Constellation, le dépôt institutionnel de l'Université du Québec à Chicoutimi

Optimized limited memory and warping LCSS for online gesture recognition or overlearning?

Lemarcis Baptiste, Plantevin Valère, Bouchard Bruno et Ménélas Bob-Antoine-Jerry. (2017). Optimized limited memory and warping LCSS for online gesture recognition or overlearning? Proceedings of the 12th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications, 2, p. 108-115.

[thumbnail of HUCAPP_2017_8.pdf]
Prévisualisation
PDF - Version publiée
Disponible sous licence Creative Commons (CC-BY-NC-ND 2.5).

388kB

URL officielle: http://dx.doi.org/doi:10.5220/0006151001080115

Résumé

In this paper, we present and evaluate a new algorithm for online gesture recognition in noisy streams. This technique relies upon the proposed LM-WLCSS (Limited Memory and Warping LCSS) algorithm that has demonstrated its efficiency on gesture recognition. This new method involves a quantization step (via the KMeans clustering algorithm). This transforms new data to a finite set. In this way, each new sample can be compared to several templates (one per class) and gestures are rejected based on a previously trained rejection threshold. Then, an algorithm, called SearchMax, find a local maximum within a sliding window and output whether or not the gesture has been recognized. In order to resolve conflicts that may occur, another classifier could be completed. As the K-Means clustering algorithm, needs to be initialized with the number of clusters to create, we also introduce a straightforward optimization process. Such an operation also optimizes the window size for the SearchMax algorithm. In order to demonstrate the robustness of our algorithm, an experiment has been performed over two different data sets. However, results on tested data sets are only accurate when training data are used as test data. This may be due to the fact that the method is in an overlearning state.

Type de document:Article publié dans une revue avec comité d'évaluation
Volume:2
Pages:p. 108-115
Version évaluée par les pairs:Oui
Date:2017
Identifiant unique:10.5220/0006151001080115
Sujets:Sciences naturelles et génie > Sciences mathématiques > Informatique
Département, module, service et unité de recherche:Départements et modules > Département d'informatique et de mathématique
Mots-clés:online gesture recognition, streaming, template matching method, LCSS, LM-WLCSS
Déposé le:18 nov. 2020 21:39
Dernière modification:19 avr. 2023 23:44
Afficher les statistiques de telechargements

Éditer le document (administrateurs uniquement)

Creative Commons LicenseSauf indication contraire, les documents archivés dans Constellation sont rendus disponibles selon les termes de la licence Creative Commons "Paternité, pas d'utilisation commerciale, pas de modification" 2.5 Canada.

Bibliothèque Paul-Émile-Boulet, UQAC
555, boulevard de l'Université
Chicoutimi (Québec)  CANADA G7H 2B1
418 545-5011, poste 5630