Constellation, le dépôt institutionnel de l'Université du Québec à Chicoutimi

Statistical features for objects localization with passive RFID in smart homes

Bouchard Kévin. (2018). Statistical features for objects localization with passive RFID in smart homes. Dans Barbara Guidi, Laura Ricci, Carlos Calafate, Ombretta Gaggi et Johann Marquez-Barja (dir.), Smart Objects and Technologies for Social Good. GOODTECHS 2017. Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering. (233, p. 21-30). Cham : Springer.

Le texte intégral n'est pas disponible pour ce document.

URL officielle: http://dx.doi.org/doi:10.1007/978-3-319-76111-4_3

Résumé

Smart homes offer considerable potential to facilitate aging at home and, therefore, to reduce healthcare costs, both in financial and human resources. To implement the smart home dream, an artificial intelligence has to be able to identify, in real-time, the ongoing activity of daily living with a fine-grained granularity. Despite the recent and ongoing improvements, the limitation of the literature on this subject primarily concerns the quality of the information which can be inferred from standard ubiquitous sensors in a smart home. Passive Radio-Frequency Identification is one of the technology that can help improving activity recognition through the tracking of the objects used by the resident in real-time. This paper builds upon the literature on objects tracking to propose a machine learning scheme exploiting statistical features to transform the signal strength into useful qualitative spatial information. The method has an overall accuracy of 95.98%, which is an improvement of 8.26% over previous work.

Type de document:Chapitre de livre
Date:2018
Lieu de publication:Cham
Identifiant unique:10.1007/978-3-319-76111-4_3
Sujets:Sciences naturelles et génie > Sciences mathématiques > Informatique
Sciences naturelles et génie > Sciences mathématiques > Statistiques
Département, module, service et unité de recherche:Départements et modules > Département d'informatique et de mathématique
Éditeurs:Guidi, Barbara
Ricci, Laura
Calafate, Carlos
Gaggi, Ombretta
Marquez-Barja, Johann
Mots-clés:smart environment, passive RFID, indoor localization, machine learning, data mining
Déposé le:12 févr. 2021 15:11
Dernière modification:12 févr. 2021 15:14
Afficher les statistiques de telechargements

Éditer le document (administrateurs uniquement)

Creative Commons LicenseSauf indication contraire, les documents archivés dans Constellation sont rendus disponibles selon les termes de la licence Creative Commons "Paternité, pas d'utilisation commerciale, pas de modification" 2.5 Canada.

Bibliothèque Paul-Émile-Boulet, UQAC
555, boulevard de l'Université
Chicoutimi (Québec)  CANADA G7H 2B1
418 545-5011, poste 5630