LiveZilla Live Chat Software

Constellation, le dépôt institutionnel de l'Université du Québec à Chicoutimi

A Comparative study of static and fatigue behaviors for various composite orthotropic properties for a wind turbine using a coupled FEM-BEM method

Chehouri Adam. (2013). A Comparative study of static and fatigue behaviors for various composite orthotropic properties for a wind turbine using a coupled FEM-BEM method. Mémoire de maîtrise, Université Libanaise.



In the wind industry, the current trend is towards building larger and larger turbines. This presents additional structural challenges and requires blade materials that are both lighter and stiffer than the ones presently used. [1] This work is aimed to aid the work of designing new wind turbine blades by providing a comparative study of different composite materials.

A coupled Finite-Element-Method (FEM) - Blade Element Momentum (BEM) code was used to simulate the aerodynamic forces subjected on the blade. The developed BEM code was written using LabView allowing an iterative numerical approach solver taking into the consideration the unsteady aerodynamic effects and off –design performance issues such as Tip Loss, Hub Loss and Turbulent Wake State therefore developing a more rational aerodynamic model. For this thesis, the finite element study was conducted on the Static Structural Workbench of ANSYS, as for the geometry of the blade it was imported from a previous study prepared by Cornell University [2]. Confirmation of the performance analysis of the chosen wind turbine blade are presented and discussed blade including the generated power, tip deflection, thrust and tangential force for a steady flow of 8m/s.

The elastic and ultimate strength properties were provided by Hallal et al [3]. The Tsai-Hill and Hoffman failure criterions were both conducted to the resulting stresses and shears for each blade composite material structure to determine the presence of static rupture. A progressive fatigue damage model was conducted to simulate the fatigue behavior of laminated composite materials, an algorithm developed by Shokrieh [4].

It is concluded that with respect to a material blade design cycle, the coupling between a finite element package and blade element and momentum code under steady and static conditions can be useful. Especially when an integration between this coupled approach and a dynamic simulation tool could be established, a more advanced flexible blade design can be then analyzed for a novel generation of more flexible wind turbine blades.

Type de document:Thèse ou mémoire d'autres institutions (Mémoire de maîtrise)
Date:Juillet 2013
Programme d'étude:Maîtrise en Mécanique
Sujets:Sciences naturelles et génie > Génie > Génie aéronautique
Sciences naturelles et génie > Génie > Génie des matériaux et génie métallurgique
Sciences naturelles et génie > Génie > Génie mécanique
Département, module, service et unité de recherche:Départements et modules > Département des arts et des lettres > Unité d'enseignement en linguistique et en langues modernes
Directeur(s), Co-directeur(s) et responsable(s):Younès, Rafic
Mots-clés:Wind turbine blade, composite, fatigue, failure, ANSYS
Déposé le:15 avr. 2014 23:24
Dernière modification:24 mai 2016 13:39
Afficher les statistiques de telechargements

Éditer le document (administrateurs uniquement)

Creative Commons LicenseSauf indication contraire, les documents archivés dans Constellation sont rendus disponibles selon les termes de la licence Creative Commons "Paternité, pas d'utilisation commerciale, pas de modification" 2.5 Canada.

Bibliothèque Paul-Émile-Boulet, UQAC
555, boulevard de l'Université
Chicoutimi (Québec)  CANADA G7H 2B1
418 545-5011, poste 5630