Constellation, le dépôt institutionnel de l'Université du Québec à Chicoutimi

A comparative study of the icephobic and self-cleaning properties of Teflon materials having different surface morphologies

Vazirinasab E., Maghsoudi Khosrow, Jafari Reza et Momen Gelareh. (2020). A comparative study of the icephobic and self-cleaning properties of Teflon materials having different surface morphologies. Journal of Materials Processing Technology, 276, p. 116415.

[thumbnail of A Comparative Study of the Icephobic and Self-Cleaning Properties of Teflon Materials Having Different Surface Morphologies.pdf]
Prévisualisation
PDF - Version acceptée
1MB

URL officielle: http://dx.doi.org/10.1016/j.jmatprotec.2019.116415

Résumé

Materials having fluorocarbon bonds are among the best candidates for the fabrication of superhydrophobic surfaces. Here, we describe two facile, non-expensive, and industrialized approaches to produce superhydrophobic Teflon materials having ultra-water repellency, icephobic, and self-cleaning properties. Direct replication and plasma-treatment approaches produced Teflon sheets having very different surface patterns, i.e. microstructures and micro- nanostructures. Neither approach altered the chemical composition of the original Teflon surfaces. Rice leaf–like microstructures were produced on the replicated surface, whereas lotus leaf–like hierarchical micro-nanostructures characterized the plasma-treated surface. Water droplets rolled off the micro-nanostructured surfaces ~10% faster than off the microstructured surfaces. The micro-nanostructured surface also produced more rebounds for a water droplet during the impact test. Although both surfaces possessed similar self-cleaning properties, the micro-nanostructured surface reduced ice adhesion to a greater degree than the microstructured surface. The more effective ice repellency of the micro-nanostructured surface was due to its surface morphology that reduced the interlocking of ice inside the surface asperities. However, the microstructured surface delayed considerably the onset of freezing of a water droplet due to the larger micro-air pockets trapped within its surface asperities.

Type de document:Article publié dans une revue avec comité d'évaluation
ISSN:09240136
Volume:276
Pages:p. 116415
Version évaluée par les pairs:Oui
Date:2020
Identifiant unique:10.1016/j.jmatprotec.2019.116415
Sujets:Sciences naturelles et génie > Génie
Sciences naturelles et génie > Génie > Génie des matériaux et génie métallurgique
Sciences naturelles et génie > Sciences appliquées
Département, module, service et unité de recherche:Départements et modules > Département des sciences appliquées
Unités de recherche > Centre international de recherche sur le givrage atmosphérique et l’ingénierie des réseaux électriques (CENGIVRE) > Laboratoire des revêtements glaciophobes et ingénierie des surfaces (LaRGIS)
Mots-clés:teflon surface, icephobic, self-cleaning, surface morphology, freezing delay, ice adhesion reduction, surface en téflon, glaciophobe, autonettoyante, morphologie de la surface, retard de congélation, réduction de l'adhérence de la glace
Déposé le:12 mars 2020 01:26
Dernière modification:13 juill. 2023 19:00
Afficher les statistiques de telechargements

Éditer le document (administrateurs uniquement)

Creative Commons LicenseSauf indication contraire, les documents archivés dans Constellation sont rendus disponibles selon les termes de la licence Creative Commons "Paternité, pas d'utilisation commerciale, pas de modification" 2.5 Canada.

Bibliothèque Paul-Émile-Boulet, UQAC
555, boulevard de l'Université
Chicoutimi (Québec)  CANADA G7H 2B1
418 545-5011, poste 5630