejects)
Specificity 99.55 98.66 99.11 99.11 99.53

False positive 0.45 1.34 0.89 0.89 0.47
False negative 17.86 10.72 3.58 3.58 0

VPP 95.83 89.29 93.10 93.10 96.30
VPN 97.81 98.66 99.55 99.55 100

CD

AUROC
(95% CI)

0.981
[0.949–1.000]

1.000
[1.000–1.000]

0.996
[0.989–1.000]

1.000
[1.000–1.000]

1.000
[1.000–1.000]

Sensitivity 96.87 100 96.87 100 100
Specificity 99.55 100 100 100 100

False positive 0.45 0 0 0 0
False negative 3.13 0 3.13 0 0

VPP 96.88 100 100 100 100
VPN 99.55 100 99.55 100 100

OH2‑CD

AUROC
(95% CI)

0.975
[0.950–0.999]

0.930
[0.853–1.000]

0.936
[0.851–1.000]

0.966
[0.920–1.000]

0.978
[0.945–1.000]

Sensitivity 95 80 85 90 89.47
Specificity 97.84 99.14 99.14 99.14 100

False positive 2.16 0.86 0.86 0.86 0
False negative 5 20 15 10 10.53

VPP 79.17 88.89 89.47 90 100
VPN 99.56 98.29 98.71 99.14 99.12

ED‑CD

AUROC
(95% CI)

0.965
[0.920–1.000]

0.966
[0.936–0.996]

0.932
[0.847–1.000]

0.959
[0.916–1.000]

0.972
[0.926–1.000]

Sensitivity 83.33 91.66 87.50 87.50 100 (2 Rejects)
Specificity 98.68 97.80 98.68 98.25 98.64

False positive 1.32 2.2 1.32 1.75 1.36
False negative 16.67 8.34 12.50 12.50 0

VPP 86.96 81.48 84 84 88
VPN 98.25 99.11 98.68 98.68 100

Table 7. Average performances of M‑SVM and DS‑fusion models.

WW‑MSVM LLW‑MSVM MSVM2 CS‑MSVM Fusion

AUROC (95% CI)
(p‑value < 0.001) 96.40 96.62 96.39 97.86 98.78

Sensitivity 88.39 90.35 91.22 92.30 95.19
Specificity 98.61 98.86 99.01 99.10 99.43

False positive 1.39 1.14 0.99 0.90 0.57
False negative 11.61 9.65 8.71 7.7 4.81

VPP 88.58 90.62 91.44 92.70 95.61
VPN 98.56 98.86 99.01 99.11 99.49

The expert performances increase proportionally with the amount of area under the
curve; indeed, the expert whose predictions are correct tends to have an AUROC which is
close to 100%; an expert whose predictions are erroneous has an AUROCwhich is close to
0%; and an expert whose prediction is not informative (random) has an AUCROC which
is close to 50%. It can be seen from Table 7 that the obtained AUROC sets after applying
DS fusion are superior to those of the four direct M‑SVM implemented separately with
an average AUROC of 98.78% (p‑value < 0.001). This can be explained by the fact that the
ROC curve plotting is based on the generalization rate variation at different probability
thresholds. For the proposed fusion model, all examples are assigned to their categories
with a probability greater than 0.70, while the four direct M‑SVM employ an all‑or‑nothing
classification; thus, in the worst case, an M‑SVM can assign an example to a class with a
probability of 0.12, which adversely affects the area under the curve.
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A confidence interval (significant at 95%) has also been associated with each AUROC
to predict the area under the curve for the future independent samples (the generalization
to a larger population); it was observed that the fusion AUROC upper limits can achieve
an accuracy of 100% for all categories, contrary to M‑SVM taken separately.

After merging, there is a significant distinction in the TPR and FN overall rates (which
are considered to be correct classification rate estimators), just as the TNR and FP overall
rates amelioration is underlined.

This is due, on the one hand, to the fact that the fusion takes into consideration each
M‑SVM advantage for a satisfactory result. Indeed, when analyzing the data reported in
Table 6, it is found that it is difficult to privilege one model over another and that the M‑
SVM are in reality complementary (with slightly higher rates for CS‑MSVM and slightly
lower rates forWW‑MSVM). For example,WW‑MSVM tended to classify PD andOH2‑CD
categories well, while WW‑MSVM generalizes the LED and HED classes well.

On the other hand, it should be remembered that a fusion outputs processing process
was suggested, and a sample is considered to be well classified only if its membership
probability is higher than 70%. Otherwise, it is reassigned to the reject category. Thus,
attributing an example to the reject class instead of an arbitrary class favorably influences
the results.

The FP and FN numbers (which are seen as indicators of overlapping rates between
classes) increase consequently the model performances. In reliable diagnostic problems, it
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is wiser to abstain and leave the choice to the experts in the field than to make a diagnosis
whose consequences are irreversible.

After fusion, the results also return an important distinction of the PPV and NPV
rates. This still adds a sure value to the proposed approach effectiveness, since these two
statistical parameters are seen as being confidence indicators in the obtained results. For
example, let us consider the proposed fusion model. The HED class PPV rate is 95.24%,
which means that 95.24% of samples classified as HED are really HED, and that 4.76%
of the samples are wrongly classified as HED; the HED class NPV rate is 98.65%, which
means that 98.65% of samples classified as not HED are really not HED, and that 1.35% of
the samples are wrongly classified as not HED.

According to the last column of Table 6, one can see that the rejected examples number
after merging is eight examples out of 252, which represents a low percentage of the order
of 3% (despite a very severe decision‑making threshold). These results justify on the one
hand that in 97% of cases the classifiers agree on the class to which the example belongs
(which adds an important confidence degree to the results provided by our approach).
On the other hand, the results obtained justify the dominant class presence and therefore
validate the data reliability (please see Section 4.2.3).

At the end, a temporal analysis (study of the execution time) has been carried out. This
proves the necessity to determine the possibility of introducing the proposed model into
embedded processes. The analysis results are summarized in Table 8. Quite reasonable
execution times for the four M‑SVM and for the proposed fusion model can be observed.

Table 8. Average prediction times of M‑SVM and DS‑fusion models.

WW‑MSVM LLW‑MSVM MSVM2 CS‑MSVM Fusion

Prediction
time (s)

0.018
±0.004

0.015
±0.002

0.010
±0.003

0.014
±0.004

0.085
±0.009

However, a more important learning time was noticed. For learning diagnostic sys‑
tems, the training phase performed offline and the time it may take is not important. What
counts is the system response time in the operating phase. For the present study, the re‑
sponse time is almost instantaneous, which once again proves the efficiency of the pro‑
posed fusion approach.

5.5. Comparison with Previous Work Results
It is necessary to consider a comparison between the obtained results with the pro‑

posed approach and those obtained by other methods in the literature. In this subsection,
a comparative study is proposed according to three parameters: the considered classes
number, the used samples number and the overall generalization rate. For this, a few
contributions whose treated problem is as similar as possible to that of the paper have
been selected.

The authors proposed in their studies [7] a DGA diagnostic approach based on a Clus‑
tering Technique, a Cumulative Voting merged Technique (CVT) and a revisited k‑nearest
neighbors (KNN) algorithm. Xie and coauthors [12] proposed an approach based on relief
algorithm for features selection, kernel Linear Discriminant Analysis (LDA) for features
redundancy elimination and Relevance Vector machines (RVM) as discriminator. The au‑
thors in [14] proposed a system, namely: 2‑ADOPT. This system was based on two ver‑
sions of PSO approach (features selection and ensemble classifiers selection) and DS com‑
bination rule. The authors of [25] presented in their studies, an approach based on kernel
extreme learning machine (KELM) optimized with the Harris hawks optimization (HHO)
algorithm. The authors proposed in their research [27] a comparative study of anMLP net‑
work performance in power transformers diagnosis according to five different data sets.
The study [30] proposed a new approach based on GA for features reduction and a krill
herd (IKH) algorithm optimized SVM for generalization. Abdo et al. exposed in [31] a
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method based on the application of a normalized data set (C‑set) approach, an unsuper‑
vised Fuzzy C‑means (FCM) clustering algorithm and a SVM. The study [32] proposes a
multiple Probabilistic output Algorithms (PA) fusion (RVM, SVM andMLP) by the DS law;
the hyper parameters of PA algorithms have been optimized by the PSO approach. From
Table 9 it is noted that:
‑ The categories number taken into account in this research is high compared to all other

studies. Likewise, the present work offers a generalization rate which surpasses the
obtained rates from other studies, except for theworks [12,14,26]. This can be justified
by the fact that the authors considered fewer classes and test examples.

‑ The samples number is comparable to other studies with the exception of work [7].
This is justified by the fact that the latter considers a KNN type classifier, which nec‑
essarily needs a relatively large training sample for efficient performance. Contrary
to this work, M‑SVM‑type discriminators are implemented, one of the advantages of
which is to offer high generalization rates from a reduced learning sample.

Table 9. Previous work results.

Study Sample Count Categories Number Classification Rates (%)

CT‑CVT‑KNN [7] 396 7 93

SCA‑RVM [12] 135 6 97.07

2‑ADOPT [14] 101 4 97.94

KELM‑HHO [25] 118 5 88

MLP [27] 102 6
MLP‑MRR MLP‑RR MLP‑IECR MLP‑KG MLP‑DR

87.88 90.91 93.94 100 90.91

AG‑IKH‑SVM [30] 113 5 85.71

Cset‑FCM‑SVM [31] 177 6 86.11

PA‑DS [32] 156 6
RVM SVM MLP DS‑Fusion
87.8 85.3 82.6 89.1

Proposed Approach 252 9
WW LLW MSVM2 CS Fusion
88.39 90.35 91.22 92.30 95.19

Especially since all the statistical tests that take into consideration the sample size
crown with expressive areas under the curve (AUROC) and are statistically significant
(p‑values < 0.001), this testifies that the samples number is sufficient to validate the obtained
generalization results.

Moreover, in these previous works, the authors took into account during the test only
a limited part of the overall samples, while in the present study the samples were fully
tested through the cross‑validation application.

6. Conclusions
Accurate prediction and diagnosis of possible incipient faults is an indispensable part

of power delivery to end‑users, is conducive to sustainable development and has practical
significance and demands. In this contribution, a power transformer intelligent diagnos‑
tic aid system based on real DGA data obtained from power transformers of a western
Algerian electricity and gas company is proposed.

Six descriptor sets were firstly constructed and presented as Kohonen map inputs,
for data size reduction and information completeness preservation. DS fusion was after‑
wards applied to the fourGenericM‑SVMmodel outputs for accurate and reliable decision‑
making. Finally, an output post‑processing process was applied to overcome the contra‑
dictory evidence problem. It is worthwhilementioning that the four directM‑SVMmodels
implemented in this study offer theoretically the same performances, and each model has
their own advantages and their own disadvantages; that the performance of MSV M was
improved thanks to the proposed descriptor reconstruction approach; and that the deci‑
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sion making was strengthened through the application of DS fusion and the introduction
of the rejection class.

Eight defect categories were considered in addition to the healthy samples class, and
the obtained results highlighted the proposed approach effectiveness in detecting incipi‑
ent failures. Indeed, the latter archieved an AUROC and sensitivity percentage of 98.78%
and 95.19% (p‑value < 0.001), respectively. Comparisons between the obtained results with
different approaches reported in the literature [7,12,14,25,26,30,31] indicate a higher cate‑
gory number. Only a limited part of the overall samples was taken into account, while
the samples were fully tested in the present contribution through the cross‑validation ap‑
plication. In addition, the present work offers a generalization rate which surpasses the
obtained rates from most studies.

Consequently, this study can be seen as very promising and useful for transformer
owners. The results presented can be viewed as a benchmark and a challenge for further
research. In particular, the authors’ future research will focus on transformer anomaly pre‑
vention and exploration of other DGA data manipulation techniques such as ontologies.
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The following abbreviations are used in this manuscript:
DGA Dissolved Gas Analysis
M‑SVM Direct Multiclass Support Vector Machines
IA Artificial Intelligence
D‑T Duval Triangle
R‑R Rogers Ratios
D‑R Dornenburg Ratios
IEC‑R IEC Ratios
KG Key Gases
PTD Power Transformers Diagnosis
G‑P Gases Percentage
TG Total combustible and non‑combustible Gases sum
TS Total Sum
KSOM Kohonen Self‑Organizing Maps
GM‑SVM Generic M‑SVMModel
WW Weston and Watkins model
CS Crammer and Singer model
LLW Lee et al. model
M‑SVM2 Quadratic Loss Multi‑Class Support Vector Machine
DS Dempster–Shafer fusion
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PSO Practical Swarm Optimization
GA Genetic Algorithm
H2 Hydrogen
O2 Oxygen
N2 Nitrogen
CO Carbon Monoxide
CH4 Methane
CO2 Carbon Dioxide
C2H6 Ethane
C2H4 Ethylene
C2H2 Ethylene
VQ Vector Quantification process
MSVMpack MSVM software package
Bel Belief function
Pl Plausibility function
M Mass function
ROC Receiver Operating Characteristic curve
AUROC Area Under the ROC Curve
TPR True Positive Rate
TNR True Negative Rate
PPV Positive Predictive Value
NPV Negative Predictive Value
FN False Negatives
FP False Positives
TP True Positives
TN True Negatives
STE Sonelgaz Transport Electricity
PD Partial Discharge
LED Low Energy Discharge
HED High Energy Discharge
OH1 Thermal fault (t < 700 ◦C)
OH2 Thermal fault (t > 700 ◦C)
CD Cellulose Degradation
OH2‑CD Thermal (t > 700 ◦C) and Cellulose Degradation
ED‑CD Energy Discharge and Cellulose Degradation
N Healthy samples
C‑Set Normalized data set approach
FCM Fuzzy C‑means clustering algorithm
KELM Kernel extreme learning machine
HHO Harris‑Hawks‑optimization algorithm
CVT Cumulative Voting Technique merged
KNN k‑Nearest Neighbors algorithm
LDA Linear Discriminant Analysis
RVM Relevance Vector machines
MLP Multilayer Perceptron
PA Probabilistic output Algorithms
IKH Krill herd algorithm
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