Wei Chih‐Lin, Cusson Mathieu, Archambault Philippe, Belley Renald, Brown Tanya, Burd Brenda J., Edinger Evan, Kenchington Ellen, Gilkinson Kent, Lawton Peter, Link Heike, Ramey‐Balci Patricia A., Scrosati Ricardo A. et Snelgrove Paul V. R.. (2020). Seafloor biodiversity of Canada's three oceans: patterns, hotspots and potential drivers. Diversity and Distributions, 26, (2), p. 226-241.
Prévisualisation |
PDF
- Version publiée
Disponible sous licence Creative Commons (CC-BY-NC-ND 2.5). 1MB |
URL officielle: http://dx.doi.org/doi:10.1111/ddi.13013
Résumé
Aim
We examined the relationships between bathymetry, latitude and energy and the diversity of marine benthic invertebrates across wide environmental ranges of Canada's three oceans.
Location
Canadian Pacific, Arctic and Atlantic Oceans from the intertidal zone to upper bathyal depths, encompassing 13 marine ecoregions.
Methods
We compiled 35 benthic datasets that encompass 3,337 taxa (70% identified to species and 21% to genus) from 13,172 samples spanning 6,117 sites. Partitioning the analyses by different gear types, ecoregions or sites, we used Hill numbers to examine spatial patterns in α‐diversity. We used resampling and extrapolation to standardized sampling effort and examined the effects of depth, latitude, chemical energy (export particulate organic carbon [POC] flux), thermal energy (bottom temperature) and seasonality of primary production on the benthic biodiversity.
Results
The Canadian Arctic harboured the highest benthic diversity (e.g. epifauna and common and dominant infauna species), whereas the lowest diversity was found in the Atlantic. The Puget Trough (Pacific), Beaufort Sea, Arctic Archipelago, Hudson Bay, Northern Labrador and Southern Grand Bank (Atlantic) were the “hotspots" of diversity among the ecoregions. The infauna and epifauna both exhibited hump‐shaped diversity–depth relationships, with peak diversity near shelf breaks; latitude (positively) predicted infaunal diversity, albeit weakly. Food supply, as inferred from primary production and depth, was more important than thermal energy in controlling diversity patterns. Limitations with respect to calculating POC flux in coastal (e.g. terrestrial runoff) and ice‐covered regions or biological interactions may explain the negative POC flux–infaunal diversity relationship.
Main Conclusions
We show previously unreported diversity hotspots in the Canadian Arctic and in other ecoregions. Our analyses reveal potential controlling mechanisms of large‐scale benthic biodiversity patterns in Canada's three oceans, which are inconsistent with the prevailing view of seafloor energy–diversity relationships. These results provide insightful information for conservation that can help to implement further MPA networks.
Type de document: | Article publié dans une revue avec comité d'évaluation |
---|---|
ISSN: | 1366-9516 |
Volume: | 26 |
Numéro: | 2 |
Pages: | p. 226-241 |
Version évaluée par les pairs: | Oui |
Date: | 2020 |
Identifiant unique: | 10.1111/ddi.13013 |
Sujets: | Sciences naturelles et génie > Sciences appliquées > Océanographie Sciences naturelles et génie > Sciences naturelles > Biologie et autres sciences connexes |
Département, module, service et unité de recherche: | Départements et modules > Département des sciences fondamentales |
Mots-clés: | alpha diversity, Arctic Ocean, Atlantic Ocean, benthic invertebrates, biodiversity conservation, energy–diversity relationship, marine protected area, Pacific Ocean, productivity–diversity relationship, seafloor biodiversity, diversité alpha, océan Arctique, océan Atlantique, invertébrés benthiques, conservation de la biodiversité, aire marine protégée, océan Pacifique, biodiversité des fonds marins |
Déposé le: | 04 févr. 2020 01:07 |
---|---|
Dernière modification: | 04 févr. 2020 01:07 |
Éditer le document (administrateurs uniquement)