LiveZilla Live Chat Software

Constellation, le dépôt institutionnel de l'Université du Québec à Chicoutimi

Towards streaming gesture recognition

Lemarcis Baptiste. (2016). Towards streaming gesture recognition. Mémoire de maîtrise, Université du Québec à Chicoutimi.

[img] PDF
569kB

Résumé

The emergence of low-cost sensors allows more devices to be equipped with various types of sensors. In this way, mobile device such as smartphones or smartwatches now may contain accelerometers, gyroscopes, etc. This offers new possibilities for interacting with the environment and benefits would come to exploit these sensors. As a consequence, the literature on gesture recognition systems that employ such sensors grow considerably. The literature regarding online gesture recognition counts many methods based on Dynamic Time Warping (DTW). However, this method was demonstrated has non-efficient for time series from inertial sensors unit as a lot of noise is present. In this way new methods based on LCSS (Longest Common SubSequence) were introduced. Nevertheless, none of them focus on a class optimization process. In this master thesis, we present and evaluate a new algorithm for online gesture recognition in noisy streams. This technique relies upon the LM-WLCSS (Limited Memory and Warping LCSS) algorithm that has demonstrated its efficiency on gesture recognition. This new method involves a quantization step (via the K-Means clustering algorithm) that transforms new data to a finite set. In this way, each new sample can be compared to several templates (one per class). Gestures are rejected based on a previously trained rejection threshold. Thereafter, an algorithm, called SearchMax, find a local maximum within a sliding window and output whether or not the gesture has been recognized. In order to resolve conflicts that may occur, another classifier (i.e. C4.5) could be completed. As the K-Means clustering algorithm needs to be initialized with the number of clusters to create, we also introduce a straightforward optimization process. Such an operation also optimizes the window size for the SearchMax algorithm. In order to demonstrate the robustness of our algorithm, an experiment has been performed over two different data sets. However, results on tested data sets are only accurate when training data are used as test data. This may be due to the fact that the method is in an overlearning state.

L’apparition de nouveaux capteurs à bas prix a permis d’en équiper dans beaucoup plus d’appareils. En effet, dans les appareils mobiles tels que les téléphones et les montres intelligentes nous retrouvons des accéléromètres, gyroscopes, etc. Ces capteurs présents dans notre vie quotidienne offrent de toutes nouvelles possibilités en matière d’interaction avec notre environnement et il serait avantageux de les utiliser. Cela a eu pour conséquence une augmentation considérable du nombre de recherches dans le domaine de reconnaissance de geste basé sur ce type de capteur. La littérature concernant la reconnaissance de gestes en ligne comptabilise beaucoup de méthodes qui se basent sur Dynamic Time Warping (DTW). Cependant, il a été démontré que cette méthode se révèle inefficace en ce qui concerne les séries temporelles provenant d’une centrale à inertie puisqu’elles contiennent beaucoup de bruit. En ce sens de nouvelles méthodes basées sur LCSS (Longest Common SubSequence) sont apparues. Néanmoins, aucune d’entre elles ne s’est focalisée sur un processus d’optimisation par class. Ce mémoire de maîtrise consiste en une présentation et une évaluation d’un nouvel algorithme pour la reconnaissance de geste en ligne avec des données bruitées. Cette technique repose sur l’algorithme LM-WLCSS (Limited Memory and Warping LCSS) qui a d’ores et déjà démontré son efficacité quant à la reconnaissance de geste. Cette nouvelle méthode est donc composée d’une étape dite de quantification (grâce à l’algorithme de regroupement K-Means) qui se charge de convertir les nouvelles données entrantes vers un ensemble de données fini. Chaque nouvelle donnée peut donc être comparée à plusieurs motifs (un par classe) et un geste est reconnu dès lors que son score dépasse un seuil préalablement entrainé. Puis, un autre algorithme appelé SearchMax se charge de trouver un maximum local au sein d’une fenêtre glissant afin de préciser si oui ou non un geste a été reconnu. Cependant des conflits peuvent survenir et en ce sens un autre classifieur (c.-àd. C4.5) est chainé. Étant donné que l’algorithme de regroupement K-Means a besoin d’une valeur pour le nombre de regroupements à faire, nous introduisons également une technique simple d’optimisation à ce sujet. Cette partie d’optimisation se charge également de trouver la meilleure taille de fenêtre possible pour l’algorithme SearchMax. Afin de démontrer l’efficacité et la robustesse de notre algorithme, nous l’avons testé sur deux ensembles de données différents. Cependant, les résultats sur les ensembles de données testées n’étaient bons que lorsque les données d’entrainement étaient utilisées en tant que données de test. Cela peut être dû au fait que la méthode est dans un état de surapprentissage.

Type de document:Thèse ou mémoire de l'UQAC (Mémoire de maîtrise)
Date:2016
Lieu de publication:Chicoutimi
Programme d'étude:Maîtrise en informatique
Nombre de pages:54
ISBN:Non spécifié
Sujets:Sciences naturelles et génie > Sciences mathématiques > Informatique
Département, module, service et unité de recherche:Départements et modules > Département d'informatique et de mathématique > Programmes d'études de cycles supérieurs en informatique
Directeur(s), Co-directeur(s) et responsable(s):Ménélas, Bob-Antoine Jerry
Mots-clés:gesture recognition, LCSS, machine learning, streaming
Déposé le:26 avr. 2017 08:16
Dernière modification:26 avr. 2017 21:48
Afficher les statistiques de telechargements

Éditer le document (administrateurs uniquement)

Creative Commons LicenseSauf indication contraire, les documents archivés dans Constellation sont rendus disponibles selon les termes de la licence Creative Commons "Paternité, pas d'utilisation commerciale, pas de modification" 2.5 Canada.

Bibliothèque Paul-Émile-Boulet, UQAC
555, boulevard de l'Université
Chicoutimi (Québec)  CANADA G7H 2B1
418 545-5011, poste 5630