Assi Ali, Mcheick Hamid et Dhifli Wajdi. (2020). Data linking over RDF knowledge graphs: a survey. Concurrency and Computation : Practice and Experience, 32, (19), p. 1-40.
Prévisualisation |
PDF
- Version publiée
Disponible sous licence Creative Commons (CC-BY 2.5). 1MB |
URL officielle: http://dx.doi.org/doi:10.1002/cpe.5746
Résumé
Instance matching (IM) is the process of matching instances across Knowledge Bases (KBs) that refer to the same real‐world object (eg, the same person in two different KBs). Several approaches in the literature were developed to perform this process using different algorithmic techniques and search strategies. In this article, we aim to provide the rationale for IM and to survey the existing algorithms for performing this task. We begin by identifying the importance of such a process and define it formally. We also provide a new classification of these approaches depending on the “source of evidence,” which can be considered as the context information integrated explicitly or implicitly in the IM process. We survey and discuss the state‐of‐the‐art IM methods regarding the context information. We, furthermore, describe and compare different state‐of‐the‐art IM approaches in relation to several criteria. Such a comprehensive comparative study constitutes an asset and a guide for future research in IM.
Type de document: | Article publié dans une revue avec comité d'évaluation |
---|---|
ISSN: | 1532-0626 |
Volume: | 32 |
Numéro: | 19 |
Pages: | p. 1-40 |
Version évaluée par les pairs: | Oui |
Date: | 2020 |
Identifiant unique: | 10.1002/cpe.5746 |
Sujets: | Sciences naturelles et génie > Sciences mathématiques > Informatique |
Département, module, service et unité de recherche: | Départements et modules > Département d'informatique et de mathématique |
Mots-clés: | data linking, instance matching, knowledge graph, record linkage, semantic web, web of data |
Déposé le: | 04 nov. 2020 21:33 |
---|---|
Dernière modification: | 04 nov. 2020 21:33 |
Éditer le document (administrateurs uniquement)