LiveZilla Live Chat Software

Constellation, le dépôt institutionnel de l'Université du Québec à Chicoutimi

Highly accurate bathroom activity recognition using infrared proximity sensors

Chapron Kevin, Lapointe Patrick, Bouchard Kevin et Gaboury Sebastien. (2020). Highly accurate bathroom activity recognition using infrared proximity sensors. IEEE Journal of Biomedical and Health Informatics, 24, (8), p. 2368-2377.

Le texte intégral n'est pas disponible pour ce document.

URL officielle: http://dx.doi.org/doi:10.1109/JBHI.2019.2963388

Résumé

Among elderly populations over the world, a high percentage of individuals are affected by physical or mental diseases, greatly influencing their quality of life. As it is a known fact that they wish to remain in their own home for as long as possible, solutions must be designed to detect these diseases automatically, limiting the reliance on human resources. To this end, our team developed a sensors platform based on infrared proximity sensors to accurately recognize basic bathroom activities such as going to the toilet and showering. This article is based on the body of scientific literature which establish evidences that activities relative to corporal hygiene are strongly correlated to health status and can be important signs of the development of eventual disorders. The system is built to be simple, affordable and highly reliable. Our experiments have shown that it can yield an F-Score of 96.94%. Also, the durations collected by our kit are approximately 6 seconds apart from the real ones; those results confirm the reliability of our kit.

Type de document:Article publié dans une revue avec comité d'évaluation
ISSN:2168-2194
Volume:24
Numéro:8
Pages:p. 2368-2377
Version évaluée par les pairs:Oui
Date:2020
Identifiant unique:10.1109/JBHI.2019.2963388
Sujets:Sciences naturelles et génie > Sciences mathématiques > Informatique
Département, module, service et unité de recherche:Départements et modules > Département d'informatique et de mathématique
Mots-clés:bathroom activity recognition, infrared proximity sensors, human resources, mental diseases, physical diseases, elderly populations, health monitoring, smart home, smart home kit
Déposé le:10 févr. 2021 19:47
Dernière modification:10 févr. 2021 19:47
Afficher les statistiques de telechargements

Éditer le document (administrateurs uniquement)

Creative Commons LicenseSauf indication contraire, les documents archivés dans Constellation sont rendus disponibles selon les termes de la licence Creative Commons "Paternité, pas d'utilisation commerciale, pas de modification" 2.5 Canada.

Bibliothèque Paul-Émile-Boulet, UQAC
555, boulevard de l'Université
Chicoutimi (Québec)  CANADA G7H 2B1
418 545-5011, poste 5630