Cousyn Charles, Bouchard Kévin, Bouchard Bruno et Gaboury Sébastien. (2018). Automated extraction of symptoms related to rare diseases from scientific publications. Dans Marco Furini, Silvia Mirri et Kévin Bouchard (dir.), Goodtechs '18 : Proceedings of the 4th EAI International conference on smart objects and technologies for social good. (p. 13-18). New York, NY, United States : Association for computing machinery.
Le texte intégral n'est pas disponible pour ce document.
URL officielle: http://dx.doi.org/doi:10.1145/3284869.3284892
Résumé
Rare diseases constitute a poorly known subject among the population. Nevertheless, despite their name, a large number of persons are afflicted by one or many of them. Research on the nearly seven thousand rare diseases is insufficient, and even if some works have been done to exploit scientific publications and extract relevant information, knowledge is very difficult to obtain for the general population. This paper presents a new system that try to address the dissemination of knowledge on rare diseases. Particularly, we focus on the task of extracting automatically symptoms of rare diseases from publications with a new approach using a Named Entity Recognition (NER) algorithm based on the numerical statistic Term Frequency - Inverse Document Frequency (TF-IDF).
Type de document: | Chapitre de livre |
---|---|
Date: | 2018 |
Lieu de publication: | New York, NY, United States |
Identifiant unique: | 10.1145/3284869.3284892 |
Sujets: | Sciences naturelles et génie > Sciences mathématiques > Informatique Sciences naturelles et génie > Sciences mathématiques > Statistiques Sciences de la santé |
Département, module, service et unité de recherche: | Départements et modules > Département d'informatique et de mathématique |
Éditeurs: | Furini, Marco Mirri, Silvia Bouchard, Kévin |
Mots-clés: | computer systems organization, networks, dependable and fault-tolerant systems and networks, redundancy, embedded and cyber-physical systems, embedded systems, robotics, network properties, network reliability, text mining, rare disease, named entity recognition, knowledge aggregation, proceedings |
Déposé le: | 12 févr. 2021 15:06 |
---|---|
Dernière modification: | 12 févr. 2021 15:06 |
Éditer le document (administrateurs uniquement)