Constellation, le dépôt institutionnel de l'Université du Québec à Chicoutimi

Post-cutting mortality following experimental silvicultural treatments in unmanaged boreal forest stands

Montoro Girona Miguel, Morin Hubert, Lussier Jean-Martin et Ruel Jean-Claude. (2019). Post-cutting mortality following experimental silvicultural treatments in unmanaged boreal forest stands. Frontiers in Forests and Global Change, 2, e4.

[thumbnail of ffgc.2019.00004.pdf]
Prévisualisation
PDF - Version publiée
Disponible sous licence Creative Commons (CC-BY 2.5).

10MB

URL officielle: http://dx.doi.org/doi:10.3389/ffgc.2019.00004

Résumé

Partial cutting has been recommended as an alternative harvesting method to ensure the sustainable management of boreal forests. The success of this approach is closely linked to the survival of residual trees as additional losses through mortality could affect post-cutting timber production at harvest. To better quantify post-cutting mortality in previously unmanaged boreal forests, we addressed two main questions: (1) what is the level of mortality 10 years after cutting? and (2) what ecological factors are involved in this phenomenon? Even-aged black spruce [Picea mariana (Mill.) B.S.P.] stands in the Canadian boreal forest were subjected to three experimental shelterwood treatments, a seed-tree treatment and an untreated control. Tree status (live/dead) was recorded prior to cutting and 10 years after cutting. Dead trees were classified as standing dead, overturned or broken. Ten years after experimental seed-tree treatment, 60% of residual trees were dead, compared to 30% for the shelterwood cuttings. Windthrow (overturned and broken trees) represented 80% of residual tree mortality; only the amount of overturning was influenced by treatment. Broken trees were associated with small-diameter trunks, stands having high growth prior to cutting, younger stands or forest plots located near to adjacent cuts (<200 m). Overturning was associated with a high harvesting intensity and large-diameter trees. Standing dead mortality was the most difficult to explain: it was related to untreated plots having suppressed and small-diameter trees. Based on these results, applying intermediate levels of harvest intensity could reduce post-cutting damage. Understanding tree mortality after cutting is essential to reduce economic losses, improve silvicultural planning and stand selection and ensure ultimately the sustainable harvest of North American boreal forests.

Type de document:Article publié dans une revue avec comité d'évaluation
ISSN:2624-893X
Volume:2
Pages:e4
Version évaluée par les pairs:Oui
Date:2019
Identifiant unique:10.3389/ffgc.2019.00004
Sujets:Sciences naturelles et génie > Sciences appliquées > Foresterie et sciences du bois
Sciences naturelles et génie > Sciences naturelles > Biologie et autres sciences connexes
Département, module, service et unité de recherche:Unités de recherche > Centre de recherche sur la Boréalie (CREB)
Départements et modules > Département des sciences fondamentales
Mots-clés:even-aged stand, forest damage, natural disturbance, restoration, shelterwood systems, seed-tree, method, sustainable forest management, windthrow
Déposé le:06 juill. 2023 14:55
Dernière modification:06 juill. 2023 14:55
Afficher les statistiques de telechargements

Éditer le document (administrateurs uniquement)

Creative Commons LicenseSauf indication contraire, les documents archivés dans Constellation sont rendus disponibles selon les termes de la licence Creative Commons "Paternité, pas d'utilisation commerciale, pas de modification" 2.5 Canada.

Bibliothèque Paul-Émile-Boulet, UQAC
555, boulevard de l'Université
Chicoutimi (Québec)  CANADA G7H 2B1
418 545-5011, poste 5630