Constellation, le dépôt institutionnel de l'Université du Québec à Chicoutimi

Activity recognition in the city using embedded systems and anonymous sensors

Baghezza Rani, Bouchard Kévin, Bouzouane Abdenour et Gouin-Vallerand Charles. (2020). Activity recognition in the city using embedded systems and anonymous sensors. Procedia Computer Science, 170, p. 67-74.

[thumbnail of 1-s2.0-S1877050920305962-main.pdf]
Prévisualisation
PDF - Version publiée
487kB

URL officielle: http://dx.doi.org/doi:10.1016/j.procs.2020.03.140

Résumé

This paper presents an embedded system that performs activity recognition in the city. Arduino Due boards with infrared, distance and sound sensors are used to collect data in the city and the activity, profile, and group size recognition performance of different machine learning algorithms (RF, SVM, MLP) are compared. The features were extracted based on fixed-size windows around the observations. We show that it is possible to achieve a high accuracy for binary activity recognition with simple features, and we discuss the optimization of different parameters such as the sensors collection frequency, and the storage buffer size. We highlight the challenges of activity recognition using anonymous sensors in the environment, its possible applications and advantages compared to classical smartphone and wearable based approaches, as well as the improvements that will be made in future versions of this system. This work is a first step towards real-time online activity recognition in smart cities, with the long-term goal of monitoring and offering extended assistance for semi-autonomous people.

Type de document:Article publié dans une revue avec comité d'évaluation
ISSN:18770509
Volume:170
Pages:p. 67-74
Version évaluée par les pairs:Oui
Date:2020
Identifiant unique:10.1016/j.procs.2020.03.140
Sujets:Sciences naturelles et génie > Sciences mathématiques > Informatique
Département, module, service et unité de recherche:Départements et modules > Département d'informatique et de mathématique
Mots-clés:activity recognition, smart city, machine learning, anonymous data, healthcare, embedded systems, proceedings
Déposé le:12 févr. 2021 19:35
Dernière modification:12 févr. 2021 19:35
Afficher les statistiques de telechargements

Éditer le document (administrateurs uniquement)

Creative Commons LicenseSauf indication contraire, les documents archivés dans Constellation sont rendus disponibles selon les termes de la licence Creative Commons "Paternité, pas d'utilisation commerciale, pas de modification" 2.5 Canada.

Bibliothèque Paul-Émile-Boulet, UQAC
555, boulevard de l'Université
Chicoutimi (Québec)  CANADA G7H 2B1
418 545-5011, poste 5630