Rodríguez Marco A., Lemaire Marine, Fugère Vincent, Barrette Marie-France, Gagné Stéphanie, Leclerc Véronique, Morissette Olivier, Pouliot Rémy, St-Pierre Annick, Turgeon Katrine, Velghe Katherine, Guay Jean-Christophe et Beisner Beatrix E.. (2025). Assessing the potential responses of 10 important fisheries species to a changing climate with machine learning and observational data across the province of Québec. Canadian Journal of Fisheries and Aquatic Sciences, 82, p. 1-15.
Prévisualisation |
PDF
- Version publiée
Disponible sous licence Creative Commons (CC-BY 4.0). 3MB |
URL officielle: https://doi.org/10.1139/cjfas-2024-0042
Résumé
Models are needed to predict changes in game fish abundances with respect to climatic factors undergoing change, but such models are often limited by data availability and the capacity of statistical methods to fit challenging ecological datasets. We use current methods in machine learning to describe the responses of 10 fish species to climatic factors across Québec. We assembled a new province-wide, synthetic dataset of fish catches spanning almost 50 years and 6000 sites. Extreme Gradient Boosting (XGBoost) models revealed that climatic factors are more important predictors of trends in game fish catches than nuisance factors (sampling gear, time), lending support to collating other heterogeneous datasets for analyses. Mean annual temperature and precipitation were the most important drivers of species catches. Fish thermal preference guilds predicted primarily species responses to temperature, suggesting that warmer and wetter climates may not favour the same species. Despite the challenging nature of these datasets, XGBoost models provided excellent fit, predictive capacity, and interpretability, thereby illustrating that large, heterogeneous datasets can be used to inform freshwater fisheries management in a changing climate.
Type de document: | Article publié dans une revue avec comité d'évaluation |
---|---|
ISSN: | 0706-652X |
Volume: | 82 |
Pages: | p. 1-15 |
Version évaluée par les pairs: | Oui |
Date: | 2025 |
Identifiant unique: | 10.1139/cjfas-2024-0042 |
Sujets: | Sciences naturelles et génie > Sciences naturelles > Biologie et autres sciences connexes |
Département, module, service et unité de recherche: | Départements et modules > Département des sciences fondamentales Unités de recherche > Centre de recherche sur la Boréalie (CREB) |
Mots-clés: | Extreme Gradient Boosting, XGBoost, SHAP values, synthetic dataset, freshwater fish, management |
Déposé le: | 19 févr. 2025 15:22 |
---|---|
Dernière modification: | 19 févr. 2025 15:22 |
Éditer le document (administrateurs uniquement)