Chehouri Adam. (2018). Optimisation of wind turbine blade structures using a genetic algorithm. Thèse de doctorat, Université du Québec à Chicoutimi.
PDF
2MB |
Résumé
The current diminution of fossil-fuel reserves, stricter environmental guidelines and the world’s ever-growing energy needs have directed to the deployment of alternative renewable energy sources. Among the many renewable energies, wind energy is one of the most promising and the fastest growing installed alternative-energy production technology. In order to meet the production goals in the next few decades, both significant increases in wind turbine installations and operability are required, while maintaining a profitable and competitive energy cost. As the size of the wind turbine rotor increases, the structural performance and durability requirements tend to become more challenging. In this sense, solving the wind turbine design problem is an optimization problem where an optimal solution is to be found under a set of design constraints and a specific target. Seen the world evolution towards the renewable energies and the beginning of an implementation of a local wind industry in Quebec, it becomes imperative to follow the international trends in this industry. Therefore, it is necessary to supply the designers a suitable decision tool for the study and design of optimal wind turbine blades. The developed design tool is an open source code named winDesign which is capable to perform structural analysis and design of composite blades for wind turbines under various configurations in order to accelerate the preliminary design phase. The proposed tool is capable to perform a Pareto optimization where optimal decisions need to be taken in the presence of trade-offs between two conflicting objectives: the annual energy production and the weight of the blade. For a given external blade shape, winDesign is able to determine an optimal composite layup, chord and twist distributions which either minimizes blade mass or maximizes the annual energy production while simultaneously satisfying design constraints. The newly proposed graphical tool incorporates two novel VCH and KGA techniques and is validated with numerical simulation on both mono-objective and multi-objective optimization problems.
Type de document: | Thèse ou mémoire de l'UQAC (Thèse de doctorat) |
---|---|
Date: | 2018 |
Lieu de publication: | Chicoutimi |
Programme d'étude: | Doctorat en ingénierie |
Nombre de pages: | 175 |
ISBN: | Non spécifié |
Sujets: | Sciences naturelles et génie > Génie > Génie informatique et génie logiciel Sciences naturelles et génie > Génie > Génie mécanique Sciences naturelles et génie > Sciences mathématiques > Informatique Sciences naturelles et génie > Sciences mathématiques > Mathématiques appliquées Sciences naturelles et génie > Sciences mathématiques > Mathématiques fondamentales |
Département, module, service et unité de recherche: | Départements et modules > Département des sciences appliquées > Programmes d'études de cycles supérieurs en ingénierie |
Directeur(s), Co-directeur(s) et responsable(s): | Perron, Jean Ilinca, Adrian Younès, Rafic |
Mots-clés: | composite material, genetic algorithm, optimization, wind turbine, wind turbine blade, performance optimization |
Déposé le: | 13 déc. 2018 08:40 |
---|---|
Dernière modification: | 13 déc. 2018 21:56 |
Éditer le document (administrateurs uniquement)