Goncalves Dos Santos Marcela, Petrillo Fabio, Hallé Sylvain et Guéhéneuc Yann-Gaël. (2022). An approach to apply automated acceptance testing for industrial robotic systems. Dans Cristina Caballos (dir.), 2022 Sixth IEEE International Conference on Robotic Computing (IRC), Italy. (p. 336-337). Los Alamitos : IEEE Computer Society.
Prévisualisation |
PDF
- Version acceptée
143kB |
URL officielle: https://dx.doi.org/doi:10.1109/IRC55401.2022.00066
Résumé
Industrial robotic systems (IRS) are systems composed of industrial robots that automate industrial processes. They execute repetitive tasks with high accuracy, replacing or supporting dangerous jobs. Consequently, a low failure rate is crucial in IRS. However, to the best of our knowledge, there is a lack of automated software testing for industrial robots. In this paper, we describe a test strategy implementation to apply BDD to automate acceptance testing for IRS.
Type de document: | Chapitre de livre |
---|---|
Date: | 2022 |
Lieu de publication: | Los Alamitos |
Identifiant unique: | 10.1109/IRC55401.2022.00066 |
Sujets: | Sciences naturelles et génie > Sciences mathématiques > Informatique |
Département, module, service et unité de recherche: | Départements et modules > Département d'informatique et de mathématique |
Éditeurs: | Caballos, Cristina |
Mots-clés: | robotics, industrial robots, software testing, automated testing, acceptance testing, proceedings |
Déposé le: | 22 févr. 2023 19:15 |
---|---|
Dernière modification: | 22 févr. 2023 19:15 |
Éditer le document (administrateurs uniquement)