Constellation, le dépôt institutionnel de l'Université du Québec à Chicoutimi

Efficient and inexpensive method for activity recognition within a smart home based on load signatures of appliances

Belley Corinne, Gaboury Sébastien, Bouchard Bruno et Bouzouane Abdenour. (2013). Efficient and inexpensive method for activity recognition within a smart home based on load signatures of appliances. Pervasive and mobile computing,

[thumbnail of Version_journal_(article_révisé)-Version_impersonnelle.pdf] PDF
516kB

Résumé

With the increasing demand in terms of non-intrusive appliance load monitoring (NIALM), more and more smart meters and smart analyzers were released on the market to extract well-defined load signatures and/or for performing autonomously the various monitoring operations as needed. Nevertheless, this hardware proves to be very expensive and not necessarily accessible to all. Moreover, most applications resulting of the use of these smart devices simply refer to energy saving and costs reducing of energy consumption. Thus, this paper proposes a new algorithmic method for an application field that is still very lightly exploited, i.e. the activity recognition of reduced-autonomy residents living in a smart habitat through load signatures. This one is based on steady-state operations and signatures and its extraction process of load signatures of appliances is carried out in a three-dimensional space through a single power analyzer which is non-intrusive (NIALM). This approach has been tested and verified rigorously through daily scenarios reproduced in the smart home prototype in a laboratory.. Hence, we can affirm that, with an exceptionally minimal investment and the exploitation of especially limited data, our method can recognize the use of appliances with high precision and low-cost allowing us to compete with other approaches which are much more expensive and require supplementary equipment.

Type de document:Article publié dans une revue avec comité d'évaluation
Version évaluée par les pairs:Oui
Date:2013
Sujets:Sciences naturelles et génie
Département, module, service et unité de recherche:Départements et modules > Département d'informatique et de mathématique
Mots-clés:Activity recognition, smart home, load signature, nonintrusive appliance load monitoring, NIALM, appliance identification
Déposé le:23 mai 2013 00:46
Dernière modification:23 mai 2013 00:46
Afficher les statistiques de telechargements

Éditer le document (administrateurs uniquement)

Creative Commons LicenseSauf indication contraire, les documents archivés dans Constellation sont rendus disponibles selon les termes de la licence Creative Commons "Paternité, pas d'utilisation commerciale, pas de modification" 2.5 Canada.

Bibliothèque Paul-Émile-Boulet, UQAC
555, boulevard de l'Université
Chicoutimi (Québec)  CANADA G7H 2B1
418 545-5011, poste 5630