Bouchard Kevin, Lapalu Jeremy, Bouchard Bruno et Bouzouane Abdenour. (2019). Clustering of human activities from emerging movements. Journal of Ambient Intelligence and Humanized Computing, 10, (9), p. 3505-3517.
Le texte intégral n'est pas disponible pour ce document.
URL officielle: http://dx.doi.org/doi:10.1007/s12652-018-1070-2
Résumé
This paper is positioned in the well-established field of smart home. This area of research, highly multidisciplinary, has raised a lot of attention from researchers due to the broad real life application it could serve. One of them is the assistance of the cognitively impaired persons such as head trauma victims or persons afflicted by dementia (e.g.: Alzheimer’s disease). However, to propose powerful technological cognitive orthoses, the decades old challenge of human activity recognition must be addressed. In this paper, we propose a clustering method exploiting the Flocking algorithm for Activity of Daily Living (ADL) learning and recognition. In particular, our new method enables to both exploit events based data from the multimodal sensors of a smart home and qualitative spatial information extracted from a tracking method. Among the advantages of the method, the Flocking based algorithm does not require an initial number of clusters, unlike other clustering algorithms such as K-means. Two sets of real case scenarios were collected in our smart home laboratory, the LIARA. These sets were used to compare our method with traditional unsupervised algorithms and to evaluate the usefulness of the qualitative spatial information. The study shows that for traditional event based smart home data, the method outperforms the popular K-Means and Expectation-Maximization (EM) algorithms. Furthermore, the results indicate that not only the spatial data generalize, but it also further improve the performance regarding fine-grained ADLs recognition.
Type de document: | Article publié dans une revue avec comité d'évaluation |
---|---|
ISSN: | 1868-5137 |
Volume: | 10 |
Numéro: | 9 |
Pages: | p. 3505-3517 |
Version évaluée par les pairs: | Oui |
Date: | 2019 |
Identifiant unique: | 10.1007/s12652-018-1070-2 |
Sujets: | Sciences naturelles et génie > Sciences mathématiques > Informatique |
Département, module, service et unité de recherche: | Départements et modules > Département d'informatique et de mathématique |
Mots-clés: | clustering, smart home, flocking, unsupervised data mining |
Déposé le: | 11 févr. 2021 18:46 |
---|---|
Dernière modification: | 11 févr. 2021 18:46 |
Éditer le document (administrateurs uniquement)