Constellation, le dépôt institutionnel de l'Université du Québec à Chicoutimi

Knowledge-enhanced deep learning for simulation of tropical cyclone boundary-layer winds

Snaiki Reda et Wu Teng. (2019). Knowledge-enhanced deep learning for simulation of tropical cyclone boundary-layer winds. Journal of Wind Engineering and Industrial Aerodynamics, 194, p. 103983.

[thumbnail of Knowledge-Enhanced Deep Learning for Simulation of Tropical Cyclone Boundary-Layer Winds.pdf]
Prévisualisation
PDF - Version acceptée
Disponible sous licence Creative Commons (CC-BY-NC-ND 2.5).

1MB

URL officielle: http://dx.doi.org/doi:10.1016/j.jweia.2019.103983

Résumé

Accurate and efficient modeling of the wind field is critical to effective mitigation of losses due to the tropical cyclone-related hazards. To this end, a knowledge-enhanced deep learning algorithm was developed in this study to simulate the wind field inside tropical cyclone boundary-layer. More specifically, the machine-readable knowledge in terms of both physics-based equations and/or semi-empirical formulas was leveraged to enhance the regularization mechanism during the training of deep networks for dynamics of tropical cyclone boundary-layer winds. To comprehensively appreciate the high effectiveness of knowledge-enhanced deep learning to capture the complex dynamics using small datasets, two nonlinear flow systems governed respectively by 1D and 2D Navier-Stokes equations were first revisited. Then, a knowledge-enhanced deep network was developed to simulate tropical cyclone boundary-layer winds using the storm parameters (e.g., spatial coordinates, storm size and intensity) as inputs. The reduced 3D Navier-Stokes equations based on several state-of-the-art semi-empirical formulas were employed in the construction of deep networks. Due to the effective utilization of the prior knowledge on the tropical cyclone boundary-layer winds, only a relatively small number of training datasets (either from field measurements or high-fidelity numerical simulations) are needed. With the trained knowledge-enhanced deep network, it has been demonstrated that the boundary-layer winds associated with various tropical cyclones can be accurately and efficiently predicted.

Type de document:Article publié dans une revue avec comité d'évaluation
Volume:194
Pages:p. 103983
Version évaluée par les pairs:Oui
Date:Novembre 2019
Sujets:Sciences naturelles et génie
Sciences naturelles et génie > Génie
Sciences naturelles et génie > Sciences appliquées
Département, module, service et unité de recherche:Départements et modules > Département des sciences appliquées
Mots-clés:Knowledge-enhanced deep learning, tropical cyclones, boundary-layer winds, apprentissage en profondeur amélioré par les connaissances, cyclones tropicaux, vents de la couche limite,
Déposé le:03 févr. 2021 20:13
Dernière modification:01 nov. 2021 04:10
Afficher les statistiques de telechargements

Éditer le document (administrateurs uniquement)

Creative Commons LicenseSauf indication contraire, les documents archivés dans Constellation sont rendus disponibles selon les termes de la licence Creative Commons "Paternité, pas d'utilisation commerciale, pas de modification" 2.5 Canada.

Bibliothèque Paul-Émile-Boulet, UQAC
555, boulevard de l'Université
Chicoutimi (Québec)  CANADA G7H 2B1
418 545-5011, poste 5630