Constellation, le dépôt institutionnel de l'Université du Québec à Chicoutimi

Stroke prediction context-aware health care system

Mcheick Hamid, Nasser Hoda, Dbouk Mohamed et Nasser Ahmad. (2016). Stroke prediction context-aware health care system. Dans : Proceeding of The IEEE International Conference on Connected Health: Applications, Systems and Engineering Technologies (CHASE’2016) , 27-29 June, 2016, Washington (DC), USA.

[thumbnail of workshop1-chase2016-CameraReady.docx] Microsoft Word 2007+ (.docx) - Version acceptée
Disponible sous licence Creative Commons (CC-BY-NC-ND 2.5).

494kB
[thumbnail of workshop1-chase2016-CameraReady.pdf]
Prévisualisation
PDF - Version acceptée
378kB

Résumé

This paper proposes a prediction framework based on ontology and Bayesian Belief Networks BBN to support a medical teams in every daily. We propose a Stroke Prediction System (SPS), a new software component to handle the uncertainty of having a stroke disease by determining the risk score level. This is composed of four layers: acquisition of data, aggregation, reasoning and application. SPS senses, collects, and analyzes data of a patient, then uses wearable sensors and the mobile application to interact with the patient and staffs. When the risk reaches critical limits, SPS notifies all concerned parties, the patient, the doctor, and the emergency department. The patient profile is also updated to reflect this urgent intervention requirement. A Bayesian model is designed and implemented using the Netica tool to prove its efficiency i) by handling patient context remotely and verifying its changes locally and ii) on predicting missing probabilities and calculate the probability of high risk level for emergency cases. The SPS system improves the accuracy of decision making and uses a new ontology of stroke disease inspired from our Parkinson ontology already developed.

Type de document:Matériel de conférence (Non spécifié)
Date:2016
Sujets:Sciences naturelles et génie > Sciences mathématiques > Informatique
Sciences de la santé > Sciences médicales > Cardiologie
Département, module, service et unité de recherche:Départements et modules > Département d'informatique et de mathématique
Mots-clés:healthcare, context awareness, ubiquitous computing, context-aware, ontology, probabilistic model, sensors
Déposé le:16 déc. 2016 02:34
Dernière modification:02 mars 2018 02:27
Afficher les statistiques de telechargements

Éditer le document (administrateurs uniquement)

Creative Commons LicenseSauf indication contraire, les documents archivés dans Constellation sont rendus disponibles selon les termes de la licence Creative Commons "Paternité, pas d'utilisation commerciale, pas de modification" 2.5 Canada.

Bibliothèque Paul-Émile-Boulet, UQAC
555, boulevard de l'Université
Chicoutimi (Québec)  CANADA G7H 2B1
418 545-5011, poste 5630