Martin Maxence, Fenton Nicole J. et Morin Hubert. (2018). Structural diversity and dynamics of boreal old-growth forests case study in Eastern Canada. Forest Ecology and Management, (422), p. 125-136.
Prévisualisation |
PDF (Post-print de l'article publié dans une revue avec comité de lecture)
- Version acceptée
Disponible sous licence Creative Commons (CC-BY-NC-ND 2.5). 2MB |
URL officielle: https://dx.doi.org/doi:10.1016/j.foreco.2018.04.00...
Résumé
Old-growth stands are considered as key components of boreal forest diversity and their preservation is largely integrated into management plans. However, while the differences between old-growth and young forests have largely been studied, little is known about the diversity of boreal old-growth forests. In managed landscapes, the efficacy of old-growth conservation plans may be reduced depending on how these old-growth forests are considered: as a single, homogeneous and steady-state forest type or as multiple, diverse and dynamic forest types. To fulfil this gap, our objectives were: (1) to create a typology of old-growth boreal structures; (2) to observe how these structures are influenced by environmental and temporal parameters; and (3) to elaborate a succession model of old-growth structural dynamics along temporal and environmental gradients. Seventy-one mature and overmature stands were sampled within a 2200 km2 territory situated in Eastern Canada. Cluster analysis divided the sampled stands into two even-aged types, three transition old-growth types and six true old-growth types. Slope, minimum time since last fire and organic horizon depth were the three environmental and temporal parameters influencing the old-growth structures. Paludification-related productivity decline was present in only one old-growth forest type, while the other sites remained productive. These results allowed the creation of three succession models of the dynamics of old-growth stands in the boreal forest of eastern Canada. Boreal stands can undergo numerous structural changes once the old-growth succession process is initiated. An increase in structural diversity when the true old-growth stage is reached, coupled with a variety of secondary disturbance characteristics, favours multiple pathways of structural evolution of these ecosystems over time. Therefore, forest management planning should incorporate this complexity to improve the preservation of old-growth forests in managed territories.
Type de document: | Article publié dans une revue avec comité d'évaluation |
---|---|
Numéro: | 422 |
Pages: | p. 125-136 |
Version évaluée par les pairs: | Oui |
Date: | Avril 2018 |
Sujets: | Sciences naturelles et génie > Sciences appliquées > Eau et environnement Sciences naturelles et génie > Sciences appliquées > Foresterie et sciences du bois Sciences naturelles et génie > Sciences naturelles > Biologie et autres sciences connexes |
Département, module, service et unité de recherche: | Départements et modules > Département des sciences fondamentales |
Mots-clés: | Old-growth, boreal forest, typology, overmature, succession, conservation, vieilles forêts, forêt boréale, forêts surannées, typologie, dynamique naturelle |
Déposé le: | 15 mai 2018 22:11 |
---|---|
Dernière modification: | 18 févr. 2020 21:50 |
Éditer le document (administrateurs uniquement)