Constellation, le dépôt institutionnel de l'Université du Québec à Chicoutimi

Assessing the potential responses of 10 important fisheries species to a changing climate with machine learning and observational data across the province of Québec

Rodríguez Marco A., Lemaire Marine, Fugère Vincent, Barrette Marie-France, Gagné Stéphanie, Leclerc Véronique, Morissette Olivier, Pouliot Rémy, St-Pierre Annick, Turgeon Katrine, Velghe Katherine, Guay Jean-Christophe et Beisner Beatrix E.. (2025). Assessing the potential responses of 10 important fisheries species to a changing climate with machine learning and observational data across the province of Québec. Canadian Journal of Fisheries and Aquatic Sciences, 82, p. 1-15.

[thumbnail of Rodriguez_et_al_2025_CanJFishAquatSci.pdf]
Prévisualisation
PDF - Version publiée
Disponible sous licence Creative Commons (CC-BY 4.0).

3MB

URL officielle: https://doi.org/10.1139/cjfas-2024-0042

Résumé

Models are needed to predict changes in game fish abundances with respect to climatic factors undergoing change, but such models are often limited by data availability and the capacity of statistical methods to fit challenging ecological datasets. We use current methods in machine learning to describe the responses of 10 fish species to climatic factors across Québec. We assembled a new province-wide, synthetic dataset of fish catches spanning almost 50 years and 6000 sites. Extreme Gradient Boosting (XGBoost) models revealed that climatic factors are more important predictors of trends in game fish catches than nuisance factors (sampling gear, time), lending support to collating other heterogeneous datasets for analyses. Mean annual temperature and precipitation were the most important drivers of species catches. Fish thermal preference guilds predicted primarily species responses to temperature, suggesting that warmer and wetter climates may not favour the same species. Despite the challenging nature of these datasets, XGBoost models provided excellent fit, predictive capacity, and interpretability, thereby illustrating that large, heterogeneous datasets can be used to inform freshwater fisheries management in a changing climate.

Type de document:Article publié dans une revue avec comité d'évaluation
ISSN:0706-652X
Volume:82
Pages:p. 1-15
Version évaluée par les pairs:Oui
Date:2025
Identifiant unique:10.1139/cjfas-2024-0042
Sujets:Sciences naturelles et génie > Sciences naturelles > Biologie et autres sciences connexes
Département, module, service et unité de recherche:Départements et modules > Département des sciences fondamentales
Unités de recherche > Centre de recherche sur la Boréalie (CREB)
Mots-clés:Extreme Gradient Boosting, XGBoost, SHAP values, synthetic dataset, freshwater fish, management
Déposé le:19 févr. 2025 15:22
Dernière modification:19 févr. 2025 15:22
Afficher les statistiques de telechargements

Éditer le document (administrateurs uniquement)

Creative Commons LicenseSauf indication contraire, les documents archivés dans Constellation sont rendus disponibles selon les termes de la licence Creative Commons "Paternité, pas d'utilisation commerciale, pas de modification" 2.5 Canada.

Services de la bibliothèque, UQAC
555, boulevard de l'Université
Chicoutimi (Québec)  CANADA G7H 2B1
418 545-5011, poste 5630