Maitre Julien, Bouchard Kevin et Gaboury Sebastien. (2020). Fall detection with UWB radars and CNN-LSTM architecture. IEEE Journal of Biomedical and Health Informatics, p. 1.
Le texte intégral n'est pas disponible pour ce document.
URL officielle: http://dx.doi.org/doi:10.1109/JBHI.2020.3027967
Résumé
Fall detection is a major challenge for researchers. Indeed, a fall can cause injuries such as femoral neck fracture, brain hemorrhage, or skin burns, leading to significant pain. However, in some cases, trauma caused by an undetected fall can get worse with the time and conducts to painful end of life or even death. One solution is to detect falls efficiently to alert somebody (e.g., nurses) as quickly as possible. To respond to this need, we propose to detect falls in a real apartment of 40 square meters by exploiting three ultra-wideband radars and a deep neural network model. The deep neural network is composed of a convolutional neural network stacked with a long-short term memory network and a fully connected neural network to identify falls. In other words, the problem addressed in this paper is a binary classification attempting to differentiate fall and non-fall events. As it can be noticed in real cases, the falls can have different forms. Hence, the data to train and test the classification model have been generated with falls (four types) simulated by 10 participants in three locations in the apartment. Finally, the train and test stages have been achieved according to three strategies, including the leave-one-subject-out method. This latter method allows for obtaining the performances of the proposed system in a generalization context. The results are very promising since we reach almost 90% of accuracy.
Type de document: | Article publié dans une revue avec comité d'évaluation |
---|---|
ISSN: | 2168-2194 |
Pages: | p. 1 |
Version évaluée par les pairs: | Oui |
Date: | 2020 |
Identifiant unique: | 10.1109/JBHI.2020.3027967 |
Sujets: | Sciences naturelles et génie > Sciences mathématiques > Informatique |
Département, module, service et unité de recherche: | Départements et modules > Département d'informatique et de mathématique |
Mots-clés: | Cameras, ultra wideband radar, feature extraction, informatics, three-dimensional displays, injuries, fall, detection, classification, CNN-LSTM, leave-one-subject-out |
Déposé le: | 09 févr. 2021 00:05 |
---|---|
Dernière modification: | 09 févr. 2021 00:05 |
Éditer le document (administrateurs uniquement)