Constellation, le dépôt institutionnel de l'Université du Québec à Chicoutimi

Remote sensing of coastal vegetation phenology in a cold temperate intertidal system: Implications for classification of coastal habitats

Légaré Brigitte, Bélanger Simon, Singh Rakesh Kumar, Bernatchez Pascal et Cusson Mathieu. (2022). Remote sensing of coastal vegetation phenology in a cold temperate intertidal system: Implications for classification of coastal habitats. Remote Sensing, 14, (13), e3000.

[thumbnail of Legare_et_al_2022_RemoteSens.pdf]
Prévisualisation
PDF - Version publiée
Disponible sous licence Creative Commons (CC-BY 2.5).

71MB

URL officielle: https://dx.doi.org/doi:10.3390/rs14133000

Résumé

Intertidal vegetation provides important ecological functions, such as food and shelter for wildlife and ecological services with increased coastline protection from erosion. In cold temperate and subarctic environments, the short growing season has a significant impact on the phenological response of the different vegetation types, which must be considered for their mapping using satellite remote sensing technologies. This study focuses on the effect of the phenology of vegetation in the intertidal ecosystems on remote sensing outputs. The studied sites were dominated by eelgrass (Zostera marina L.), saltmarsh cordgrass (Spartina alterniflora), creeping saltbush (Atriplex prostrata), macroalgae (Ascophyllum nodosum, and Fucus vesiculosus) attached to scattered boulders. In situ data were collected on ten occasions from May through October 2019 and included biophysical properties (e.g., leaf area index) and hyperspectral reflectance spectra (Rrs(λ)). The results indicate that even when substantial vegetation growth is observed, the variation in Rrs(λ) is not significant at the beginning of the growing season, limiting the spectral separability using multispectral imagery. The spectral separability between vegetation types was maximum at the beginning of the season (early June) when the vegetation had not reached its maximum growth. Seasonal time series of the normalized difference vegetation index (NDVI) values were derived from multispectral sensors (Sentinel-2 multispectral instrument (MSI) and PlanetScope) and were validated using in situ-derived NDVI. The results indicate that the phenology of intertidal vegetation can be monitored by satellite if the number of observations obtained at a low tide is sufficient, which helps to discriminate plant species and, therefore, the mapping of vegetation. The optimal period for vegetation mapping was September for the study area.

Type de document:Article publié dans une revue avec comité d'évaluation
ISSN:2072-4292
Volume:14
Numéro:13
Pages:e3000
Version évaluée par les pairs:Oui
Date:2022
Identifiant unique:10.3390/rs14133000
Sujets:Sciences naturelles et génie > Sciences appliquées > Océanographie
Sciences naturelles et génie > Sciences naturelles > Biologie et autres sciences connexes
Département, module, service et unité de recherche:Départements et modules > Département des sciences fondamentales
Mots-clés:vegetation phenology, spectral signature, intertidal coastal ecosystem, remote sensing, eelgrass, Zostera marina L., saltmarsh, classification
Déposé le:06 janv. 2023 16:41
Dernière modification:06 janv. 2023 16:41
Afficher les statistiques de telechargements

Éditer le document (administrateurs uniquement)

Creative Commons LicenseSauf indication contraire, les documents archivés dans Constellation sont rendus disponibles selon les termes de la licence Creative Commons "Paternité, pas d'utilisation commerciale, pas de modification" 2.5 Canada.

Bibliothèque Paul-Émile-Boulet, UQAC
555, boulevard de l'Université
Chicoutimi (Québec)  CANADA G7H 2B1
418 545-5011, poste 5630