Bouchard Kévin, Bouchard Bruno et Bouzouane Abdenour. (2014). Regression analysis for gesture recognition using RFID technology. Dans Cathy Bodine, Sumi Helal, Tao Gu et Mounir Mokhtari (dir.), Smart Homes and Health Telematics. ICOST 2014. Lecture Notes in Computer Science. (8456, p. 121-128). Cham : Springer.
Le texte intégral n'est pas disponible pour ce document.
URL officielle: http://dx.doi.org/doi:10.1007/978-3-319-14424-5_13
Résumé
The recognition of gestures performed by humans always attracted researchers that applied such algorithms in a broad range of disciplines. In particular, it was exploited on pervasive environments to enable simple communication with automation systems. In this paper, we present a novel gesture recognition algorithm that works under uncertainty. The algorithm is based on the tracking of passive RFID tags installed on everyday life objects. The method is able to perform the difficult task of segmentation and recognize basic directions within noisy dataset of positions. A set of tests was conducted in a realistic environment, and the results obtained are encouraging.
Type de document: | Chapitre de livre |
---|---|
Date: | 2014 |
Lieu de publication: | Cham |
Identifiant unique: | 10.1007/978-3-319-14424-5_13 |
Sujets: | Sciences naturelles et génie > Sciences mathématiques > Informatique Sciences de la santé |
Département, module, service et unité de recherche: | Départements et modules > Département d'informatique et de mathématique |
Éditeurs: | Bodine, Cathy Helal, Sumi Gu, Tao Mokhtari, Mounir |
Mots-clés: | regression, smart home, gesture recognition, passive RFID, proceedings |
Déposé le: | 12 févr. 2021 19:58 |
---|---|
Dernière modification: | 12 févr. 2021 19:58 |
Éditer le document (administrateurs uniquement)