Constellation, le dépôt institutionnel de l'Université du Québec à Chicoutimi

Système de recherche d’information étendue basé sur une projection multi-espaces

Hannech Amel. (2018). Système de recherche d’information étendue basé sur une projection multi-espaces. Thèse de doctorat, Université du Québec à Chicoutimi.

[thumbnail of Hannech_uqac_0862D_10472.pdf] PDF
7MB

Résumé

Depuis son apparition au début des années 90, le World Wide Web (WWW ou Web) a offert un accès universel aux connaissances et le monde de l’information a été principalement témoin d’une grande révolution (la révolution numérique). Il est devenu rapidement très populaire, ce qui a fait de lui la plus grande et vaste base de données et de connaissances existantes grâce à la quantité et la diversité des données qu'il contient. Cependant, l'augmentation et l’évolution considérables de ces données soulèvent d'importants problèmes pour les utilisateurs notamment pour l’accès aux documents les plus pertinents à leurs requêtes de recherche. Afin de faire face à cette explosion exponentielle du volume de données et faciliter leur accès par les utilisateurs, différents modèles sont proposés par les systèmes de recherche d’information (SRIs) pour la représentation et la recherche des documents web. Les SRIs traditionnels utilisent, pour indexer et récupérer ces documents, des mots-clés simples qui ne sont pas sémantiquement liés. Cela engendre des limites en termes de la pertinence et de la facilité d'exploration des résultats. Pour surmonter ces limites, les techniques existantes enrichissent les documents en intégrant des mots-clés externes provenant de différentes sources. Cependant, ces systèmes souffrent encore de limitations qui sont liées aux techniques d’exploitation de ces sources d’enrichissement. Lorsque les différentes sources sont utilisées de telle sorte qu’elles ne peuvent être distinguées par le système, cela limite la flexibilité des modèles d'exploration qui peuvent être appliqués aux résultats de recherche retournés par ce système. Les utilisateurs se sentent alors perdus devant ces résultats, et se retrouvent dans l'obligation de les filtrer manuellement pour sélectionner l'information pertinente. S’ils veulent aller plus loin, ils doivent reformuler et cibler encore plus leurs requêtes de recherche jusqu'à parvenir aux documents qui répondent le mieux à leurs attentes. De cette façon, même si les systèmes parviennent à retrouver davantage des résultats pertinents, leur présentation reste problématique. Afin de cibler la recherche à des besoins d'information plus spécifiques de l'utilisateur et améliorer la pertinence et l’exploration de ses résultats de recherche, les SRIs avancés adoptent différentes techniques de personnalisation de données qui supposent que la recherche actuelle d'un utilisateur est directement liée à son profil et/ou à ses expériences de navigation/recherche antérieures. Cependant, cette hypothèse ne tient pas dans tous les cas, les besoins de l’utilisateur évoluent au fil du temps et peuvent s’éloigner de ses intérêts antérieurs stockés dans son profil. Dans d’autres cas, le profil de l’utilisateur peut être mal exploité pour extraire ou inférer ses nouveaux besoins en information. Ce problème est beaucoup plus accentué avec les requêtes ambigües. Lorsque plusieurs centres d’intérêt auxquels est liée une requête ambiguë sont identifiés dans le profil de l’utilisateur, le système se voit incapable de sélectionner les données pertinentes depuis ce profil pour répondre à la requête. Ceci a un impact direct sur la qualité des résultats fournis à cet utilisateur. Afin de remédier à quelques-unes de ces limitations, nous nous sommes intéressés dans ce cadre de cette thèse de recherche au développement de techniques destinées principalement à l'amélioration de la pertinence des résultats des SRIs actuels et à faciliter l'exploration de grandes collections de documents. Pour ce faire, nous proposons une solution basée sur un nouveau concept d'indexation et de recherche d'information appelé la projection multi-espaces. Cette proposition repose sur l'exploitation de différentes catégories d'information sémantiques et sociales qui permettent d'enrichir l'univers de représentation des documents et des requêtes de recherche en plusieurs dimensions d'interprétations. L’originalité de cette représentation est de pouvoir distinguer entre les différentes interprétations utilisées pour la description et la recherche des documents. Ceci donne une meilleure visibilité sur les résultats retournés et aide à apporter une meilleure flexibilité de recherche et d'exploration, en donnant à l’utilisateur la possibilité de naviguer une ou plusieurs vues de données qui l’intéressent le plus. En outre, les univers multidimensionnels de représentation proposés pour la description des documents et l’interprétation des requêtes de recherche aident à améliorer la pertinence des résultats de l’utilisateur en offrant une diversité de recherche/exploration qui aide à répondre à ses différents besoins et à ceux des autres différents utilisateurs. Cette étude exploite différents aspects liés à la recherche personnalisée et vise à résoudre les problèmes engendrés par l’évolution des besoins en information de l’utilisateur. Ainsi, lorsque le profil de cet utilisateur est utilisé par notre système, une technique est proposée et employée pour identifier les intérêts les plus représentatifs de ses besoins actuels dans son profil. Cette technique se base sur la combinaison de trois facteurs influents, notamment le facteur contextuel, fréquentiel et temporel des données. La capacité des utilisateurs à interagir, à échanger des idées et d’opinions, et à former des réseaux sociaux sur le Web, a amené les systèmes à s’intéresser aux types d’interactions de ces utilisateurs, au niveau d’interaction entre eux ainsi qu’à leurs rôles sociaux dans le système. Ces informations sociales sont abordées et intégrées dans ce travail de recherche. L’impact et la manière de leur intégration dans le processus de RI sont étudiés pour améliorer la pertinence des résultats.

Since its appearance in the early 90's, the World Wide Web (WWW or Web) has provided universal access to knowledge and the world of information has been primarily witness to a great revolution (the digital revolution). It quickly became very popular, making it the largest and most comprehensive database and knowledge base thanks to the amount and diversity of data it contains. However, the considerable increase and evolution of these data raises important problems for users, in particular for accessing the documents most relevant to their search queries. In order to cope with this exponential explosion of data volume and facilitate their access by users, various models are offered by information retrieval systems (IRS) for the representation and retrieval of web documents. Traditional SRIs use simple keywords that are not semantically linked to index and retrieve these documents. This creates limitations in terms of the relevance and ease of exploration of results. To overcome these limitations, existing techniques enrich documents by integrating external keywords from different sources. However, these systems still suffer from limitations that are related to the exploitation techniques of these sources of enrichment. When the different sources are used so that they cannot be distinguished by the system, this limits the flexibility of the exploration models that can be applied to the results returned by this system. Users then feel lost to these results, and find themselves forced to filter them manually to select the relevant information. If they want to go further, they must reformulate and target their search queries even more until they reach the documents that best meet their expectations. In this way, even if the systems manage to find more relevant results, their presentation remains problematic. In order to target research to more user-specific information needs and improve the relevance and exploration of its research findings, advanced SRIs adopt different data personalization techniques that assume that current research of user is directly related to his profile and / or previous browsing / search experiences. However, this assumption does not hold in all cases, the needs of the user evolve over time and can move away from his previous interests stored in his profile. In other cases, the user's profile may be misused to extract or infer new information needs. This problem is much more accentuated with ambiguous queries. When multiple POIs linked to a search query are identified in the user's profile, the system is unable to select the relevant data from that profile to respond to that request. This has a direct impact on the quality of the results provided to this user. In order to overcome some of these limitations, in this research thesis, we have been interested in the development of techniques aimed mainly at improving the relevance of the results of current SRIs and facilitating the exploration of major collections of documents. To do this, we propose a solution based on a new concept and model of indexing and information retrieval called multi-spaces projection. This proposal is based on the exploitation of different categories of semantic and social information that enrich the universe of document representation and search queries in several dimensions of interpretations. The originality of this representation is to be able to distinguish between the different interpretations used for the description and the search for documents. This gives a better visibility on the results returned and helps to provide a greater flexibility of search and exploration, giving the user the ability to navigate one or more views of data that interest him the most. In addition, the proposed multidimensional representation universes for document description and search query interpretation help to improve the relevance of the user's results by providing a diversity of research / exploration that helps meet his diverse needs and those of other different users. This study exploits different aspects that are related to the personalized search and aims to solve the problems caused by the evolution of the information needs of the user. Thus, when the profile of this user is used by our system, a technique is proposed and used to identify the interests most representative of his current needs in his profile. This technique is based on the combination of three influential factors, including the contextual, frequency and temporal factor of the data. The ability of users to interact, exchange ideas and opinions, and form social networks on the Web, has led systems to focus on the types of interactions these users have at the level of interaction between them as well as their social roles in the system. This social information is discussed and integrated into this research work. The impact and how they are integrated into the IR process are studied to improve the relevance of the results.

Type de document:Thèse ou mémoire de l'UQAC (Thèse de doctorat)
Date:Juillet 2018
Lieu de publication:Chicoutimi
Programme d'étude:Doctorat en sciences et technologies de l'information
Nombre de pages:351
ISBN:Non spécifié
Sujets:Sciences naturelles et génie > Sciences mathématiques > Informatique
Département, module, service et unité de recherche:Départements et modules > Département d'informatique et de mathématique > Programmes d'études de cycles supérieurs en informatique (doctorat)
Directeur(s), Co-directeur(s) et responsable(s):Mcheick, Hamid
Adda, Mehdi
Mots-clés:facettes de données, personnalisation de donnée, recherche d'information, système de recommandation, Web sémantique, Web social, projection multi-espaces, contexte de recherche, modélisation utilisateur, recommandation de données
Déposé le:01 août 2018 09:24
Dernière modification:07 sept. 2018 01:17
Afficher les statistiques de telechargements

Éditer le document (administrateurs uniquement)

Creative Commons LicenseSauf indication contraire, les documents archivés dans Constellation sont rendus disponibles selon les termes de la licence Creative Commons "Paternité, pas d'utilisation commerciale, pas de modification" 2.5 Canada.

Bibliothèque Paul-Émile-Boulet, UQAC
555, boulevard de l'Université
Chicoutimi (Québec)  CANADA G7H 2B1
418 545-5011, poste 5630