Constellation, le dépôt institutionnel de l'Université du Québec à Chicoutimi

Conditioning machine learning models to adjust lowbush blueberry crop management to the local agroecosystem

Parent Serge-Étienne, Lafond Jean, Paré Maxime C., Parent Léon Etienne et Ziadi Noura. (2020). Conditioning machine learning models to adjust lowbush blueberry crop management to the local agroecosystem. Plants, 9, (10), p. 1401.

[thumbnail of Parent_et_al_Plants_2020.pdf]
Prévisualisation
PDF - Version publiée
Disponible sous licence Creative Commons (CC-BY 2.5).

5MB

URL officielle: http://dx.doi.org/doi:10.3390/plants9101401

Résumé

Agroecosystem conditions limit the productivity of lowbush blueberry. Our objectives were to investigate the effects on berry yield of agroecosystem and crop management variables, then to develop a recommendation system to adjust nutrient and soil management of lowbush blueberry to given local meteorological conditions. We collected 1504 observations from N-P-K fertilizer trials conducted in Quebec, Canada. The data set, that comprised soil, tissue, and meteorological data, was processed by Bayesian mixed models, machine learning, compositional data analysis, and Markov chains. Our investigative statistical models showed that meteorological indices had the greatest impact on yield. High mean temperature at flower bud opening and after fruit maturation, and total precipitation at flowering stage showed positive effects. Low mean temperature and low total precipitation before bud opening, at flowering, and by fruit maturity, as well as number of freezing days (<−5 °C) before flower bud opening, showed negative effects. Soil and tissue tests, and N-P-K fertilization showed smaller effects. Gaussian processes predicted yields from historical weather data, soil test, fertilizer dosage, and tissue test with a root-mean-square-error of 1447 kg ha−1. An in-house Markov chain algorithm optimized yields modelled by Gaussian processes from tissue test, soil test, and fertilizer dosage as conditioned to specified historical meteorological features, potentially increasing yield by a median factor of 1.5. Machine learning, compositional data analysis, and Markov chains allowed customizing nutrient management of lowbush blueberry at local scale.

Type de document:Article publié dans une revue avec comité d'évaluation
ISSN:2223-7747
Volume:9
Numéro:10
Pages:p. 1401
Version évaluée par les pairs:Oui
Date:2020
Identifiant unique:10.3390/plants9101401
Sujets:Sciences naturelles et génie > Sciences appliquées > Agronomie
Sciences naturelles et génie > Sciences naturelles > Biologie et autres sciences connexes
Département, module, service et unité de recherche:Départements et modules > Département des sciences fondamentales
Mots-clés:Vaccinium angustifolium, lowbush blueberry, crop modeling, plant nutrition, machine learning, blueberry
Déposé le:17 févr. 2021 21:01
Dernière modification:17 févr. 2021 21:01
Afficher les statistiques de telechargements

Éditer le document (administrateurs uniquement)

Creative Commons LicenseSauf indication contraire, les documents archivés dans Constellation sont rendus disponibles selon les termes de la licence Creative Commons "Paternité, pas d'utilisation commerciale, pas de modification" 2.5 Canada.

Bibliothèque Paul-Émile-Boulet, UQAC
555, boulevard de l'Université
Chicoutimi (Québec)  CANADA G7H 2B1
418 545-5011, poste 5630