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ABSTRACT In the era of Industry 4.0, digital transformation has spurred the swift advancement of technologies, including 

intelligent predictive maintenance scheduling, prognostics and health management. The accurate prediction of remaining 

useful life plays a crucial role in these technologies as it extends power equipment's safe operational duration and decreases 

the maintenance costs associated with unforeseen shutdowns. Also, the increased accessibility of data for monitoring system 

conditions has paved the way for the more immense adoption of machine learning models in prognostics and health 

management for power transformers. At the moment, with the ever-increasing demand for electricity, there is a corresponding 

increase in the degradation processes of power transformers. Transformers insulation system and more importantly, the paper 

insulation happens to be the principal part where the degradation is prominent. Therefore, an accurate prediction of the 

insulating paper condition through its degree of polymerization is required to guarantee the reliability of power transformers. 

In this regard, the predictions, reliability, and health monitoring of this power equipment can be actualized by modeling the 

degradation of transformer insulation paper through several machine learning frameworks. In this view, this review paper has 

been drafted not only to serve as a guide for researchers interested in the fields of transformer insulation system fault prognosis 

but also to offer insights into potential research directions as existing literature in modeling and evaluating transformer paper 

insulation is presented. 

 

INDEX TERMS Insulating paper, ageing, degree of polymerization, prognostics and health management, 

machine learning model.

I. INTRODUCTION 

Over time, power transformers experience degradation in 

their insulation system which to a large extent causes tragic 

failures which limit the proper operations of power networks 

[1], [2]. The degradation of solid insulation among other 

transformer-insulating components remains the primary 

cause behind the ultimate failure of power transformers. As 

a result, assessing the state of paper insulation has become 

an established measure of the power transformer's health 

condition [3]. Also, according to IEEE, the lifetime models 

of solid insulation can be used for reliability assessment and 

health monitoring for power transformers [4]. The 

transformer solid insulation which is known as the paper 

insulation consists of extended chains of glucose rings 

forming the cellulose polymer molecule. The collective  

 

length of these chains is computed as the degree of 

polymerization [5]. Throughout the power transformer's 

operational life, the degree of polymerization diminishes due 

to some ageing mechanisms like oxidation, hydrolysis, and 

pyrolysis [6]. Measuring the degree of polymerization 

directly from an insulating paper sample is a practicable 

approach. However, when it comes to a power transformer 

in active operation, adopting this practice involves 

undesirable disconnection and invasive handling of the unit 

[7]. Hence, several techniques discussed later in this study 

have been employed as an indirect measure due to the 

established correlations between degree of polymerization 

(DP) and these parameters. 
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   The effective operation, performance, and reliability of the 

power equipment can be enhanced by diagnostics and 

prognostics approaches as they give detailed information on 

the maintenance and replacement of any component of the 

power transformer to prevent any critical deprecatory state 

of the system. Furthermore, corrective and preventive 

maintenance are the two predominant maintenance schemes 

used since the 1990s [8]. Corrective maintenance is only 

performed after the equipment has experienced a breakdown, 

which results in prolonged repair durations and other 

penalties and expenses related to the equipment breakdown. 

This type of maintenance is often referred to as failure-driven 

maintenance. Preventive maintenance is performed on a 

routine basis as experts make these maintenance decisions 

based on their past knowledge of the equipment 

manufacturers and past breakdown and failure data. 

Nevertheless, making an accurate maintenance schedule in 

advance proves to be demanding. This makes preventive 

maintenance to be inadequate and gradually becoming 

outdated. In recent times, predictive maintenance has made 

use of predictive tools to ascertain the optimal timing when 

maintenance actions are required. This maintenance 

approach also referred to as condition-based maintenance 

can mitigate unexpected downtime, reduce maintenance 

expenses, and increase the equipment's lifetime [9], [10]. 

Furthermore, predictive maintenance utilizes non-invasive 

testing methods like acoustics dissolved gas analysis (DGA), 

electrical tests, infrared analysis, thermodynamics, and 

vibration analysis to observe and estimate the trend in the 

performance of the equipment. Data gathering, fault 

identification, diagnostics, and prognostics are the basic 

steps to execute predictive maintenance. According to 

equipment degradation data, classification, regression, and 

survival models are three major modeling schemes for 

predictive maintenance. The classification model aims to 

forecast if a failure will take place within a specified time 

frame. The regression model aims to forecast when the 

equipment is expected to fail by modeling the trajectory of 

the deterioration path. Finally, elemental concept of survival 

model is to address how the risk of failure evolves over time 

[9]. Figure 1 shows the classification of equipment failure 

[11] and the fault tree analysis of the transformer that 

connects the system-level transformer fault with low-level 

transformer failure is given in Figure 2 [12]. 

   Now, the emergence of machine learning (ML) presents a 

promising technique for monitoring and assessing the 

condition of transformer insulation degradation through its 

capacity to understand the role of predictive maintenance 

[13]. This learning has helped to mitigate the errors in 

communication and sensor malfunction by addressing the 

missing data obtained from the sensor, which ensures a 

reliable predictive model [14]. Furthermore, ML models 

provide an effective technique for detecting, diagnosing and 

predicting transformer insulation status than the traditional 

approach [15]. Therefore, utilizing ML techniques for 

predicting the DP correlated parameters will offer a more 

cost-effective and readily accessible method for monitoring 

the health condition of transformers' paper insulation. 

   In this regard, this review seeks to provide researchers and 

engineers with insights into the vast potential, applications, 

and challenges associated with transformer insulation paper 

prognosis approaches. Furthermore, our goal is to aid 

researchers in obtaining a comprehensive understanding of 

the current and future applications, as well as the challenges, 

in the field of fault prognosis from a machine perspective. 

We anticipate that the application of machine learning in 

fault prognosis will significantly transform maintenance 

practices of power transformer insulation systems in the 

coming years.  

 

FIGURE 1. Equipment failure classification [11].          

 

FIGURE 2. Fault tree analysis for transformers [12]. 

 

II. PAPER INSULATION 

Cellulose pulp served in the early days of electrical 

engineering as an insulating paper and according to [16], [17], 

cellulose insulation paper represents approximately 10% of 

the weight of the transformer. It plays an important role as an 

insulator used for wrapping around copper windings and as a 

mechanical/structural support in oil-immersed transformers 

[18]. Also, spacers or pressplates, and pressrings, which are 

components of power transformers make use of pressboard or 

paper board [19]. Cellulose material is still utilized in power 

transformers because of its availability, low price outstanding 

insulation performance when dried, and acceptable 

mechanical behaviour at high temperatures relative to 

synthetic material, making the electrical power industry 

worldwide process several million tons of cellulose pulp into 

insulating materials. However, the paper’s chemical process 

complexity when deteriorating has been a major setback 

limiting its technical utilization [18]. The common raw 

material for insulating paper is electrical grade softwood Kraft 

pulp containing about 85 % cellulose, 5 % lignin, and 10 % 
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hemicelluloses. Bleaching of the paper is circumvented to 

increase the content of lignin in the paper, which helps 

improve its thermal strength and integrity [20]. Figure 3 

represents the molecular structure of cellulose [7], [21]. 

Typically, solid insulation comprises two types of cellulose, 

which are thermally upgraded paper (TUP) and Kraft paper 

[22]. TUP, which is either chemically modified or 

incorporated with additives, has been recently utilized in 

power transformers due to their excellent improvement of 

thermal stability of insulating paper. However, chemically 

modified TUP requires extensive quantities of toxic and 

hazardous reactants, needs a distinct industrial process for the 

pulping stage, and there is a decrease in the mechanical 

performance of the insulating paper due to the replacement of 

the hydroxyl groups. Furthermore, in addition to excellent 

thermal stability, additives incorporated in TUP are cheap and 

have seamless integration into current industrial processes. 

However, it has the potential of discharging corrosive 

ammonia [18]. 

   As per the GB/T29305‐2012 standard [23] for measuring 

insulating cellulosic materials average DP for new and aged 

paper, the degree of polymerization of insulating paper is 

assessed through viscosity measurement. This involves 

utilizing positive hexane and copper ethylenediamine as the 

extractant and solvent respectively. The paper is then 

fragmented into small particles, dissolved in hexane, and 

completely defatted in a Sow extraction device. After drying 

in a vacuum oven, the mass of the sample is measured. 

Subsequently, the dried sample is introduced into the copper 

ethylenediamine solvent, and stirred until fully dissolved 

using a magnetic stirrer. The degree of polymerization is then 

determined by measuring the outflow time of the prepared 

solution with a Ubbelohde viscometer at a temperature of 

20°C [7], [24]. The DP of new insulation paper is about 1000 

– 1200 where its lifespan is approximately 180 000 h while 

the insulation paper DP has its least value (200) at the hottest 

spot of the transformer, which is considered its end-of-useful 

life [4], [25]. At this stage, the insulation paper becomes 

weak and brittle, which diminishes its insulation integrity 

and a loss of its capacity to sustain additional stresses [26]. 

Paper with 200 DP is also considered to have lost 70% of its 

tensile strength [27]. However, a fundamental prerequisite 

for insulating paper pulp is to assume a concentration of 

extremely low ions of transition and primary group metals 

enabling them to possess low conductivity and ensure 

reliable performance when exposed to very high 

temperatures [18]. 

 

 

 

 

 

 

 

 

FIGURE 3. Cellulose molecular structure [7, 21]. 

A. MATHEMATICAL MODEL CONCEPT 

Cellulose degradation kinetics have been developed for 

indirect evaluation of paper insulation, as the paper 

insulation cannot be easily accessed like the insulating 

liquid. The DP of insulation paper in power transformers for 

a given time can be estimated by employing the Arrhenius 

equation proposed by Emsley and Stephen model [28], 

which is also known as the zero-order kinetic model [29].  
1

𝐷𝑃𝑡
 −  

1

𝐷𝑃0
 = 𝐴𝑒− 

𝐸𝑎
𝑅𝑇 

 𝑡                                                   (1) 

   Where 𝐷𝑃0 and 𝐷𝑃𝑡  are the original DP for the new 

transformer and DP value at time t, respectively, R is the gas 

constant in J/mol/K, 𝐸𝑎 is the activation energy in Jmol−1, T 

is the hot-spot temperature in Kelvin, A in hr−1is the pre-

exponential factor that depends on the chemical 

environment, and t is the time in hours [27], [30]. A and 𝐸𝑎 

can be known from the plot of the logarithms of K against 

the reciprocal of T. where K is the rate of reaction given as 

[28], [31] given as:  

 

𝐾 =  𝐴𝑒− 
𝐸𝑎
𝑅𝑇 

                                                                      (2) 
  Also, a recursive form of equation (1) given as equation (3) 

was employed in [25] to improve the accuracy of paper 

deterioration estimation. 

1

𝐷𝑃𝑛
 −  

1

𝐷𝑃(𝑛−1)
 = 𝐴(𝑛−1)𝑒

− 
𝐸𝑎(𝑛−1)
𝑅𝑇(𝑛−1)  . [𝑡𝑛  −  𝑡(𝑛−1)]  (3) 

Where n is the iteration stage. 

   The author in [27] utilized the pseudo-zero-order kinetic 

equation in equation (1) to model the DP as given in equation 

(4) considering the temperature, moisture content and 

oxygen level of the insulating paper. The DPn is DP after the 

ageing period tn, DPn-1 is the paper DP at the end of the last 

interval, Ea in J/mol is the activation energy, R in Jmol-1K-1 

is the ideal gas constant, tn is time-period, and T is the 

temperature in Kelvin. The value for A is obtained from the 

oxygen level of the insulating liquid and the moisture content 

of the insulating paper as seen in [7]. 

𝐷𝑃𝑛  =  
1

𝐴 × 𝑡𝑛 × 𝑒
(
−𝐸𝑎
𝑅𝑇 )

+ 
1

𝐷𝑃𝑛−1

                                            (4)    

Furthermore, the Arrhenius equation in equation (1) was 

disintegrated in [32] to account for processes that involve 

oxidation, pyrolysis, and hydrolysis. 

1

𝐷𝑃(𝑡)
 −  

1

𝐷𝑃(𝑡𝑜)
 =  ∑𝑘(𝑡)

𝑡

𝑡0

,                                      (5) 

Where,  

𝑘(𝑡)  

=  𝐴𝑜𝑥𝑖(𝑡)𝑒
−

𝐸𝑎,𝑜𝑥𝑖
(𝜃𝐻𝑆(𝑡) +273)𝑅  +  𝐴𝑝𝑦𝑟(𝑡)𝑒

−
𝐸𝑎,𝑝𝑦𝑟

(𝜃𝐻𝑆(𝑡) +273)𝑅   

+  𝐴ℎ𝑦𝑑(𝑡)𝑒
−

𝐸𝑎,ℎ𝑦𝑑
(𝜃𝐻𝑆(𝑡) +273)𝑅                                              (6) 

   The subscripts 𝑜𝑥𝑖, 𝑝𝑦𝑟, and ℎ𝑦𝑑 represent oxidation, 

pyrolysis, and hydrolysis respectively. 𝑘(𝑡) is the rate of 

degradation. Also, an expression in the form of a quadratic 

equation that relates the value of  𝐴ℎ𝑦𝑑, range of oxygen level 

and insulating paper moisture for both thermally upgraded 
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and non-thermally upgraded paper was proposed in [33], 

[34]. In [35], the authors estimated the degradation of 

insulating paper by utilizing moisture content and 

temperature as the ageing parameter. The influence of 

oxygen was not considered as a larger number of oil-

immersed transformers concurrently manufactured are 

known to be a system devoid of air (air free). 

   TUP (Nomex paper) for dry insulation also employs the 

first-order reaction law as seen in equation (7) to obtain its 

degree of polymerization [36], [37]. 
1

𝐷𝑃𝑡
 −  

1

𝐷𝑃0
 =  

𝑘1
𝑘2
[1 −  𝑒−𝑘2𝑡]                                    (7) 

   Where 𝐷𝑃0 and 𝐷𝑃𝑡  are the Nomex paper DP at initial time 

and time t respectively, t is the ageing time, 𝑘1 and 𝑘2 are the 

rate of reaction constants. Furthermore, an improved second-

order kinetic model is proposed in [38] to investigate the 

insulating paper ageing state under an axial temperature 

gradient. In [30], the authors estimate the effect of moisture, 

oxygen, and hot-spot temperature on the lifespan of the 

transformer with TUP and Kraft paper. The result of the 

study considering hot-spot temperatures ranging from 50 ℃ 

to 140 ℃, and varying moisture content ranging from 0.5% 

to 5% shows that at low oxygen conditions, the paper 

lifespan is longer than at medium and high oxygen levels. 

Also, both papers behave similarly with an increase in the 

oxygen level. However, the result indicates that lifespan 

TUP doubles that of Kraft paper. 

In addition, Calvini proposed the kinetics of cellulose 

degradation as given in equation (8)  based on the inherent 

structure of cellulose. This proposed equation suggests that 

cellulose degradation primarily involves the accumulation of 

bond scission of weak, amorphous, and crystalline links.  
1

𝐷𝑃𝑡
−

1

𝐷𝑃0
= 𝑛𝑤0(1 − 𝑒

−𝑘𝑤𝑡) + 𝑛𝑎0(1 − 𝑒
−𝑘𝑎𝑡) + 𝑛𝑐0(1 − 𝑒

−𝑘𝑐𝑡)     (8) 

Where 𝑛𝑡 is the number of bond scission at t, 𝑛0 is the initial 

number of links available for degradation, a, c, and w 

represent amorphous, crystalline, and weak links 

respectively, and all other parameters have their usual 

meaning as earlier used [39, 40]. 

B. EXPERIMENTAL CONCEPT 

When estimating the DP of an insulating paper, researchers 

have incorporated new experimental techniques beyond 

assessing furanic compounds, oxides of carbon, ethanol, and 

methanol levels, as discussed in our previous review paper 

in [7]. 

   The authors in [41] employed dispersion staining colours 

(DSC) as a marker to determine the ageing of insulating 

paper under accelerated thermal ageing. The cellulose fibres 

DSC was observed using dispersion staining techniques. It 

was observed that the transition of DSCs from blue to purple 

and then to red or orange signifies an increase in the 

refractive index of cellulose fibres obtained from the 

insulating paper. Also, the ageing of insulating paper 

increases with an increase in the refractive index of the 

cellulose fibres. The proposed marker for the ageing of 

insulating paper shows an advantage over the carbon oxides 

and 2-fulfural (2FAL) as a comparison was done with other 

works in the study. The sugar concentration was utilized as 

a marker for the degradation of cellulose-insulating paper in 

[42]. The study unveils a linear correlation between the DP 

of the paper and the logarithm of the total sugar 

concentration. This correlation becomes particularly 

pronounced during the initial stages of ageing as the total 

sugar concentration experiences a significant increase. A 

study in [43] reveals that the degree of polymerization of 

insulation paper can be examined using an optical method. 

Their experimental work and results show a significant 

enhancement over the ASTM D4243 viscometric method as 

measurement is said to be completed in a short duration. 

Furthermore, the ageing condition of insulation paper was 

identified in [44] by utilizing the texture eigenvalues of the 

captured paper images. This was simply achieved by 

collecting and pre-processing the images of the paper with 

different thermal ageing states and subsequently estimating 

the gray scale co-occurrence matrix for these images. The 

resulting texture eigenvalues then serve as input for the input 

layer of the backpropagation neural network (BPNN) used. 

In [45], the authors estimated the ageing condition of 

insulating paper at the hot-spot of a transformer utilizing a 

modified dielectric response model and reinforcement 

learning-based optimized with genetic algorithms. This 

estimation is achieved by collecting the polarization and 

depolarization currents (PDC) associated with the ageing 

state of transformer insulation. Subsequently, the modified 

dielectric response model is introduced to express the PDC 

characteristics of the insulating paper. Then, the 

reinforcement learning-based genetic algorithm (RLGA) is 

used to explore optimal model parameters specified in the 

modified dielectric model, aiming to effectively represent 

the insulating paper ageing condition at the hot-spot. 

C. EOL ASSESSMENT 

Models for estimating insulating paper EOL in given in 

Table 1. where %LL is the percent of life lost,  𝐹𝐸𝑄𝐴 is the 

equivalent ageing factor, L is the loss of life, V is the paper 

rate of ageing, tn is the time between measurements, and LLn 

is the life lost after the time-period. The values of 𝐹𝐸𝑄𝐴, V 

and A can be computed as reported in [7]. 

 
III. PROGNOSTICS AND HEALTH MANAGEMENT (PHM) 

PHM is a recent development that enables the tracking of the 

health condition of a system as a result of actual knowledge, 

data, and information gathered from the systems and their 

elemental units to identify the onset of anomalies, isolate and 

diagnose ongoing failures, and forecast the future health state 

of the system thereby estimating its remaining useful life 

(RUL), which enables dynamic support for maintenance 

decisions [51], [52]. PHM aids in implementing routine 

maintenance as it enhances the system's reliability and 

availability as well as reducing the cost of maintenance [53]. 

However, the contemporary impediments to PHM are how 

to construct an absolute PHM system for a particular sector 

and how to convert raw signals into knowledge and 
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information to aid maintenance decision activity [54], [55]. 

The place of prognostics in PHM is shown in Figure. 4 [56]. 

    Furthermore, PHM provides solutions for reducing 

operation and maintenance costs as it aids the extension of 

equipment lifetime by early identification of abnormality, 

diagnostics of equipment health state, RUL prediction, and 

solutions to condition-based maintenance [57], [58]. Its 

capacity to utilize the historical, current, and future data of 

equipment aids in estimating degradations, fault 

identification, and predictions to effectively manage 

equipment failures. Also, it relies on sensor technologies to 

gather precise, long-term, in-situ data about health 

indicators. This information is essential for assessing 

degradation levels and predicting RUL. The effectiveness of 

PHM deployment in enhancing system safety and 

minimizing maintenance costs is directly correlated with the 

accuracy of the collected information [59], [60]. As 

described in Figure 5, PHM generally consists of seven 

layers, where the layers are further divided into three major 

stages (observe, analyse, and act) [61], [62]. Also, according 

to [63], PHM can take place in five processes, which are 

presented in Table 2. 

 
   FIGURE 4. Prognostics in PHM [56, 64]. 

TABLE 1. End-of-useful life model for insulating paper. 

 

Authors EOL formulation Considerations Ref. 

 

IEEE 

C57.091-

2011 

 

 

%𝐿𝐿 =
𝐹𝐸𝑄𝐴  × 𝑡 × 100

𝑁𝑜𝑟𝑚𝑎𝑙 𝑖𝑛𝑠𝑢𝑙𝑎𝑡𝑖𝑜𝑛 𝑙𝑖𝑓𝑒
 

 

- Oxygen level and paper moisture content are not 

considered in this model as temperature is taken to be 

the only degradation parameter for paper insulation. 

- It does not apply to old transformer design, which 

could result in an overestimation of RUL 

 

 

[46],  

[47] 

 

 

IEC 

60076-

7:2005 

 

𝐿 = ∫  𝑉𝑑𝑡

𝑡2

𝑡1

𝑜𝑟 𝐿 ≈∑ 𝑉𝑛 × 𝑡𝑛 
𝑁

𝑛 =1
   

- Moisture content and oxygen level are not considered 

in this model as temperature is taken to be the only 

degradation parameter for paper insulation 

- Not applicable to old transformer design, which could 

result in overestimation of RUL 

 

 

  [48] 

 

IEC 

60076-

7:2017 

 

Utilizes the same formulation as IEC 

60076-7:2005 

 

- Considered the effect of water and oxygen as the 

paper ageing rate is given as:                                       

𝑉 =  
𝑘

𝑘𝑟
 =  

𝐴

𝐴𝑟
 𝑒

1

𝑅
×(

𝐸𝑟
𝜃ℎ,𝑟 +273

 − 
𝐸

𝜃ℎ +273
)
  

 

 [49] 

 

Martin 

et. al. 

 

𝐿𝐿𝑛  =
𝑡𝑛

(
1
200 − 

1
1000)

𝐴
 ×  𝑒

𝐸𝑎
𝑅𝑇

       

- IEEE and IEC models are modified by introducing 

water content and oxygen level to the degradation 

parameter parameters. 

- Applicable to old transformer design 

 

 [27] 

Pradhan 

et al. 
𝐿 =  

41

2
 𝑙𝑛 (

1100

𝐷𝑃
)                                

 

- Only considered paper DP value  

 [50] 

 
TABLE 2. Processes for PHM.  

 

PHM core 

operational 

processes 

 

Functional block 

 

Illustration 

 

Act 

Health management The function utilizes insights gathered during the advisory generation phase, 

employing them to execute actions that bring the system back to an optimal and 

healthy state. 

 

Advise 

Advisory 

generation 

This function delivers actionable information to operational staff or external 

systems, enabling them to take effective actions based on the provided insights. 

 

 

Prognostic 

assessment, 

This function offers prognostic information regarding future health, remaining 

performance life, or indicators of useful life for the system 
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Analyse 

Health assessment This function offers information necessary to assess the present health status of 

the system. 

State detection This function assesses the state conditions of equipment by comparing them to 

normal operating profiles, generating indicators for both normal and abnormal 

conditions. 

 

 

Acquire 

Data manipulation 

 

This function handles the processing and transformation of sensor data and 

health state information collected by the data acquisition system. 

Data acquisition This function is responsible for obtaining and recording sensor data and health 

state information from the internal monitors of the system, as well as from the 

system's data bus or data recorder. 

Sense Sensors This encompasses both physical sensors and any soft system performance 

variables that are accessible within the system. 

       

 

 
FIGURE 5. PHM chart. 

A. FW-PHM SUITE SOFTWARE 

Fleet wide- prognostics and health management (FW-PHM) 

suite software developed by the Electric Power Research 

Institute (EPRI) uniquely for the fossil fuel and nuclear 

power industry. FW-PHM suite is a collection of online 

diagnostic and prognostic databases and tools to set up an 

integrated architecture for equipment health monitoring 

ranging from individual components to the whole power 

unit. It entails four major modules explained based on 

functionality in Table 3 while Figure 6 shows the shows data 

flow for the FW-PHM suite [65].  

 
TABLE 3. Modules of FW-PHM 

 

Modules Functionality 

AFS ASF helps to classify the fault signatures 

obtained from several member utilities 

DA DA helps to recognize potential faults by 

correlating ASFs with operating data 

 

RULA 

RULA helps to estimate the RUL for 

equipment according to DA diagnostic 

information as well as the model parameters, 

model type, and input process parameters 

 

RULD 

RULD helps to classify equipment RUL 

model/signatures obtained from several 

industries 

 

 

 

 
FIGURE 6. FW-PHM data flow by EPRI [66]. 

B. RUL PREDICTION 

The RUL of a power transformer is defined as the duration 

extending from the present moment to the end of its 

operational viability [67], [68]. The time distance from the 

current prediction time 𝑡𝑝, to the failure time indicates the 

RUL of the equipment as given in equation (9). 

𝑅𝑈𝐿𝑖  = 𝐸𝑂𝐿𝑖  −  𝑡𝑝𝑖 |𝐸𝑂𝐿 >  𝑡𝑝                               (9) 

Where 𝐸𝑂𝐿 is the failure time (end of useful life). 

Uncertainty modeling is key to predicting RUL accurately as 

the remaining time after 𝑡𝑝 till 𝐸𝑂𝐿 is random [69]. The 

concept of RUL prediction is given in Figure 7, where the 

data samples collected till the prediction point  𝑡𝑝 is denoted 

by 𝑌 =  [𝑦1, … . , 𝑦𝑛]. 

 
 FIGURE 7. Prediction of RUL [70, 71].    
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IV. PROGNOSTICS APPROACH 

In the industrial sphere where reliability, safety, and 

reduction in cost are highly prioritized, prognostics is a 

crucial activity of condition-based maintenance. In this 

regard, the key prognostic objective is to provide the RUL of 

degrading equipment, which is to forecast the time the 

equipment will no longer be competent to meet its 

operational demands and functions [72]. The prognostic 

approach tends to examine the degree of deviation and 

deterioration of the equipment from its anticipated normal 

operational state. The state of health of any degrading 

component is proportional to its operating time and usage. 

Comprehensive degradation data of equipment as well as 

selecting an appropriate modeling method is required to 

provide an accurate prognostic [9]. The Prognostics 

approach as other advancing technology is faced with some 

difficulties, which are addressed by the prognostics centre 

for excellence. These challenges are highlighted in Table 4 

and the questions for each of the challenges have been 

justified in [56]. Furthermore, the prognostics approach is 

generally classified into three major classes, which are the 

physics-based, data-driven, and hybrid approaches [73]. 

Generally, prognostic approaches can be classified into three 

classes and the choice for selecting any of the approaches is 

shown in Figure 8 [56], [74]. 

 
TABLE 4. Challenges faced by the prognostics approach. 

 

Challenges Question 

Uncertainty 

management 

How can we effectively capture and 

process information from various 

sources of uncertainty? 

Autonomic 

control 

configuration 

How can local prognostic information 

be converted into changes at the 

controller level to ensure long-term 

satisfaction of the controller 

objectives? 

Integration How can we appropriately merge and 

process information from various 

interacting subsystems? 

Validation and 

verification of 

prognostics 

How can we validate the accurate 

functioning of prognostic algorithms, 

especially when applied to new 

systems? 

Post-prognostic 

reasoning 

How can data from a prognostic 

reasoner be translated into actionable 

steps, considering additional factors 

like logistics, mission details, and 

fleet management? 

 

 

 
FIGURE 8. Selection decision for prognostics approach. 

A. PHYSICS-BASED MODEL APPROACH 

This approach sets up a mathematical model that directly 

links the physical processes that govern the equipment's 

health. It could be semi-empirical and mechanistic 

representing the grey box model and white box model 

respectively [75].  Dynamic systems like differential 

equations, nonlinear equations, and state space models are 

solved appropriately to characterize the model. However, 

building physics-based models for complex systems is 

difficult as essential knowledge of the material 

characteristics, failure mechanisms, and operation 

conditions, and degradation of physical phenomena is 

usually unknown [68], [76], [77]. In addition, physics-based 

approaches cannot be generalized as they are specific to 

certain applications [72], [78]. The physics-based approach 

refers to high fidelity simulation, differential equations, and 

finite element models [64]. 

B. DATA-DRIVEN APPROACH 

Data-driven models also known as black box models are 

derived from condition monitoring data collected regularly, 

which aids in the learning of system behaviours rather than 

developing extensive human expertise and system physics 

models [75], [79], [80]. In data-driven approaches, a 

predictive model is created by training data and the 

validation of the model is achieved by testing data. This 

approach is effortlessly executed as it builds on historical 

accounts to predict output with regard to condition-

monitored data [81]. Also, it employs interpolation, 

extrapolation, and ML for prediction [81]. However, this 

approach offers less accurate outputs compared to the 

physics-based model [72]. Also, the potential for this 

approach to account for uncertainties is limited [51], [60]. 

The classification and methodology for a data-driven model 

are illustrated in Figures 9 and 10 respectively [9], [56], [58] 

and Table 5 highlights some of the pros and cons of the 

different classes of data-driven models. 
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Some pros and cons of the data-driven models utilized in 

transformer insulation prediction are presented in Table 6. 

 
FIGURE 9. Classification of data-driven model. 

 

 
FIGURE 10. Methodology for data-driven model. 

 

C. HYBRID APPROACH 

The hybrid approach integrates physics-based models and 

data-driven approaches. The former offers offline validation 

of the physical model while the latter is used to increase 

accuracy by updating the parameters of the model [72]. This 

approach provides understandable results as it utilizes the 

advantages of the two approaches to accomplish finely tuned 

prognostics models that possess an excellent ability to handle 

uncertainties from many sources leading to accurate 

evaluation of RUL [134]. This is easily achievable as data is 

employed to compensate for the absence of knowledge [64]. 

Furthermore, this approach can be modeled in three ways, 

which are the series approach, parallel approach and parallel-

series approach [61], [135]. Chao et al. [136] utilized hybrid 

approaches, leveraging the advantages of both physics-based 

and data-driven models for accurate prognostics. Physics-

based models, which entail deducing unobservable model 

parameters associated with the health of a system's 

components through the resolution of a calibration problem 

amalgamated with sensor readings generated by commercial 

modular aero-propulsion system simulation (CMAPSS), 

which then serve as inputs for the deep neural network 

(feedforward neural network (FNN), convolutional neural 

network (CNN), long short-term memory (LSTM)) used. 

The performance of the proposed hybrid method was 

assessed by comparing it with an alternative data-driven 

method where sensor data solely serves as input to three 

distinct types of deep neural networks (multilayer 

perceptron-feedforward neural network (MLP-FNN), 

recurrent neural network (RNN), CNN). It was then 

observed that the prediction horizon increased by 

approximately 127%. Furthermore, the proposed hybrid 

method surpasses the data-driven approaches with an 

outstanding RUL estimation amidst highly variable 

operating conditions and an incomplete representation of the 

training dataset. It was concluded that the hybrid framework 

necessitates less training data relative to purely data-driven 

algorithms. Following this, Table 7 highlights some of the 

pros and cons of the different types of prognostic approaches.

 
TABLE 5. Pros and cons of a data-driven approach. 

 

 

 

Data-driven 

model 

Pros Cons Ref. 

 

Conventional 

machine 

learning model 

- Benefit from feature engineering 

- Is inherently interpretable 

- Requires less computational resources 

- Performs excellently well with smaller 

datasets 

- Low computational speed 

- Labour intensive and expertise dependent as 

feature engineering is required 

- Inadequate to deal with long-time series 

analysis leading to errors in prediction results 

 

 

[84]- 

[87] 

 

Statistical based 

model 

- Inherently consider uncertainty in data 

-  Gives interpretable and clear 

representation of the relationships 

between datasets 

- Assumptions not suitable for real-world 

industrial applications 

- Displays large error when complete data is 

unavailable 

[61], 

[72], 

[88] 

 

 

Deep learning-

based model 

- Has a high level of accuracy 

- Capability to autonomously extract 

essential features and representations of 

high-level 

- Does not require feature engineering 

- Difficult to explain and interpret the results 

obtained  

- Unknown relationship between inputs and 

output 

- Requires remarkable computational power 

[72], 

[86], 

[87], 

[89] 
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- Appropriate where a physics-based 

model is not conducive to replicating 

system behaviour  

- Requires more time for training and inference 

TABLE 6. Pros and cons of some data-driven models. 
 

Table 6. Pros and cons of some data-driven models. 

Model Pros  Cons   Applicable scenario  Ref. 

 

 

 

 

ANN 

- Display high classification 

accuracy. 

- Has strong parallel distributed 

processing capacity 

- Do not generate uncertainty 

information. 

- Can be trained by 

backpropagation, which enables 

the model to learn from its errors 

and adjust its internal parameters 

(weights and biases) 

-  Excellent capacity to 

extrapolate and interpolate  

- Lack capacity to address 

misclassified data samples due to 

their deterministic diagnostics. 

- Poor generalization capacity 

- Computational speed is low 

- Vulnerable to overfitting 

- Difficulty in parameter adjustments 

- As a black box model, it has limited 

capacity to interpret and clarify their 

results 

- Where large data is 

available. 

- In a complex pattern 

recognition. 

- In a non-linear 

relationship model 

- Where feature extraction 

is crucial 

- In real-time decision-

making systems. 

- Adaptability to changing 

environments and evolving 

datasets. 

 

 

 

 

[15], 

[90]- [96]  

 

 

PNN 

- Easy to train 

- Arbitrary nonlinear 

approximation 

- Has a fast convergence speed 

- Erroneous data are acceptable 

- Capable of integrating the 

benefit of both non-linear and 

linear algorithms 

- Can not accurately predict intricate 

hierarchical structures 

- Sensitive to feature scaling 

- Computational intensive with large 

data 

- Prone to overfitting 

- In pattern classification 

with uncertainty. 

- In non-linear 

classification. 

- Where noisy data is 

available. 

- In small to medium-sized 

datasets. 

- In sequential data 

analysis. 

 

 

[95], 

[97], [98] 

 

 

 

 

 

RNN 

- Appropriate for time series 

signals and prediction with strong 

stability and adaptability 

- Demonstrates robustness in 

handling random length sequence 

data 

- Capable of retaining short-time 

information in dynamic processes 

- Capable of capturing the 

temporal correlation in sequential 

data 

- Uses its cells for capturing 

model uncertainty.  

- Training and implementation are 

difficult tasks and cannot be 

computed in parallel 

- Vanishing or exploding gradients 

problem when addressing long 

sequence data, which leads to non-

convergence 

- Avoids vital information right from 

the initial input level. 

- Constrained by recurrent mode, 

which inherently restricts their 

computational speed. 

- In sequential data 

processing. 

- Where modeling of 

temporal relationship is 

required. 

- In memory-based tasks. 

- In transfer learning. 

- In online learning and 

real-time prediction. 

- Where the length of the 

input or out can be varied. 

 

 

 

 

[9], [70], 

[84], 

[85], 

[94], 

[99]- 

[104]  

 

 

 

 

 

CNN 

- Excellent performance in local 

feature extraction as it preserves 

all the localized cues even as 

feature maps 

- Ability to address learning 

problems that involve multi-

dimensional input data with 

intricate spatial structures. 

- Enhance convergence speed by 

preventing over-fitting 

- Can capture strong temporal and 

spatial correlation in signals 

- Insufficient to capture and learn 

long-term dependencies in data 

- Efficiency and training speed not 

sufficient  

- Has poor global modeling 

capability. 

- Requires a fixed input size 

- Unable to capture remote features 

when processing temporal features 

- In image recognition and 

classification. 

- In feature extraction from 

images. 

- In spatial hierarchical 

representation learning. 

- In transfer learning anf 

fine tuning. 

- In time-series data 

analysis. 

 

 

 

[100], 

[104]- 

[112] 

 

 

 

- Appropriate for time series  - Networks face challenges in 

achieving optimal performance 

- In sequential data 

modeling. 
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LSTM 

analysis and long-sequence 

prediction 

- Vanishing or exploding gradient 

problem is partially solved 

through memory cells and a 

gating mechanism  

- Exceptionally capacity to learn 

long-sequence dependencies 

- Easy to identify and capture 

significant features over a long-

distance 

- Has better performance than 

RNN as its hidden layer neuron is 

being substituted with memory 

cells 

during parallel processing due to their 

intrinsic sequential nature 

- Neglect meaningful signals and give 

preference to recent data in the 

handling of extremely long time-

series signals 

- Still struggle to capture long-term 

dependencies as the gradient becomes 

smaller 

- In natural language 

processing. 

- Time-series anomaly 

detection. 

- In gesture and speech 

recognition. 

 

 

[9], [84], 

[86], 

[87], 

[94], 

[99], 

[100], 

[113]- 

[116] 

 

 

 

AE 

- Used for dimensionality 

reduction 

- Does not require data labels  

- Solve the issue of noise 

interference  

- Poor convergence 

- Difficulty in capturing the 

correlation of features 

- Learning requires an abundant 

amount of data 

- In dimensional reduction. 

- In anomaly detection 

task. 

- In data denoising. 

- In feature learning. 

 

 [104], 

[107] 

 

 

SVM 

- Display good classification 

accuracy 

- Solve nonlinearity and high-

dimension problem by utilizing 

kernel function 

- Better generalization ability with 

slight over-fitting 

- Lack capacity to address 

misclassified data samples due to 

their deterministic diagnostics. 

- Greatly affected by the input vectors 

quality  

- Inability to classify nonlinear 

samples 

- In a binary classification 

task 

- In a non-linear 

classification task. 

- In regression analysis 

- In the outlier detection 

task. 

- In text and image 

classification. 

 

[90], 

[91], 

[117]- 

[119] 

 

kNN 

- A non-parametric model 

- Suitable prediction model for a 

small quantity of data 

- Can handle missing data 

- Sensitive to outlying data points, 

especially when the k value is small 

- Less efficient for real-time 

application and less datasets 

- depends on the optimal value of k 

- In classification and 

regression tasks. 

- In the anomaly detection 

task 

- Where imputing missing 

value is required. 

- In clustering task. 

 

[14], 

[120], 

[121] 

 

 

GBN 

- A statistical and white box 

model that incorporated expert 

knowledge either by first-

principle model or as a causal 

model 

- Deduce uncertainty information 

as it captures causality or 

probabilistic dependencies among 

random variables  

- has the potential to handle 

continuous data 

- Cannot handle categorical data 

successfully  

- Difficult to capture intricate 

nonlinear relationships present in data 

- depends on assumptions that may 

not hold in real-world applications 

 

- In text classification task. 

 

 

 

[90], 

[91], 

[122], 

[123] 

 

 

 

 

 

 

 

XGBoo

st 

- Create an accurate learner 

through the combination of 

numerous regression trees. 

- Minimize the training loss while 

preventing overfitting through the 

incorporation of regularization 

terms. 

- Has scalability ability in all 

situations 

- Only give more accurate results 

when features exhibit coherent 

relationships and are well-defined 

- Sensitive to noisy data and outliers 

- Computational intensive when 

training  deep trees 

- Is a complex ensemble model with 

many hyperparameters that need to 

be tuned 

- In classification and 

regression tasks. 

- Where feature 

importance analysis is 

required. 

- In time-series 

forecasting. 

- in ensemble learning  

 

 

 

 

 

 

[124]- 

[128] 
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- Increase the number and depth 

of weak classifiers to optimal 

classification 

- Capability to address class 

imbalances by weight adjustment 

for unevenly distributed target 

classes 

- Able to identify features with 

the most significant impact on 

prediction to understand the factor 

influencing the model decisions 

- Has robust performance even 

without extensive hyperparameter 

tuning 

 

LSSVR 

- Acceptable computational 

capacity 

- Good generalization capacity 

- Poor accuracy when there is loss or 

incomplete historical data 

- Demands a substantial amount of 

prediction time 

- In function 

approximation tasks. 

- In multi-output 

regression tasks. 

- In noise reduction tasks. 

[93]- 

[129] 

 

 

RVM 

- Capacity to effectively handle 

high-dimensional data and 

provide probabilistic outputs as it 

has a Bayesian foundation. 

- Good generalization capacity 

- Acceptable computational 

capacity 

- Requires additional optimization 

algorithms to find the kernels 

optimized sparse weights distribution 

as it is needed to reduce the 

prediction time 

- Where a sparse 

representation of the model 

is desired 

- For feature ranking and 

selection tasks. 

- Classification with 

imbalanced data tasks. 

 

[93]- 

[130] 

 

 

Rando

m 

forest 

- Ability to train faster, robust and 

good balance of errors 

- Offers minimized risk of 

overfitting when extrapolating 

unobserved data 

- Reduced set of hyperparameters 

to configured 

- Limited when extrapolating data 

beyond previously unobserved ranges 

- Challenges in understanding the 

decision-making process for 

individual tree 

- It is computationally expensive 

- In classification and 

regression tasks. 

- Where feature 

importance scores are 

desired. 

- For outlier detection 

tasks. 

 

 

[94]- 

[131] 

 

GM 

- Desirable predictions with 

small-scale data.  

- Most appropriate for scenarios 

where observed variables change 

monotonously over time 

- Need a limited amount of 

historical data 

- Occurrence of inherent error 

persists 

- sensitive to initial conditions 

- Assumes linearity in the essential 

data trend 

- Difficult to capture nonlinear and 

complex data 

- For small sample size 

tasks. 

- For missing or 

incomplete data tasks 

- For emerging or new 

trends cases. 

 

 

[132]- 

[133] 

 
TABLE 7. Pros and cons of different prognostic approaches. 

 

Approach Pros Cons Requirement Ref. 

 

 

 

 

 

Physics-

based 

model 

- RUL is evaluated at the early 

stages 

- Fewer failure data is required 

for RUL assessment 

- Seamlessly implemented and 

executed in real-time (online). 

- Offers insight into the internal 

physical parameters of the 

system 

- Has good generalization 

capacity. 

- Suitable for component-level 

- Not frequently employed in 

practical applications as specific 

failure mechanisms which are 

challenging to gather are required 

- Difficult for complex systems. 

- Wide scope of the system is 

limited 

- Prediction accuracy relies on the 

understanding of the underlying 

system's physical behaviour. 

- Complex systems domain 

knowledge is often either 

unavailable or excessively costly. 

- Working model not 

needed 

- Failure history needed 

- No requirement for past 

status 

- No requirement for 

current status 

- Identifying types of 

fault not needed 

- No requirement for 

maintenance history 

- Sensors and models not 

needed 

 

 

[61], 

[72], 

[75], 

[82], 

[104], 

[137], 

[138] 
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Data-

driven 

- Assumptions about the model 

is not needed as knowledge 

about the insight parameter of 

the internal system is not 

required 

- Appropriate for the analysis of 

complex systems to complement 

the rarely available degradation 

knowledge about the system. 

- Deployment is achieved faster 

at low cost 

- Human experts or prior 

knowledge is not required 

- Wide scope of the system is 

accessible 

- Effective than a physics-based 

model for complex systems. 

- Suffers inadequate 

representativeness of training 

data. 

- Heavy computational load is 

required 

- Give less accurate results 

compared to the physics-based 

model as a large quantity of 

exhaustive training data is 

required from systems of the same 

kind and maker 

- Depend on the assumption that 

the statistical characteristics of 

system data remain relatively 

constant unless a malfunction 

occurs 

- Limitation in observing and 

correlating the variation in the 

internal state parameters within 

the system 

- poor generalization and 

extrapolation capability 

- No requirement for a 

working model 

- Failure history not 

needed 

- Past status not needed 

- Current status needed 

- Identifying types of 

fault is needed 

- Maintenance history not 

needed 

- Sensors needed, and 

models not needed 

 

 

 

 

 

[61], 

[71], 

[72], 

[75], 

[104], 

[136], 

[138] 

 

 

 

 

Hybrid 

- Employs physics-based model 

updated by data-driven 

approach to increase prediction 

accuracy 

- Suffers limitation of model 

incompleteness 

- Rarely utilized as it is 

computationally expensive and 

physical knowledge is required  

- Working model needed 

- No requirement for 

failure history 

- Past status needed 

- Current status needed 

- Identifying types of 

fault is needed 

- No requirement for 

maintenance history 

- Both sensors and 

models are needed 

 

 

 

[72], 

[104], 

[136], 

[138] 

 
V. PROGNOSTICS DATA ANALYSIS 

Prognostic degradation models usually need a precise and 

extensive historical degradation signal database. These 

signals help to identify degradation trends essential for 

predicting lifespan. However, for practical applications in 

real-world scenarios, these degradation signals often have 

missing observations, making it challenging to identify a  

suitable degradation model when there is a significant 

amount of missing data. Also, the data collected from several 

sensors may have different scale and numerical ranges which 

could remarkably influence the convergence speed and 

prediction accuracy [86].  Therefore, studies have been 

performed in this line to manage these issues by developing 

some approaches to mitigate these issues. Some ways of pre-

processing data obtained from sensors are presented in Table 

8. 

A. ADDRESSING IMBALANCE DATA 

In [139], the authors employed semi-parametric techniques 

to create a prognostic degradation model for data that are 

insufficient and fragmented. In their techniques, functional 

principal component analysis (FPCA), which is a non-

parametric functional data analysis method that helps to 

identify crucial patterns of variation in functional data was 

utilised to recognise the principal features of the insufficient 

signal. FPCA can offer a concise and low-dimensional 

representation of each curve by condensing it into a set of 

scores known as functional principal components scores 

(FPC-scores), which are signal features. However, this 

technique cannot be applied for multiple failure modes, as it 

is limited to a single failure mode application. Also, the 

technique can only utilize observation from a single sensor, 

which can limit the practical application of the techniques as 

multiple sensors are employed in system monitoring. The 

authors in [140] extract valuable and irrelevant information 

from sensor data utilizing the principal component analysis 

(PCA), which is then linked with an auto-associative neural 

network (AANN) for classification. Furthermore, PCA 

requires linear or non-linear dependency among the observed 

variables. This makes it effective when there is the existence 

of either linear or non-linear correlation among sets of 

measurement vectors, unlike Pearson correlation coefficient 

(PCC) which only has linear dependency among the 

observed variables [141]. 
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TABLE 8. Concept of sensors data pre-processing. 

 

Term Method Function Ref. 

 

 

Feature 

selection 

 

 

Pearson correlation 

coefficient (PCA) 

- Identifies and selects the most informative features from the sensor as 

some sensor measurements remain constant and do not offer valuable 

degradation information. 

- Reduce overfitting  

 

 

[87], 

[110], 

[142], 

[143] 

 

 

Dimension

ality 

reduction 

 

 

Principal correlation 

analysis (PCA) 

- Reduces the number of features in a dataset to retain essential 

information 

- Prevent overfitting and minimize computational stress 

- Discover the primary axes of maximum variance within a high-

dimensional data space and project it onto a new subspace, 

maintaining equal or fewer dimensions than the original 

 

 

[110] 

 

 

 

Feature 

scaling 

 

Min-max 

normalization method 

- Helps in data normalization or standardization 

- Ensures values of features are on a similar scale to prevent certain 

features from dominating the learning process 

- Helps to speed up the training process 

- Utilized after feature selection and dimensionality reduction 

- Helps to prevent convergence difficulty  

 

 

[86], 

[87], 

[108], 

[110], 

[144] 

Z-score 

normalization 

(standardization) 

 

B. MODEL EVALUATION METRICS 

Several researchers have proposed and developed different 

algorithms and have utilized different assessment metrics for 

their proposed models. Among others, the most popular 

performance assessment metrics used are mean square error 

(MSE), root mean squared error (RMSE), mean absolute 

error (MAE), scoring function (SF), mean absolute 

percentage error (MAPE), relative absolute error (RAE), 

symmetric mean absolute error (SMAPE), root mean 

squared logarithmic error (RMSLE), and coefficient of 

determination (R2), which are expressed as follows. 

 

𝑀𝑆𝐸 =  
1

𝑁
∑(𝑦̂𝑖 − 𝑦𝑖)

2

𝑁

𝑖=1

                                               (10) 

𝑅𝑀𝑆𝐸 = √
1

𝑁
∑(𝑦̂𝑖 − 𝑦𝑖)

2

𝑁

𝑖=1

                                        (11) 

𝑀𝐴𝐸 =  
1

𝑁
∑|𝑦̂𝑖 − 𝑦𝑖|

𝑁

𝑖=1

                                                 (12) 

𝑅𝐴𝐸 = 100 ×  
∑ |𝑦̂𝑖  −  𝑦𝑖|
𝑛
𝑖=1

∑ |𝑦̂𝑖  −  𝑦̅|
𝑛
𝑖=1

                                    (13) 

𝑀𝐴𝑃𝐸 =  
1

𝑁
∑

|𝑦̂𝑖  −  𝑦𝑖|

|𝑦𝑖|

𝑁

𝑖=1

                                             (14) 

𝑆𝑀𝐴𝑃𝐸 =  
1

𝑁
 ∑

2|𝑦̂𝑖 − 𝑦𝑖|

|𝑦̂𝑖|  +  |𝑦𝑖|

𝑁

𝑖=1

                                        (15) 

𝑅2 = 1 − 
∑ (𝑦̂𝑖  − 𝑦𝑖)

2𝑁
𝑖=1

∑ (𝑦̂𝑖  − 𝑦̅)
2𝑁

𝑖=1

                                             (16) 

𝑆𝐹 =  

{
 
 

 
 ∑(𝑒+ 

𝑦̂𝑖 − 𝑦𝑖
10

  − 1) , 𝑓𝑜𝑟 𝑦̂𝑖 − 𝑦𝑖  ≥ 0  

𝑁

𝑖=1

∑(𝑒− 
𝑦̂𝑖  − 𝑦𝑖
13

  − 1) , 𝑓𝑜𝑟

𝑁

𝑖=1

 𝑦̂𝑖 − 𝑦𝑖  < 0

   (17) 

𝑅𝑀𝑆𝐿𝐸 = √
∑ [𝑙𝑜𝑔(𝑦̂𝑖  + 1)  −  𝑙𝑜𝑔(𝑦𝑖  + 1)]

2𝑁
𝑖=1

𝑁
   (18) 

Where N represents the number of samples or units used as 

the input. 𝑦𝑖  is the real or actual value, 𝑦̂𝑖 is the predicted 

value, and 𝑦̅  =
1

𝑁
∑ 𝑦𝑖
𝑁
𝑖=1  is the average value of 𝑦𝑖 [9], [86], 

[103], [107], [127], [145]- [148]  A smaller value of RMSE 

and MAPE signifies more accurate predictions with reduced 

errors. Furthermore, R2 is employed to assess the 

interpretability of the prognostic model. A higher R2 value 

signifies good prediction, and an R2 value of 1 signifies a 

perfect fit for the prediction [149]. Also, The scoring 

function is introduced to severely penalized late prediction 

[150]. 
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VI. PAPER DEGRADATION PARAMETERS 

Ageing of the paper insulation is an irreversible rupturing of 

covalent and hydrogen bonds within and between the 

cellulose polymer chains. This degradation results from the 

combined influences of pyrolysis, oxidation and hydrolysis 

reactions, which are predominantly governed by 

temperature, reactive oxygen species and moisture 

respectively. 

A. TEMPERATURE AND AGEING 

Paper insulation's thermal stability has drawn numerous 

researchers' attention as power transformers operate at high 

temperatures while a lifetime of about 40 years is expected. 

Paper with a higher content of lignin exhibits thermal 

stability as it can produce highly condensed structures during 

thermal decomposition [18]. Pyrolytic degradation arises 

solely from elevated temperatures. Its activation energy is 

about 1.4 to 2 times greater than that of hydrolysis. Above 

130 °C, pyrolysis becomes the predominant degradation 

process and it transited into a self-accelerated reaction at a 

temperature of 140 ℃ due to the generation of water and 

oxygen [47]. Temperature increase can lead to increasing 

overheating and conductivity, which causes localized 

carbonization of the insulating paper [151]. Furthermore, the 

insulating paper extracted from the uppermost part of the 

winding has the lowest DP values due to temperature 

difference [152]. The primary factor governing the RUL of 

the insulation paper is the hot-spot temperature as it 

influences the acceleration production of furans, moisture, 

CO, and CO2 that could lead to direful breakdown during 

high loading conditions [47], [153]. However, 

underestimation of the hot-spot temperature has been a 

common practice as the estimation of the hot-spot 

temperature is complex, which could cause the power 

equipment to operate at a reduced cooling system [154]. 

Following IEEE C57.91 guidelines, the evaluation of 

insulating paper loss-of-life is based on the hot-spot 

temperature experienced during a specific period of power 

transformer operation. This methodology is predicated on 

the understanding that heat predominantly drives the ageing 

process and presumes that the levels of acidity and humidity 

within the insulation system remain unchanged [155]. 

   The Arrhenius equation is broadly recognized as a standard 

model for describing the ageing process of insulating paper. 

The model given in equation (19) employs temperature as 

the only parameter influencing insulating paper degradation. 
1

𝐷𝑃(𝑡)
 −  

1

𝐷𝑃(𝑡𝑜)
 =  𝐴∆𝑡𝑒

−
𝐸𝑎

𝑅(𝜃𝐻𝑆(𝑡) +273)              (19) 

Where 𝐸𝑎 in Jmol−1 is the ageing reaction activation energy, 

𝑅 in Jmol−1K−1 is the gas constant, 𝐴 is the pre-exponential 

factor whose outcome is dependent upon the chemical 

environment, ∆𝑡 is the ageing period, 𝜃𝐻𝑆 in ℃ is the 

insulating paper temperature (hot-spot temperature). 𝐷𝑃(𝑡) 
and 𝐷𝑃(𝑡𝑜) are the DP at the end 𝑡 and start 𝑡𝑜 respectively 

[47]. A post-mortem analysis was carried out in [156] which 

validated that the parameters 𝐸 and 𝐴 in equation (19) lack 

the required precision for evaluating insulating paper DP as 

they do not report for the influences of oxygen, moisture, and 

acidity. In [157], several values 𝐴 in hour−1 are presume in 

equation (19) to be either hydrolysis or oxidation pre-

exponential factor values that depend on 𝜃𝐻𝑆 value. Also, in 

this work, a steady state equation is proposed for hot-spot 

temperature and it is expressed as: 

𝜃𝐻𝑆  =  𝜃𝐴  +  𝜃𝑇𝑂  +  𝐻𝑆𝐹 × 𝜃𝑂𝑊                        (20)   
Where 𝜃𝐻𝑆 is the hot-spot temperature, 𝜃𝐴 is the ambient 

temperature, 𝜃𝑇𝑂 is the temperature of the top oil, and 𝜃𝑂𝑊 

is the oil-to-winding temperature gradient under rated load. 

The HSF is the hot-spot factor. The transformer HSF value 

characterizes the additional temperature increase in the 

windings above the top winding temperature, primarily due 

to the increased eddy current losses at the top of the winding. 

The HSF-specific value depends on a variety of design and 

manufacturing factors and can be determined accurately by 

directly measuring the winding 𝜃𝐻𝑆 using fibre optic sensors. 

However, this technique is typically feasible only in new 

transformers. Consequently, when no calculations or test 

data are available, an HSF value of 1.3 for power 

transformers is suggested by IEC loading guidelines [158]. 

The increase in the hot-spot temperature over the 

temperature of the top-oil after a step load change has been 

documented as a time-dependent function influenced by the 

duration and the load of the transformer, which is referred to 

as an overshoot time-dependent function. The modeling of 

this overshoot phenomenon led to the introduction of a 

mathematical representation based on observed data in the 

IEC 600076-7 loading guide [49], and a graphical illustration 

comparing this overshoot based on the IEC 600076-7 model 

with the real transformer with forced and natural cooling can 

be seen in [159]. Also, this overshoot is reported to be 

unobservable with the IEEE Clause 7 loading guide model 

but observed when employing the IEEE Annex G model as 

it utilizes the physics-based modeling that incorporates the 

impact of viscosity and DC variation, stray and eddy losses 

with temperature. Generally, the IEEE C57:91 Clause 7, IEC 

60354, and IEC 60076-7 loading guide for dynamic thermal 

models are accurately presented in [160] and are commonly 

utilized in several applications because their models 

necessitate only fundamental input parameters that can be 

obtained from a standard transformer heat-run test report. 

     A dynamic model was proposed in [161] for evaluating 

the hot-spot temperature 𝜃𝐻𝑆 as the temperature distribution 

within a power transformer is not uniform. This model relies 

on solving the following pair of differential equations: 
(1 + 𝑅𝐾𝐿

2)

(1 + 𝑅)
𝜇𝑝𝑢
𝑛  ∆𝜃𝑇𝑂,𝑅 = ( 𝜇𝑝𝑢

𝑛  𝜏𝑇𝑂,𝑅
𝑑𝜃𝑜𝑖𝑙
𝑑𝑡

) + 
(𝜃𝑇𝑂  − 𝜃𝑎𝑚𝑏)

𝑛+1

∆𝜃𝑇𝑂,𝑅
𝑛  (21) 

𝐾2 𝑃𝑊,𝑝𝑢(𝜃𝐻𝑆)𝜇𝑝𝑢 
𝑛 ∆𝜃𝐻𝑆,𝑅 = ( 𝜇𝑝𝑢

𝑛  𝜏𝑊,𝑅
𝑑𝜃𝐻𝑆
𝑑𝑡

) + 
(𝜃𝐻𝑆  −  𝜃𝑇𝑂)

𝑚+1

∆𝜃𝐻𝑆,𝑅
𝑚   (22) 

Where 𝜃𝐻𝑆 measured in ℃ is situated at the top portion of the 

winding, 𝜃𝐻𝑆 depends on factors such as the ambient 

temperature, load and the structural characteristics of the 

unit. 𝜃𝑇𝑂 is the temperature of the top oil, 𝐾𝐿 is the load 

factor, 𝑅 is the ratio of load to no-load losses, 𝜇𝑝𝑢 in 𝑝𝑢 is 

the viscosity of the oil, 𝜃𝑎𝑚𝑏  is the ambient temperature, 
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∆𝜃𝐻𝑆,𝑅 is the rated 𝜃𝐻𝑆 above the 𝜃𝑇𝑂, ∆𝜃𝑇𝑂,𝑅 is the rated 𝜃𝑇𝑂 

rise above the 𝜃𝑎𝑚𝑏 , 𝜏𝑊,𝑅 is the winding time constant, 𝜏𝑇𝑂,𝑅 

is the oil time constant, and 𝑛 and 𝑚 are the oil and winding 

exponents respectively [155]. More insight into the constant 

values of 𝑚 and 𝑛 as related to variation in the viscosity of 

the insulating oil is discussed in [161], [162]. 𝜃𝐻𝑆,𝑖 can be 

gotten by solving equations  (20) and (21) simultaneously for 

each interval 𝑖, which can be utilized in equation (5) and (6) 

to estimate the degree of polymerization [47]. 

Furthermore, a recurrence equation from IEEE C57.91 

which determines the ageing acceleration factor of 

transformer paper insulation was given in [26] to estimate 

the RUL. The RUL at a given time t, can be transformed into 

a Markovian recurrence relation form. In this form, the 

health state of the insulation paper is contingent solely on its 

preceding state and current conditions [154], [163]. 

𝑅𝑈𝐿(𝑡) = 𝑅𝑈𝐿(𝑡 − 1) − 𝑒
(
15000
383

 − 
15000

273 + 𝜃𝐻(𝑡)
)
               (23) 

Where 𝜃𝐻(𝑡) in ℃ is the temperature of the hottest-spot of 

the transformer winding. This parameter can be evaluated as: 
𝜃𝐻(𝑡)  =  𝜃𝑇𝑂(𝑡) + ∆𝜃𝑇𝑂,𝐻(𝑡)  =  𝜃𝐴(𝑡) + ∆𝜃𝐴,𝑇𝑂(𝑡) + ∆𝜃𝑇𝑂,𝐻(𝑡)  (24) 

Where 𝜃𝑇𝑂, 𝜃𝐴, ∆𝜃𝑇𝑂,𝐻 and ∆𝜃𝐴,𝑇𝑂 are the temperature of the 

top oil, ambient temperature, temperature rise of the hottest 

spot over the temperature of the top-oil, and temperature rise 

of top oil over ambient temperature at time t respectively.  

∆𝜃𝑇𝑂,𝐻(𝑡) and  ∆𝜃𝐴,𝑇𝑂(𝑡) can be estimated by: 

∆𝜃𝑇𝑂,𝐻  (𝑡) = [∆𝜃𝑇𝑂,𝐻𝑢(𝑡) − ∆𝜃𝑇𝑂,𝐻𝑖(𝑡)] (1 − 𝑒
−
∆𝑡
𝜏𝐻) + ∆𝜃𝑇𝑂,𝐻𝑖(𝑡)  (25)  

 ∆𝜃𝐴,𝑇𝑂(𝑡) = [∆𝜃𝐴,𝑇𝑂𝑢(𝑡) − ∆𝜃𝐴,𝑇𝑂𝑖(𝑡)] (1 − 𝑒
−
∆𝑡
𝜏𝑇𝑂) + ∆𝜃𝐴,𝑇𝑂𝑖(𝑡)  (26) 

Where ∆𝜃𝑇𝑂,𝐻𝑖  (𝑡) is the hot-spot temperature rise over 

ambient temperature, ∆𝜃𝐴,𝑇𝑂𝑖(𝑡) is the top-oil temperature 

rise over ambient temperature, 𝜏𝐻 and 𝜏𝑇𝑂 are the windings 

and oil time constant respectively, and ∆𝑡 is the interval of 

the loading time. In a steady state, ∆𝜃𝑇𝑂,𝐻𝑢(𝑡) and 

∆𝜃𝐴,𝑇𝑂𝑢(𝑡), estimated below are the hot-spot temperature and 

top-oil temperature rise over ambient temperature and top-

oil temperature respectively. 

 

∆𝜃𝑇𝑂,𝐻(𝑡)  =  ∆𝜃𝐻,𝑅. (
𝑖(𝑡)

𝑖𝑟
)
2𝑚

                                       (27)    

 ∆𝜃𝐴,𝑇𝑂(𝑡)  = ∆𝜃𝑇𝑂,𝑅 . (
(
𝑖(𝑡)

𝑖𝑟
)
2
.(𝛾 +1)  

𝛾 +1
)

𝑛

                         (28)   

Where m and n are parameters of a transformer obtained 

from a lookup table based on the transformer cooling system, 

𝑖𝑟 , 𝑖(𝑡), 𝛾, ∆𝜃𝐻,𝑅, ∆𝜃𝑇𝑂,𝑅 are the rated load, transformer load, 

the temperature rise of the hottest spot at the rated load, and 

the temperature rise of the top oil at the rated load [4], [154]. 

However, in [154] values for uncertainty sources were 

considered, this makes equations (26) and (26) become: 

𝜃𝐻(𝑡)  =  [𝜃𝑇𝑂(𝑡)  +  𝜑𝑇𝑂]  +  ∆𝜃𝐻,𝑅 . [
𝑖(𝑡) + 𝜑𝑖

𝑖𝑟
]

2𝑚

 (29) 

Also, equation (22) requires incorporation of the uncertainty 

information correlating to the paper degradation process as it 

is not a deterministic process. Therefore, the equation is then 

given by: 

𝑅𝑈𝐿(𝑡) 𝑅𝑈𝐿(𝑡 − 1) + 𝜔𝑅𝑈𝐿𝑡−1 − 𝑒
(15000 + 𝜔𝑡)[

1
383

 − 
1

𝜃𝐻(𝑡) +273
]
     (30) 

Where 𝜑𝑖 and 𝜑𝑇𝑂 measurement error for load and top oil 

respectively, 𝜔𝑅𝑈𝐿𝑡−1 is the uncertainty of the lifetime 

evaluation at (𝑡 − 1), 𝜔𝑡 is the uncertainty of the 

degradation process [91]. 

Furthermore, the hottest-spot temperature of a transformer 

according to IEC 60076-7 [164] is given as:  

 𝜃𝐻(𝑡) =  𝜃𝑇𝑂(𝑡)  + ∆𝜃𝐻(𝑡)                                             (31) 
Where 𝜃𝐻(𝑡) is the hottest-spot temperature at a given instant 

t in (℃), 𝜃𝑇𝑂(𝑡) is the temperature of the top-oil in (℃), and 

∆𝜃𝐻(𝑡) is the hottest-spot temperature rise over the 

temperature of the top-oil in (℃). 

The differential equation can be estimated to different 

equations for a small ∆𝑡. Therefore, the top-oil temperature 

is evaluated as follows: 

𝜃𝑇𝑂(𝑡) =  𝐷𝜃𝑇𝑂(𝑡)  +  𝜃𝑇𝑂(𝑡 − 1)                                 (32) 

𝐷𝜃𝑇𝑂(𝑡) =
∆𝑡

𝑘11𝜏𝑇𝑂
(∆𝜃𝐻,𝑅 (

1 + 𝐾(𝑡)2𝑅

1 + 𝑅
)

𝑥

+ 𝜃𝐴(𝑡) − 𝜃𝑇𝑂(𝑡 − 1)) (33) 

Where R in W is the ratio of load losses to no load losses, 

𝜏𝑇𝑂 in minutes is the time constant of the oil, 𝑥 is the 

exponent constant of the oil that models the total losses 

exponential power with respect to the top oil temperature 

heating, ∆𝜃𝐻,𝑅 in ℃ is the hottest-spot temperature rise at the 

rated load, 𝜃𝐴(𝑡) in ℃ is the ambient temperature, and 𝑘11 is 

the experimental thermal constant obtained.  

Also, 

𝐾(𝑡) =
𝑖(𝑡)

𝑖𝑟
                                                                             (34) 

 Where 𝑖(𝑡) in per unit is the load at an instant t, and 𝑖𝑟  in A 

is the rated load. 

In addition, the hottest-spot temperature can be evaluated as: 

∆𝜃𝐻𝑖(𝑡) =  𝐷∆𝜃𝐻𝑖(𝑡)  +  ∆𝜃𝐻𝑖(𝑡 − 1)                              (35) 

For 𝑖 = [1, 2], where  

𝐷∆𝜃𝐻1(𝑡) =  
∆𝑡

𝑘22𝜏𝑤
(𝑘21∆𝜃𝐻,𝑅𝐾(𝑡)

𝑦  −  ∆𝜃𝐻1(𝑡 − 1)) (36)

  

𝐷∆𝜃𝐻2(𝑡) =
𝑘22∆𝑡

𝜏𝑇𝑂
((𝑘21 − 1)∆𝜃𝐻,𝑅𝐾(𝑡)

𝑦  − ∆𝜃𝐻2(𝑡 − 1))  (37) 

Where,  ∆𝜃𝐻,𝑅 in ℃ is the hottest-spot temperature rise at 

rated load, 𝑦 is the exponential constant of the windings that 

models the exponential power of the loading with the heating 

of the windings, 𝜏𝑤 in minutes is the time constant of the 

winding, 𝑘21, and 𝑘22 are the thermal constants of the 

transformer [57]. 

In [165], the authors utilized the physics-based model in 

equation (22) by the IEEE standard C57.91 to predict the 

ageing of insulation paper by incorporating the statistical 

filtering techniques known as particle filter. The particle 

filter was used to improve the available information by 

taking into consideration the uncertainties associated with 

both the exact degradation and the measurement. This was 

implemented as the IEEE standard C57.91 model for the 

ageing of paper only offers estimates of the influence of 

temperature and load, which does not account for uncertainty 

estimates. Also, in addition to the effect of thermal ageing on 

insulation paper, the authors in [166] considered the effects 
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of winding vibration on the mechanical-thermal ageing of 

paper insulation. According to their study, it was reported 

that standalone mechanical ageing has minimal impact on 

the ageing of insulation paper compared to combined 

mechanical-thermal ageing, which has a significant effect on 

the paper. Furthermore, the ageing process in combined 

mechanical-thermal ageing aligns with thermal ageing where 

the insulation paper functional group remain constant as 

ageing is initiated with the breakage of the paper glycosidic 

bond. However, based on the degradation process of 

cellulose under various ageing conditions, it is evident that 

thermal stress remains the principal ageing factor, with 

electrical and mechanical stresses acting as accelerating 

factors for ageing [39].   

B. MOISTURE AND AGEING 

The presence of moisture in oil-immersed transformers is 

majorly a result of the ageing of insulation paper and due to 

its high dielectric strength, it represents a crucial factor 

affecting insulation reliability [167]. Therefore, paper 

insulation is vulnerable when the moisture content exceeds 3 

% and failure is anticipated if it exceeds 4% [151]. Studies 

indicate that the rate of degradation at standard service 

temperatures, with 4% moisture in the paper, is 20 times 

higher than at 0.5 % [168]. Also, the mechanical strength of 

an insulating paper has been reported to diminish by halve 

when the level of moisture in the paper is doubled [118]. 

Generally, the process of degradation of insulating paper 

occurs in the presence of moisture at 70 ℃ – 130 ℃ [32].  To 

maintain dielectric strength and prolong ageing, it is essential 

to keep the moisture content below 0.5 % and 20 ppm in the 

paper and oil respectively [16]. The potential cellulose 

hydrolysis degradation, reaction types, reactants, and 

products are presented in Table 9. The conventional 

techniques utilized in detecting and measuring water content 

are the Karl Fisher titration, spectroscopic frequency-domain 

technique, spectroscopic time-domain techniques, electrical 

techniques and paper adsorption isotherms for insulating 

paper [7], [169], [170]. The mentioned techniques often lead 

to the overestimation of paper water content. In addition, the 

adsorption and desorption of moisture in the insulating paper 

oscillate around an equilibrium point or within a specific 

range. However, [33] explores an improved approach for 

assessing the moisture content in transformer paper, which is 

based on cellulose isotherms. This technique lies in its ability 

to circumvent the requirement for thermodynamic 

equilibrium between transformer oil and cellulosic 

insulation. Instead, it employs cyclic temperature variations 

to ascertain shifts in the direction of water migration whether 

into or out of the insulating liquid. These alterations in water 

migration direction offer a means to determine the vapour 

pressure of water absorbed by cellulose. Therefore, water 

activity probes can be employed to measure the temperature 

and water activity of the insulating liquid around its tip 

points, which reduces the uncertainties due to the condition 

of the liquid and non-equilibrium conditions [171]. To 

estimate the water concentration on insulating paper, the hot-

spot temperature of the winding insulation should be 

considered as the temperature of the winding insulating 

paper is usually higher than the temperature of the insulating 

liquid. Furthermore, the use of a water activity probe can 

overestimate the water concentration on the paper as paper 

releases moisture into the insulating liquid when it is being 

heated up. As such, the difference in the temperature of the 

hot-spot position and the water activity probe should be 

noted. IEC 60076/7 thermal model [172], and the installation 

of an optical sensor close to the winding hot-spot can be used 

to determine this temperature difference. Also, the position 

of the water activity probes should be considered as the water 

activity estimation is affected by the speed of the circulating 

liquid. In this regard, the water activity probe should be 

placed at the region where the liquid has the highest speed 

[173]. Also, the dielectric response techniques typically 

provide data that aligns with online probe data but have the 

drawback of requiring complete isolation of the transformer 

from the grid [171]. Furthermore, a capacitive sensor, which 

is more sensitive to water and has no response to other 

insulating liquid molecules has been currently employed. 

However, for optimum data collection, the location to place 

this sensor remains a problem. Therefore, it is imperative that 

the sensor is placed to avoid areas with stagnant oil as it 

exclusively sensitive to the insulating liquid at the surface 

[22]. Furthermore, the authors in [170] proposed a system 

utilizing high-frequency sensors to access the deterioration 

of transformer insulation by measuring water concentration, 

where an artificial neural network (ANN) model is used to 

optimize the traditional coaxial probe technique used.  

In [47], an empirical expression that establishes the 

relationship between paper moisture content, hot-spot 

temperature, and insulating oil moisture content is given in 

equation (38) under the assumption of equilibrium 

conditions. This expression is known as ABB’s equation. 

𝐻𝑝 = 2.06915𝑒
−0.0297𝜃𝐻𝑆 × (𝐻0)

0.4089𝜃𝐻𝑆
0.09733

        (38)  

Where 𝐻0 in ppm is the humidity of the insulating oil, and 

𝐻𝑝 in % is the insulating paper moisture content. In [174], a 

novel and easily accessible technique was used to estimate 

the oil-immersed insulating paper moisture content. This 

technique involves the creation of an frequency domain 

spectroscopy (FDS) curve database that is being facilitated 

by employing an exponential decay model. The moisture 

content of insulating liquid-impregnated paper is measured 

in [175] by establishing a nonlinear coefficient α (feature 

parameter) of the U-I per-unit curve, which has a directly 

proportional relationship with moisture content and an 

inversely proportional relationship with the excitation 

frequency. In [117], the moisture content in an oil-immersed 

polymer paper insulation was predicted by employing 

support vector machine (SVM) with genetic algorithm (GA) 

to optimize SVM key parameters. The result shows that the 

model is a potential and robust tool for an oil-immersed 

polymer insulation moisture content prediction. BPNN 

enhanced with AdaBoost algorithms was proposed in [1] to 

address the unreliable evaluation of moisture content. 

AdaBoost was used for optimization due to its ability to 
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cascade a weak classifier and thoroughly consider the 

classification outcomes of each individual weak classifier, 

which helps to avoid the problem of overfitting and gives a 

higher degree of generalization. Also, BPNN was considered 

as it excellently helps in the fitting of nonlinear problems. 

The result of the proposed model gives a more accurate result 

with lower MAE when compared with some other 

algorithms like kNN, SVM, BPNN, and GA-BPNN. 

 
TABLE 9. Cellulose degradation reaction types, reactants, and products. 

 

Chemical 

reaction 

Reactant Product Ref. 

Enzymatic 

hydrolysis  

Cellulose + 

cellulase 

Low molecular 

weight 

products 

[171, 
172] 

Acid 

hydrolysis  

Cellulose + 

H30+ 

D-glucose [173, 
174] 

Alkaline 

hydrolysis  

Cellulose + 

base 

Low molecular 

weight 

products 

[175] 

Thermal 

hydrolysis 

Cellulose + 

H20 

D-glucose [176] 

C. OXYGEN AND AGEING 

The chemical reaction between oxygen and the hydrocarbons 

of any insulating liquid causes deterioration in terms of 

oxidation and ageing of the liquid which leads to the 

formation of compounds like acids, sludge, water, and gases 

as presented in Table 10 with their corresponding effects 

[182], [183]. Also, the DGA results involving about 1.5 

million samples based on IEEE C57.104-2019 standard 

revealed that the O2/N2 ratio is a prominent parameter that 

exerts a remarkable influence on the typical gas levels 

detected irrespective of the insulating liquid volume, rating, 

and voltage class. Therefore, the ratio of O2/N2 was proposed 

for assessment as an indicator to differentiate free-breathing 

from sealed units. Figure 11 shows transformer classification 

based on O2/N2 ratio  [184]. Oxygen, being one of the factors 

contributing to ageing, demands careful consideration as it 

decreases the ageing by a factor of 16 when its content in the 

insulating liquid is reduced from 30000 ppm to 300 ppm 

[185]. Therefore, the nitrogen-sealed type, diaphragm-sealed 

type conservators, and the use of oxidation inhibitors have 

been utilized by researchers to provide a solution as the 

removal of dissolved oxygen from transformer-insulating 

liquid is not optional but imperative. 

Oxidative degradation of cellulose paper is primarily 

initiated by ions of transition metal rather than primary metal 

group ions. In the presence of water and oxygen, they 

catalyze the formation of hydroxyl anions, hydroxyl radicals, 

and several other reactive oxygen species. Despite electrical 

engineers' preeminent endeavours to eliminate metal ions, 

oxygen, and water within the system, these parameters 

remain in trace quantities and are ready to instigate a 

detrimental cycle of paper degradation [8], [186]. 

Furthermore, the presence of oxygen accelerates the process 

of paper degradation by increasing its rate by a factor of 2.5 

[185]. This was confirmed as an experiment on accelerated 

ageing at 130 ℃ with and without oxygen was reported in 

[182], which reveals the ageing of paper insulation was 

decelerated by inhibiting access to oxygen. Oxidation of 

paper insulation results in an increase in acidity as a reaction 

takes place between oxygenated insulating liquid and the 

paper. This process is most notable at temperatures below 

60 ℃ – 75 ℃, indicating that in an unloaded power 

transformer, acidity is the primary degradation of insulating 

paper. As such, thermally upgraded paper doesn’t offer any 

benefit over non-thermally upgraded paper when 

considering oxidation as a degradation factor [47]. Oxygen 

as one of the parameters for insulating paper degradation has 

been integrated and captured in other parameters such as 

moisture and temperature. Nowadays, most of the new and 

widely used transformers produced are air-free called the 

hermetically sealed unit, making it a less-prominent factor to 

be considered by researchers among others.  

 
FIGURE 11. Classification based on O2/N2 ratio [184]. 

 
TABLE 10. Compounds formed and their effects during the chemical 

reaction between oxygen and insulating liquid. 

 

Compound Effect 

 

Sludge 

- Diminishes dielectric strength 

- Degrades the cellulose paper 

- Interferes with the core and coil 

cooling 

- Catalyzes further oxidation 

 

Acids 

- Induces and promotes corrosion 

process 

- Diminishes the tensile strength of 

insulating paper 

- Catalyzes further oxidation 

 

Water 

- Degrades the cellulose paper 

- Diminishes dielectric strength  

- Catalyzes further oxidation 

Gases - Produces several faults related gases 

such as CO2, CO, H2, C4H6, CH4, 

C2H4, C6H8, etc. 

D. INSULATING LIQUID CONDITION AND AGEING 

DGA technology stands out as a crucial and efficient tool for 

detecting early-stage faults in oil-immersed power 

transformers. This method is instrumental in pinpointing the 

deterioration of both insulating paper and oil. Carefully 

examining the CO2/CO ratio, ethanol content, methanol 

content, and furan compound analysis can validate the 

confirmation of paper insulation involvement and potential 
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carbonization through dissolved gas analysis [187]. This 

technology based on conventional diagnostics techniques 

such as the Rogers ratio, IEC three-ratio technique, and 

modified three-ratio technique suffers some limitations like 

incomplete ratio coding and limited usage conditions [188], 

[189]. The relationship between some ageing parameters and 

DP is presented in Figures 12 and 13 (a) to (g). [190]. Also, 

some comparison models between 2FAL and DP and some 

transformer ageing models have been highlighted in [191]. 

Furthermore, a careful study of several researchers' work 

results has shown different values of DP for the same ageing 

parameter and insulating liquid as seen in Figure 14. This 

may be due to the inaccuracy and incapacity of the 

mathematical models to correlate the degree of 

polymerization with each individual dissolved gas. 

Furthermore, IEEE C57.104-2019 [184] and IEC 60599-

2015 [192] have proposed some DGA interpretation 

techniques, which have been generally accepted by electrical 

industries. However, accurate results from the analysis can 

only be obtained if the observed gases relate closely to the 

condition of the equipment as gas data always show a non-

linearity characteristic. Furthermore, DGA suffers some 

limitations such as incorrect collection of samples, 

uncommon causes of gas generation, several phenomena 

happening concurrently, accelerations and rate of gas 

generation which serves as the most reliable basis requires 

multiple measurements to be conducted over time, and the 

gas formation pattern and rate characterization is not always 

adequate to determine the gas generation source [184]. 

Generally, both offline and offline techniques for DGA 

suffer the limitations of inability to classify some fault 

especially when the DGA results do not fall within the 

IEEE/IEC specifications, leading to ambiguity in the 

analysis and it is not appropriate for an air-cooled 

transformer [15], [193]. Therefore, to enhance the accuracy 

and efficiency of fault identification methods in oil-

immersed transformers using DGA, researchers globally 

have explored the integration of various ML techniques, 

which have been investigated as a new solution for assessing 

fault conditions by amalgamating parameters like gas levels, 

gas rates, and DGA interpretations [194]. Also, 

incorporating ML approaches with the DGA 

chromatographic method will help to overcome the 

impediments in employing standalone DGA-based 

techniques [195]- [197].  

A self-learning technique was presented in [190] to evaluate 

the DP of insulating paper according to multiple insulating 

liquid ageing parameters. The authors utilized the FCM-LR 

method to forecast the DP of insulating paper employing 

several ageing parameters. The report in this study confirms 

that DP value prediction using multiple parameters is more 

accurate than a single parameter. Also, the better 

performance exhibited by the fuzzy C mean-linear regression 

(FCM-LR) method positions it as a robust tool for accurately 

evaluating the DP value of insulation paper. The authors in 

[198] utilized some ageing parameters present in the 

insulating liquid of 108 power transformers to determine the 

expected life estimation and condition of insulating paper by 

building an ANFIS for the DP of insulating paper. The input 

parameters considered are acidity, interfacial tension, CO, 

CO2, and colour. The result presented shows that the ANFIS 

model has 85.75% and 89.07% accuracy in testing and 

training respectively. Also, the proposed model can be 

utilized to evaluate the paper condition when the 2FAL data 

of the power transformer is not obtainable. In [102], a 

combined model based on kernel principal component 

analysis (KPCA) and a generalized regression neural 

network (GRNN) utilizing an enhanced fly fruit optimization 

algorithm (FFOA) to select the smoothing factor parameter 

in the GRNN network was used to predict the concentration 

of dissolved gases in an aged insulating liquid. The FFOA 

optimization techniques were employed to overcome the 

limitation associated with the neural network approach by 

aiding the adjustment of training parameters. The proposed 

model in this study demonstrates superior data fitting and 

more accurate prediction capabilities relative to the grey 

model (GM) and the SVM. The authors in [199] employ the 

SVM classifier model to assess the insulation condition of 

insulation paper impregnated in insulating liquid. 149 

transformers were considered and some dielectric properties, 

furanic and dissolved gas analysis compounds were used as 

measurement data. Also, 19 transformers whose furan data 

were unreachable were considered. After feature extraction 

and selection were done, the model was observed to have an 

accuracy of 90.63%. This implies that the model was able to 

make 29 correct classifications out of 32 based on healthy, 

moderate, and extensive state categories. In [200], ANN, 

Gaussian process regression (GPR), SVM, and least-square 

support vector regression (LSSVM) algorithms were used to 

predict the dissolved gas employing grey relational analysis 

(GRA) to estimate the grey relational coefficients for 

dissolved gas feature selection, coupled with GPR for 

predicting the dissolved gas values. The test was carried out 

with eight datasets of dissolved gases. Their results after 

comparison show that the GRA technique is efficient in 

identifying and eliminating extraneous and redundant 

features from the original feature sets. The content of 

dissolved gases in insulating liquid was forecasted using 

support vector regression (SVR), which is an amplified 

edition of the SVM technique in [201]. SVR is considered in 

this study due to its accuracy, simple structure, and good 

generalization performance as it is founded on the principle 

of reducing structural risk rather than empirical risk. Also, 

kernel functions (polynomial kernel and Gaussian kernel) is 

integrated to SVR, which is formulated to be mixed kernel 

function-support vector regression (MKF-SVR) helps in the 

transformation of non-linear and inseparable problems into 

linearly divisible problem. This is important as the dissolved 

gas prediction of liquid immersed transformers involves 

addressing a non-linear time series problem. Furthermore, 

the application of GA is utilized to fine-tune the parameters 

of the SVR model integrated with kernel functions, thereby 

enhancing the overall forecasting performance. The result 

from the study after comparison shows that MKF-SVR has 
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superior prediction accuracy and fitting capacity than GM, 

radial basis function neural network (RBFNN), and GRNN. 

Time series prediction based on the LSTM method for 

dissolved gas level in insulation was presented in [84]. In 

[202], the authors proposed a new asset management 

technique for power transformer insulating liquid by 

utilizing online DGA data. Their proposed model consists of 

two different submodules, which are fault diagnostics and 

life management modules, these two modules were made to 

undergo a training process using the CNN machine learning 

framework. The former utilized the six main types of fault 

that can be analysed using the DGA approach, while the 

latter utilized the RUL of the insulating paper as the life 

expectancy of the power transformer principally depends on 

paper insulation. LSTM was considered in this work based 

on its suitability to predict long-term non-linear sequence 

problems through gating mechanisms. Also, to enhance the 

prediction accuracy, Bayesian optimization algorithm 

(BOA) was employed to optimize the model 

hyperparameters. The proposed LSTM prediction result 

shows superior prediction accuracy as it was compared with 

the prediction of GM, SVM, and BPNN. Three data-driven 

models, which are ANN, SVM, and Gaussian Bayesian 

network (GBN) are used to diagnose the dissolved gases to 

monitor the transformer health state in [123]. The dataset 

classifiers were trained and tested through Monte Carlo 

cross-validation, which is to allow estimation for statistical 

classifiers. The result indicates that ANN model emerges as 

a more accurate diagnostic method than SVM and GBN, 

where GBN model is observed to have the lowest accuracy. 

However, information derived from the results of GBN 

models proves to be more valuable as it was able to generate 

the probability density function (PDF) with uncertain 

information. This helps to represent the initial and final 

health states, which delineate the uncertainty that is linked 

with these states. Furthermore, the authors suggested that 

GBN model trained with dissolved gas samples should offer 

confident predictions for known data and also should be able 

to express uncertainty when faced with unseen dissolved gas 

sample data. As such, the uncertainty formation can be 

employed to refine and enhance the accuracy of the model in 

the real-world applications. The authors in [203] integrated 

fuzzy logic and adaptive neuro-fuzzy inference system 

(ANFIS) to forecast the remnant life cycle of oil-immersed 

transformer by utilizing the concentration of 2FAL and the 

degree of polymerization of insulating cellulose paper. Three 

models (De Pablo, Chendong, and Vaurchex models) 

relating DP was employed and ANFIS was considered as it 

provides remarkable good learning ability. The ANFIS 

model on the testing data was reported to have to offer a 

99.86% accuracy indicating the model prediction capability. 

The summary of several machine learning models use for 

ageing parameters prediction with the evaluation metrics 

used is presented in Table 11. 

 

 
FIGURE 12. Ageing parameters in relationship with paper DP. 
 

 
   (a) 

 
   (b) 

 
   (c) 
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   (f) 

 
   (g) 
   FIGURE 13 (a) – (g). Ageing parameters and DP [190]. 

 

 
FIGURE 14. 2FAL and DP based on some models[190].  

 

 
TABLE 11. Summary of models used for ageing parameters prediction with metrics used. 

 

Authors Year Model Optimization 

technique 

Prediction Evaluation 

metrics 

Ref. 

Shaban et al. 2016 kNN Wrapper 

method 

Furan level Not stated [204] 

Kari et al. 2018 MKF-SVR Not stated Oil DGA MAPE and R2 [201] 

Li et al. 2019 FCM-LR Not stated Paper DP R2, MSE [190] 

Hu et al. 2020 LSTM BOA Oil DGA MAE and MAPE [84] 

Zhang et al 2020 SVM GA Moisture Not stated [117] 

Liu et al. 2020 SVM GA Moisture Not stated [118] 

Aciu et al. 2021 RBFN & FFNN Not stated DGA MSE [205] 

Zhang et al. 2021 AHM Not stated Paper DP MSE [206] 

Zhang et al. 2022 XGBoost BOA DGA Not stated [126] 

Wu et al. 2022 SVM GA Ethanol, 

methanol 

MSE [207] 

Liu et al. 2022 BPNN AdaBoost Moisture MAE [1] 

Jin et al. 2023 BPNN & SVM Not stated DGA Not stated [188] 
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Du et al. 2023 BPNN Not stated Paper DP Not stated [44] 

Thango et al. 2023 ANFIS Not stated Cellulose DP MAE, MAPE,  

RMSE 

[203] 

Zhong et al. 2023 HATT-RLSTM Not stated DGA MAE, RMSE [208] 

Kunakorn et al. 2023 kNN Not stated DP & moisture Not stated [209] 

Jiang et al. 2023 Reinforced 

learning 

GA Ageing state ARE [45] 

Malik et al. 2023 FL Not stated DGA Not stated [210] 

E. COMPARISON OF DEGRATION PARAMETERS 

Based on our earlier findings, Table 12 provides a feature 

comparison of the impacts of various degradation parameters 

on the ageing of insulation paper. 

TABLE 12. Some highlights of the effect of different degradation parameters. 
 

Degradation factors Effects on insulation paper Observations Ref. 

Temperature - Accelerates degradation, especially 

above 130 ℃ and pyrolysis becomes 

the predominant degradation process 

above 140 ℃ 

- Leads to increased overheating and 

conductivity, causing localized 

carbonization. 

- Governs RUL based on hot-spot 

temperature 

- Activation energy for pyrolytic 

degradation is 1.4 to 2 times greater 

than hydrolysis. 

- Insulation paper from uppermost 

winding has the lowest DP due to 

temperature difference. 

- Hot-spot temperature estimation is 

complex, often leading to 

underestimation. 

 

 
 
 
[47], 

[151]-

[155] 

Moisture - Accelerates ageing with a degradation 

rate 20 times higher at 4% moisture 

than at 0.5%. 

- Promotes degradation at 70 – 130 ℃ 

in the presence of moisture. 

- Facilitates the migration of ions 

within the paper, leading to enhanced 

conductivity. 

- Mechanical strength decreases by 

half when the moisture level doubles. 

- Moisture content below 0.5% and 

20 ppm in insulating paper and liquid 

respectively is recommended. 

 

[16] 

[32], 

[151], 

[167], 

[168] 

 

Oxygen - Accelerates degradation by a factor of 

2.5. 

- Increases acidity, especially below 60 

- 70 ℃, impacting on unloaded 

transformers. 

- Accelerates the formation of the 

carbonyl group within the cellulose 

fibres. 

- Leads to the breakdown of polymer 

chains, reducing the mechanical 

properties of insulation paper. 

- Initiates oxidative degradation in 

the presence of water and catalytic 

metal ions. 

- Oxygen effects are integrated into 

parameters like moisture and 

temperature. 

 

 

[47], 

[182], 

[185] 

Insulating liquid 

condition 

- The presence of sludge, acids, and 

gases in the insulating liquid 

accelerates the degradation of 

insulation paper. 

- DGA is a crucial tool for detecting 

early-stage faults in transformers. 

- ML techniques such as ANN and 

SVM, provide superior diagnostics 

and prognostics capabilities when 

integrated with DGA. 

 
[194]-

[197] 
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VII. DISCUSSION AND FUTURE DIRECTIONS 

Among researchers and industries around the globe, the 

operation of ML technologies and their applications have 

become widespread as they provide solutions to numerous 

industrial difficulties. In this regard, they can substitute 

classical prognostic and diagnostic techniques leading to 

smart monitoring systems [211]. It is generally 

acknowledged that the effective selection of features 

significantly influences the performance of models as 

nearly all models invest a substantial amount of time and 

computational resources in the process of feature selection. 

Therefore, automatic feature extraction should be looked 

into as a scope for researchers. Furthermore, parameters, 

being the foundation of every ML algorithm should be 

considered as a penalty factor and the learning rate is the 

only parameter tuned to achieve better results.  Following 

this, other imperative parameters should be explored for 

tuning to enhance the model's performance.  

   The sensor, which is a micro-electro-mechanical system 

operating within the same environment as the equipment, 

is anticipated to undergo degradation with time. Therefore, 

considering the critical role of precise information in 

predicting the health condition of power transformers 

insulating paper and making informed decisions thereafter. 

It is imperative to carefully account for the impact of 

sensor degradation and to actively manage and address the 

degradation of these sensors as differentiating sensor 

degradation from that of the main component will be 

necessary to precisely assess the health condition of the 

component at specific intervals.  

   An attention-based model like the transformer model 

allows the model to identify, prioritize, and concentrate on 

the most crucial features in the input by enabling them to 

assign importance to each input element while generating 

the output, thereby eliminating the constraint of gradient 

vanishing when handling long-term sequences. Therefore, 

this recent neural network architecture model can be 

employed in transformer insulation paper health prognosis 

as it is rarely used in this field. Furthermore, data obtained 

from power transformers encounters consequential 

background noise that is not connected to faults, this could 

pose some challenges in isolating fault-related features 

leading to inadequacy of accurate prediction. Therefore, 

priority should be placed on the identification of key fault 

signals by utilizing the attention mechanisms. Also, a 

variety of multiple kernel function types and employing 

different optimization algorithms can be explored to 

enhance prediction performance.  

   The intricate structure of power transformers may pose 

challenges in identifying the most suitable locations for 

sensors to accurately capture degradation signals for 

insulation systems. Therefore, a future study can focus on 

researching the optimal sensor placement methods, which 

could probably be achieved through simulation and some 

modeling methods. Also, the new approach can be 

automated and integrated into upcoming online condition 

monitoring sensors for power equipment, providing real-

time insights into the status of paper insulation.  

   Probabilistic operations warranted for energy reliability 

evaluation and diagnostics (POWERED), which is a 

machine learning or hybrid artificial intelligence tool to 

diagnose and predict the RUL of power transformers have 

been presented in some studies. This system can be 

integrated with physics-based machine learning to aid 

accurate prediction of the health and status of a transformer 

insulation system. Also, the authors proposed the 

development of software that will serve as a valuable 

resource for the transformer insulation condition 

monitoring community, where a standardized platform 

will be created for engineers and researchers to simulate 

the behaviour and operation of the transformer insulation 

system. Furthermore, this will be able to provide 

researchers with the platform to compare and benchmark 

their algorithms through the provision of datasets for 

transformer insulation system health monitoring and 

prognostics. 

 
VIII. CONCLUSION 

Incorporating prognostics for power equipment holds the 

promise of substantially enhancing equipment 

management within the power industry as the volume of 

data obtained from power equipment increases with a 

reduced cost of sensors and storage. Online prognostics 

help to predict the future health state of a given equipment 

and present distinct advantages relative to total 

dependence on the judgement of an expert. However, the 

primary challenge in maintenance tasks for power 

transformers is conducting failure analysis for each 

component. Therefore, in this study, from the perspective 

of machine learning, the prediction of power transformer 

insulation paper is reviewed, challenged, and prospected. 

The methods of estimation of the degree of polymerization 

of insulating paper were introduced, and the prognostics 

approaches and how it is being done are summarized. Also, 

the influencing parameters are elaborately discussed based 

on mathematical models and machine learning models. 

Finally, potential directions for future research are 

prospected to further stimulate case studies, research, and 

industrial utilization. 

 
APPENDIX A 
LIST OF ABBREVIATIONS 

Acronyms Meaning Acronyms Meaning 

2FAL 2-Fulfural LR Linear regression 

AE Auto-encoder LSTM Long short-term memory 

AFS Asset fault signature LSSVR Least-square support vector regression 
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AG Advisory generation MAE Mean absolute error 

ANFIS Adaptive neuro-fuzzy inference system MAPE Mean absolute percentage error 

ANN Artificial neural network MKF Mixed kernel function 

ARE Average relative error ML Machine learning 

BOA Bayesian optimization algorithm MLP Multilayer perceptron 

BPNN Backpropagation neural network MSE Mean square error 

CNN Convolutional neural network PCC Pearson correlation coefficient 

DA Diagnostic advisor PCA Principal component analysis  

DGA Dissolved gas analysis PDC Polarization and depolarization currents  

DP Degree of polymerization PDF Probability density function 

DSC Dispersion staining colours PHM Prognostics and health management 

EOL End of useful life PNN Probabilistic neural network 

EPRI Electric power research institute R2 Coefficient of determination 

FCM Fuzzy C mean RAE Relative absolute error 

FDS Frequency domain spectroscopy RLSTM Recurrent long short time memory 

FFOA Fly fruit optimization algorithm RMSE Root mean squared error 

FL Fuzzy logic RMSLE Root mean squared logarithmic error 

FPCA Functional principal component analysis RUL Remaining useful life 

FNN Fleet wide RULA Remaining useful life advisor 

GA Genetic algorithm RULD Remaining useful life database 

GM Grey model RNN Recurrent neural network 

GBN Gaussian Bayesian network RVM Relevance vector machine 

GPR Gaussian process regression SF Scoring function 

GRA Grey relational analysis SMAPE Symmetric mean absolute error  

GRNN Generalized regression neural network SVM Support vector machine 

HATT Hierarchical attention network SVR Support vector regression 

KPCA Kernel principal component analysis TUP Thermally Upgraded paper 

kNN k nearest neighbour XGBoost Extreme gradient boosting 
 
APPENDIX B 
LIST OF ABBREVIATIONS 

Symbols Meaning Symbols Meaning 

R Gas constant  𝐹𝐸𝑄𝐴  Equivalent ageing factor 

A Pre-exponential factor L  Loss of life 

𝐸𝑎 Activation energy V Paper rate of ageing 

K Rate of reaction N Number of samples or units 

t Time 𝑦𝑖    Real or actual value 

T Temperature 𝑦̂𝑖  Predicted value 

%LL Percent of life lost 𝑦̅ Average value of 𝑦𝑖  
𝜃𝐻𝑆 Hot-spot temperature m Winding exponent 

𝜃𝑇𝑂 Temperature of the top oil n Oil exponent 

∆𝜃𝐻,𝑅 Hottest-spot temperature rise at the rated 

load 

∆𝜃𝑇𝑂,𝐻 Temperature rise of the hottest spot over 

top-oil temperature 

𝜔𝑡 Uncertainty of the degradation process ∆𝜃𝐴,𝑇𝑂 Temperature rise of top oil over ambient 

temperature 

𝜃𝐴 Ambient temperature y Exponential constant of the windings 

𝜏𝑊,𝑅 Winding time constant 𝑖𝑟    Rated load 

𝜃𝑂𝑊 Oil-to-winding temperature gradient 𝑖(𝑡) Load at an instant t 

𝜏𝑇𝑂,𝑅 Oil time constant k thermal constants of the transformer 

𝐻0 Humidity of the insulating oil 𝐾𝐿 Load factor 

𝜑𝑖 Measurement error for load  𝜑𝑇𝑂 Measurement error for top oil  

∆𝜃𝑇𝑂,𝐻𝑖  Hot-spot temperature rise over ambient 

temperature 
∆𝜃𝐴,𝑇𝑂𝑖  Top-oil temperature rise over ambient 

temperature 

𝑛𝑡 Number of bond scission at t 𝑛0 Initial number of links available for 

degradation 
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