Assi Ali, Mcheick Hamid et Dhifli Wajdi. (2019). BIGMAT: a distributed affinity-preserving random walk strategy for instance matching on knowledge graphs. Dans : 2019 IEEE International Conference on Big Data (Big Data) , 9-12 December 2019, Los Angeles, California.
Le texte intégral n'est pas disponible pour ce document.
URL officielle: http://doi.org/10.1109/BigData47090.2019.9006348
Résumé
Instance Matching (IM) is the process of matching instances that refer to the same real-world object (e.g., the same person) across different independent Knowledge Bases (KBs). This process is considered as a key step, for instance, in the integration of KBs. In this paper, we propose BIGMAT, a novel approach for the IM problem based on Markov random walks. Our approach bears in mind the local and global information mutually calculated from a pairwise similarity graph. Precisely, we first build an expanded association graph consisting of pairs of IM candidates. Then, we rank each candidate pair through the stationary distribution computed from the Markov random walk on the association graph. We provide a scalable distributed implementation on top of the Spark framework and we evaluate it on benchmark datasets from the instance track of the Ontology Alignment Evaluation Initiative (OAEI). The experiments show the efficiency and scalability of our approach compared to several state-of-the-art IM approaches.
Type de document: | Matériel de conférence (Non spécifié) |
---|---|
Date: | 2019 |
Identifiant unique: | 10.1109/BigData47090.2019.9006348 |
Sujets: | Sciences naturelles et génie > Sciences mathématiques > Informatique |
Département, module, service et unité de recherche: | Départements et modules > Département d'informatique et de mathématique |
Liens connexes: | |
Mots-clés: | Data linking, Instance matching, Affinity-preserving random Walk |
Déposé le: | 25 nov. 2020 21:58 |
---|---|
Dernière modification: | 25 nov. 2020 21:58 |
Éditer le document (administrateurs uniquement)