Lecours Vincent, Dolan Margaret F. J., Micallef Aaron et Lucieer Vanessa L.. (2016). A review of marine geomorphometry, the quantitative study of the seafloor. Hydrology and Earth System Sciences, 20, (8), p. 3207-3244.
Prévisualisation |
PDF
- Version publiée
Disponible sous licence Creative Commons (CC-BY 2.5). 10MB |
URL officielle: http://dx.doi.org/doi:10.5194/hess-20-3207-2016
Résumé
Geomorphometry, the science of quantitative terrain characterization, has traditionally focused on the investigation of terrestrial landscapes. However, the dramatic increase in the availability of digital bathymetric data and the increasing ease by which geomorphometry can be investigated using geographic information systems (GISs) and spatial analysis software has prompted interest in employing geomorphometric techniques to investigate the marine environment. Over the last decade or so, a multitude of geomorphometric techniques (e.g. terrain attributes, feature extraction, automated classification) have been applied to characterize seabed terrain from the coastal zone to the deep sea. Geomorphometric techniques are, however, not as varied, nor as extensively applied, in marine as they are in terrestrial environments. This is at least partly due to difficulties associated with capturing, classifying, and validating terrain characteristics underwater. There is, nevertheless, much common ground between terrestrial and marine geomorphometry applications and it is important that, in developing marine geomorphometry, we learn from experiences in terrestrial studies. However, not all terrestrial solutions can be adopted by marine geomorphometric studies since the dynamic, four-dimensional (4-D) nature of the marine environment causes its own issues throughout the geomorphometry workflow. For instance, issues with underwater positioning, variations in sound velocity in the water column affecting acoustic-based mapping, and our inability to directly observe and measure depth and morphological features on the seafloor are all issues specific to the application of geomorphometry in the marine environment. Such issues fuel the need for a dedicated scientific effort in marine geomorphometry.
This review aims to highlight the relatively recent growth of marine geomorphometry as a distinct discipline, and offers the first comprehensive overview of marine geomorphometry to date. We address all the five main steps of geomorphometry, from data collection to the application of terrain attributes and features. We focus on how these steps are relevant to marine geomorphometry and also highlight differences and similarities from terrestrial geomorphometry. We conclude with recommendations and reflections on the future of marine geomorphometry. To ensure that geomorphometry is used and developed to its full potential, there is a need to increase awareness of (1) marine geomorphometry amongst scientists already engaged in terrestrial geomorphometry, and of (2) geomorphometry as a science amongst marine scientists with a wide range of backgrounds and experiences.
Type de document: | Article publié dans une revue avec comité d'évaluation |
---|---|
ISSN: | 1607-7938 |
Volume: | 20 |
Numéro: | 8 |
Pages: | p. 3207-3244 |
Version évaluée par les pairs: | Oui |
Date: | 9 Août 2016 |
Nombre de pages: | 38 |
Identifiant unique: | 10.5194/hess-20-3207-2016 |
Sujets: | Sciences naturelles et génie > Sciences appliquées > Océanographie Sciences naturelles et génie > Sciences naturelles > Sciences de la terre (géologie, géographie) |
Département, module, service et unité de recherche: | Unités de recherche > Centre de recherche sur la Boréalie (CREB) Départements et modules > Département des sciences humaines |
Mots-clés: | automated classification, morphological features, quantitative study, terrain characteristics, terrain characterization, terrestrial environments, terrestrial landscape, underwater positioning |
Déposé le: | 31 oct. 2023 14:31 |
---|---|
Dernière modification: | 31 juill. 2024 15:46 |
Éditer le document (administrateurs uniquement)