Duchesne Catherine, Gheysen Freja, Boré Arnaud, Albouy Geneviève, Nadeau Alexandra, Robillard Marie-Ève, Bobeuf Florian, Lafontaine Anne-Louise, Lungu Ovidiu, Bherer Louis et Doyon Julien. (2016). Influence of aerobic exercise training on the neural correlates of motor learning in Parkinson's disease individuals. NeuroImage: Clinical, 12, p. 559-569.
Prévisualisation |
PDF
- Version publiée
Disponible sous licence Creative Commons (CC-BY-NC-ND 2.5). 1MB |
URL officielle: https://doi.org/10.1016/j.nicl.2016.09.011
Résumé
Background: Aerobic exercise training (AET) has been shown to provide general health benefits, and to improve motor behaviours in particular, in individuals with Parkinson's disease (PD). However, the influence of AET on their motor learning capacities, as well as the change in neural substrates mediating this effect remains to be explored.
Objective: In the current study, we employed functional Magnetic Resonance Imaging (fMRI) to assess the effect of a 3-month AET program on the neural correlates of implicit motor sequence learning (MSL).
Methods: 20 healthy controls (HC) and 19 early PD individuals participated in a supervised, high-intensity, stationary recumbent bike training program (3 times/week for 12 weeks). Exercise prescription started at 20 min (+ 5 min/week up to 40 min) based on participant's maximal aerobic power. Before and after the AET program, participants' brain was scanned while performing an implicit version of the serial reaction time task.
Results: Brain data revealed pre-post MSL-related increases in functional activity in the hippocampus, striatum and cerebellum in PD patients, as well as in the striatum in HC individuals. Importantly, the functional brain changes in PD individuals correlated with changes in aerobic fitness: a positive relationship was found with increased activity in the hippocampus and striatum, while a negative relationship was observed with the cerebellar activity.
Conclusion: Our results reveal, for the first time, that exercise training produces functional changes in known motor learning related brain structures that are consistent with improved behavioural performance observed in PD patients. As such, AET can be a valuable non-pharmacological intervention to promote, not only physical fitness in early PD, but also better motor learning capacity useful in day-to-day activities through increased plasticity in motor related structures.
Type de document: | Article publié dans une revue avec comité d'évaluation |
---|---|
Volume: | 12 |
Pages: | p. 559-569 |
Version évaluée par les pairs: | Oui |
Date: | 2016 |
Sujets: | Sciences de la santé Sciences de la santé > Sciences de l'activité physique et réadaptation Sciences de la santé > Sciences de l'activité physique et réadaptation > Kinésiologie |
Département, module, service et unité de recherche: | Départements et modules > Département des sciences de la santé > Programmes d'études en kinésiologie |
Mots-clés: | exercise, motor learning, Parkinson's disease, fMRI |
Déposé le: | 13 juin 2019 20:39 |
---|---|
Dernière modification: | 13 juin 2019 20:39 |
Éditer le document (administrateurs uniquement)