Constellation, le dépôt institutionnel de l'Université du Québec à Chicoutimi

Context-aware instance matching through graph embedding in lexical semantic space

Assi Ali, Mcheick Hamid, Karawash Ahmad et Dhifli Wajdi. (2019). Context-aware instance matching through graph embedding in lexical semantic space. Knowledge-Based Systems, 186, p. 104925.

Le texte intégral n'est pas disponible pour ce document.

URL officielle: http://dx.doi.org/doi:10.1016/j.knosys.2019.104925

Résumé

In recent years, the growing availability of open-accessed data ( Wikipedia) combined with the advances in algorithmic techniques for information extraction have facilitated the design and structuring of information giving rise to knowledge bases. A major challenge relies in the integration of these independently designed knowledge bases. Instance matching is presented as one of the solutions to facilitate this process. It aims to link co-referent instances with an owl:sameAs connection to allow knowledge bases to complement each other. In this work, we present an approach for automatic alignment of instances in knowledge bases in the form of Resource Description Framework (RDF) graphs. Our approach generates for each instance a virtual document from its local description ( data-type properties) and instances related to it through object-type properties ( neighbors). We transform the instance matching problem into a document matching problem and solve it by a vector space embedding technique. We consider the pre-trained word embeddings to assess words similarities at both the lexical and semantic levels. We evaluate our approach on multiple knowledge bases from the instance track of the Ontology Alignment Evaluation Initiative (OAEI). The experiments show that our approach gets prominent results compared to several state-of-the-art existing approaches.

Type de document:Article publié dans une revue avec comité d'évaluation
ISSN:09507051
Volume:186
Pages:p. 104925
Version évaluée par les pairs:Oui
Date:15 Décembre 2019
Identifiant unique:10.1016/j.knosys.2019.104925
Sujets:Sciences naturelles et génie > Sciences mathématiques > Informatique
Département, module, service et unité de recherche:Départements et modules > Département d'informatique et de mathématique
Mots-clés:Data linking, instance matching, lexical semantic vector, RDF graph, semantic web
Déposé le:23 nov. 2020 23:05
Dernière modification:23 nov. 2020 23:05
Afficher les statistiques de telechargements

Éditer le document (administrateurs uniquement)

Creative Commons LicenseSauf indication contraire, les documents archivés dans Constellation sont rendus disponibles selon les termes de la licence Creative Commons "Paternité, pas d'utilisation commerciale, pas de modification" 2.5 Canada.

Bibliothèque Paul-Émile-Boulet, UQAC
555, boulevard de l'Université
Chicoutimi (Québec)  CANADA G7H 2B1
418 545-5011, poste 5630