Constellation, le dépôt institutionnel de l'Université du Québec à Chicoutimi

Tracking objects within a smart home

Bergeron Frédéric, Bouchard Kevin, Gaboury Sébastien et Giroux Sylvain. (2018). Tracking objects within a smart home. Expert Systems with Applications, 113, p. 428-442.

Le texte intégral n'est pas disponible pour ce document.

URL officielle: http://dx.doi.org/doi:10.1016/j.eswa.2018.07.009

Résumé

This paper presents a novel indoor tracking system built with common data mining techniques on radio frequency identification (RFID) tags readings. The system allows tracking of several objects in real-time in a smart home context and is a building block toward the deployment of an expert system to enable aging in place through technology. The indoor localization is modelled as a classification problem, instead of a regression problem as commonly seen in the literature. The paper is divided in two parts. The first one focuses on the ground truth collection that led to the model construction. The second part focuses on the filters that were designed to enable this model to be used in real-time in the smart home as a tracking software. Results from the first part show that most classifiers perform well on the static positioning of RFID tags task, with a random forest of 100 trees performing best at 97% accuracy and 0.9740974 F-Measure. However, collecting data to train the classifier is a long and tedious process. Results from the second part indicate that the accuracy of the random forest drops significantly when confronted with human interference. With the help of some filters, the tracking accuracy of objects can still be as high as 75%. Those results confirm that using passive RFID tags for an indoor tracking system is viable. Our system is easy to deploy and more flexible than trilateration or fingerprinting systems.

Type de document:Article publié dans une revue avec comité d'évaluation
ISSN:09574174
Volume:113
Pages:p. 428-442
Version évaluée par les pairs:Oui
Date:2018
Identifiant unique:10.1016/j.eswa.2018.07.009
Sujets:Sciences naturelles et génie > Sciences mathématiques > Informatique
Département, module, service et unité de recherche:Départements et modules > Département d'informatique et de mathématique
Mots-clés:RFID, smart home, data mining, decision trees, indoor tracking system
Déposé le:11 févr. 2021 18:50
Dernière modification:11 févr. 2021 18:50
Afficher les statistiques de telechargements

Éditer le document (administrateurs uniquement)

Creative Commons LicenseSauf indication contraire, les documents archivés dans Constellation sont rendus disponibles selon les termes de la licence Creative Commons "Paternité, pas d'utilisation commerciale, pas de modification" 2.5 Canada.

Bibliothèque Paul-Émile-Boulet, UQAC
555, boulevard de l'Université
Chicoutimi (Québec)  CANADA G7H 2B1
418 545-5011, poste 5630