Constellation, le dépôt institutionnel de l'Université du Québec à Chicoutimi

A 15-year spatio-temporal analysis of plant β-diversity using Landsat time series derived Rao’s Q index

Khare Siddhartha, Latifi Hooman et Rossi Sergio. (2021). A 15-year spatio-temporal analysis of plant β-diversity using Landsat time series derived Rao’s Q index. Ecological Indicators, 121, e107105.

[thumbnail of 1-s2.0-S1470160X2031044X-main.pdf]
Prévisualisation
PDF - Version publiée
Disponible sous licence Creative Commons (CC-BY-NC-ND 2.5).

12MB

URL officielle: http://dx.doi.org/doi:10.1016/j.ecolind.2020.10710...

Résumé

Understanding temporal dynamics of plant biodiversity is crucial for conservation strategies at regional and local levels. The mostly applied hitherto methods are based on field observations of the plant communities and the related taxa. Satellite earth observation time series offer continuous and wider coverage for the assessment of plant diversity, especially in remote areas. Theoretical basis and large-scale solutions for assessing beta-diversity have been recently presented. Yet landscape-scale and context-based analysis are missing. We assessed temporal β-diversity using Raós Q diversity derived from Landsat-based vegetation indices by considering the effect of ERA-5 monthly aggregates environmental factors (temperature and precipitation) extracted using Google Earth Engine (GEE), land use classes, and two common vegetation indices. We derived 15-year Rao’s Q diversity using Landsat-7 based normalized difference vegetation index (NDVI) and modified soil-adjusted vegetation index (MSAVI). We evaluated the temporal turnover in Rao’s Q on multiple land use classes, including agriculture, intact forest and areas affected by and invasive species. Vegetation index and Rao’s Q diverged between pre- and post- monsoon seasons. Rao’s Q had higher temporal turnover with NDVI than MSAVI for all vegetation classes, however the latter showed higher sensitivity towards temperature and precipitation. Moreover, agriculture generally showed higher variability than forest and invasive species. The temporal turnover was correlated between NDVI and MSAVI for all vegetation classes, which indicated that the variability among vegetation types was directly related to spectral heterogeneity. Furthermore, MSAVI was less sensitive to the effect of soil in assessing the vegetation indices, which resulted in higher global sensitivity of QMSAVI. Near infrared and red spectra used in vegetation indices are able to capture a small variation in leaf traits reflectance for vegetation types. Here, the β-diversities and their temporal dynamics derived from the vegetation indices differed based on their sensitivity to soil, vegetation density and seasonality. This approach and its open source implementation can be tested for different forest ecosystems at varying spatial scales.

Type de document:Article publié dans une revue avec comité d'évaluation
ISSN:1470160X
Volume:121
Pages:e107105
Version évaluée par les pairs:Oui
Date:Février 2021
Identifiant unique:10.1016/j.ecolind.2020.107105
Sujets:Sciences naturelles et génie > Sciences appliquées > Foresterie et sciences du bois
Sciences naturelles et génie > Sciences naturelles > Biologie et autres sciences connexes
Département, module, service et unité de recherche:Unités de recherche > Centre de recherche sur la Boréalie (CREB)
Départements et modules > Département des sciences fondamentales
Mots-clés:β-diversity, Rao’s Q index, time series, NDVI, MSAVI, Google Earth engine
Déposé le:05 juin 2023 12:44
Dernière modification:05 juin 2023 12:44
Afficher les statistiques de telechargements

Éditer le document (administrateurs uniquement)

Creative Commons LicenseSauf indication contraire, les documents archivés dans Constellation sont rendus disponibles selon les termes de la licence Creative Commons "Paternité, pas d'utilisation commerciale, pas de modification" 2.5 Canada.

Bibliothèque Paul-Émile-Boulet, UQAC
555, boulevard de l'Université
Chicoutimi (Québec)  CANADA G7H 2B1
418 545-5011, poste 5630