Constellation, le dépôt institutionnel de l'Université du Québec à Chicoutimi

Fall detection with UWB radars and CNN-LSTM architecture

Maitre Julien, Bouchard Kevin et Gaboury Sebastien. (2020). Fall detection with UWB radars and CNN-LSTM architecture. IEEE Journal of Biomedical and Health Informatics, p. 1.

Le texte intégral n'est pas disponible pour ce document.

URL officielle: http://dx.doi.org/doi:10.1109/JBHI.2020.3027967

Résumé

Fall detection is a major challenge for researchers. Indeed, a fall can cause injuries such as femoral neck fracture, brain hemorrhage, or skin burns, leading to significant pain. However, in some cases, trauma caused by an undetected fall can get worse with the time and conducts to painful end of life or even death. One solution is to detect falls efficiently to alert somebody (e.g., nurses) as quickly as possible. To respond to this need, we propose to detect falls in a real apartment of 40 square meters by exploiting three ultra-wideband radars and a deep neural network model. The deep neural network is composed of a convolutional neural network stacked with a long-short term memory network and a fully connected neural network to identify falls. In other words, the problem addressed in this paper is a binary classification attempting to differentiate fall and non-fall events. As it can be noticed in real cases, the falls can have different forms. Hence, the data to train and test the classification model have been generated with falls (four types) simulated by 10 participants in three locations in the apartment. Finally, the train and test stages have been achieved according to three strategies, including the leave-one-subject-out method. This latter method allows for obtaining the performances of the proposed system in a generalization context. The results are very promising since we reach almost 90% of accuracy.

Type de document:Article publié dans une revue avec comité d'évaluation
ISSN:2168-2194
Pages:p. 1
Version évaluée par les pairs:Oui
Date:2020
Identifiant unique:10.1109/JBHI.2020.3027967
Sujets:Sciences naturelles et génie > Sciences mathématiques > Informatique
Département, module, service et unité de recherche:Départements et modules > Département d'informatique et de mathématique
Mots-clés:Cameras, ultra wideband radar, feature extraction, informatics, three-dimensional displays, injuries, fall, detection, classification, CNN-LSTM, leave-one-subject-out
Déposé le:09 févr. 2021 00:05
Dernière modification:09 févr. 2021 00:05
Afficher les statistiques de telechargements

Éditer le document (administrateurs uniquement)

Creative Commons LicenseSauf indication contraire, les documents archivés dans Constellation sont rendus disponibles selon les termes de la licence Creative Commons "Paternité, pas d'utilisation commerciale, pas de modification" 2.5 Canada.

Bibliothèque Paul-Émile-Boulet, UQAC
555, boulevard de l'Université
Chicoutimi (Québec)  CANADA G7H 2B1
418 545-5011, poste 5630