Bouchard Kévin, Bouchard Bruno et Bouzouane Abdenour. (2012). Unsupervised discovery of spatial relationships between objects for activity recognition inside smart home. Dans Anind K. Dey (dir.), UbiComp '12 : Proceedings of the 2012 ACM Conference on Ubiquitous Computing - UbiComp '12. (p. 655-656). New York, NY, United States : Association for computing machinery.
Le texte intégral n'est pas disponible pour ce document.
URL officielle: http://dx.doi.org/doi:10.1145/2370216.2370351
Résumé
Data mining techniques have been vastly exploited recently to overcome complex problems that humans struggle to solve. Particularly, the recognition of the activity of daily living of a smart home's resident is a challenging issue that requires advanced algorithms using extensive plans' library. In this paper, we propose a novel unsupervised learning technique for the discovery of sequential pattern related to spatial relationships of objects inside a smart home. We concretely use this approach to automatically construct a library of plans. Finally, we demonstrate the efficiency with a practical activity recognition algorithm by comparing learned knowledge over expert's defined library in a real smart home.
Type de document: | Chapitre de livre |
---|---|
Date: | 2012 |
Lieu de publication: | New York, NY, United States |
Identifiant unique: | 10.1145/2370216.2370351 |
Sujets: | Sciences naturelles et génie > Sciences mathématiques > Informatique Sciences de la santé |
Département, module, service et unité de recherche: | Départements et modules > Département d'informatique et de mathématique |
Éditeurs: | Dey, Anind K. |
Mots-clés: | computing methodologies, machine learning, learning settings, Data mining, GSP, patterns discovery, activity recognition, smart home, proceedings |
Déposé le: | 12 févr. 2021 20:22 |
---|---|
Dernière modification: | 12 févr. 2021 20:22 |
Éditer le document (administrateurs uniquement)