Constellation, le dépôt institutionnel de l'Université du Québec à Chicoutimi

Gyroscopic theory of the Foucault pendulum : new Berry phases and sensitivity to syzygies

Verreault René. (2020). Gyroscopic theory of the Foucault pendulum : new Berry phases and sensitivity to syzygies. Proceedings of the Royal Society A - Mathematical, Physical and Engineering Sciences,

[thumbnail of Gyroscopic_theory_of_the_Foucault_pendulum.pdf]
PDF - Version soumise
Disponible sous licence Creative Commons : Attribution (CC-BY 2.5).

[thumbnail of Verreault Pendulum_original.avi] vidéo (avi) - Matériel supplémentaire
[thumbnail of 07_21_20_00_00_00_DO_p7p9r9_épuré2.xls] MS Excel - Matériel supplémentaire
[thumbnail of KaleidaGraph Plot File (.qpc)] Autre (KaleidaGraph Plot File (.qpc)) - Matériel supplémentaire


The normal way of exploiting a Foucault pendulum is by considering the total precession angle described during a complete cycle and to cumulate those elementary precession increments in order to yield a macroscopic precession angle. Said precession angle has been shown by Hanney to constitute a geometric phase in the sense described by Berry in 1984. The above precession increments per cycle have also been described by Berry as the result of a mathematical two-form corresponding to a pair of orthogonal pendulum circular oscillation states. In this article, the pendulum is analyzed on a half-cycle basis, as a pair of contra-rotating gyroscopes spinning about a horizontal axis. During two consecutive half-cycles, these two gyroscopes, acting in sequence, describe equal precession angles about the vertical axis, but in opposite directions, when the horizontal axis is forced by gravity to change its orientation in free space as the Earth is revolving. That gives rise, within each complete cycle, to a novel 8-shaped orbit. The cumulative precession angle difference over many complete cycles constitutes a new geometric phase of the Berry type. It can be described by a new two-form corresponding to the spin states of the two contrarotating gyroscopes. Instead of evaluating the effect of the two-form after each complete oscillation cycle, the new two-form is assessed after each half cycle and the difference between the half-cycle effects is cumulated. The new geometric phase is related to the tilt rate of the local vertical in free space. Thanks to an 18-hourduration pendulum experiment, evidence of the novel 8-shaped orbit is given. The Foucault pendulum is no longer considered in its geocentric environment, but in the barycentre frame of different celestial bodies. Sensitivity to syzygies between pendulum and said celestial bodies is discussed.

Type de document:Article publié dans une revue avec comité d'évaluation
Version évaluée par les pairs:Non
Sujets:Sciences naturelles et génie > Sciences naturelles > Astronomie et astrophysique
Sciences naturelles et génie > Sciences naturelles > Physique
Département, module, service et unité de recherche:Départements et modules > Département des sciences fondamentales
Mots-clés:Foucault pendulum, Berry geometric phases, pendulum tilt, syzygies, two-form, gyroscopic effects
Déposé le:12 mai 2020 18:25
Dernière modification:03 août 2020 18:50
Afficher les statistiques de telechargements

Éditer le document (administrateurs uniquement)

Creative Commons LicenseSauf indication contraire, les documents archivés dans Constellation sont rendus disponibles selon les termes de la licence Creative Commons "Paternité, pas d'utilisation commerciale, pas de modification" 2.5 Canada.

Bibliothèque Paul-Émile-Boulet, UQAC
555, boulevard de l'Université
Chicoutimi (Québec)  CANADA G7H 2B1
418 545-5011, poste 5630