LiveZilla Live Chat Software

Constellation, le dépôt institutionnel de l'Université du Québec à Chicoutimi

SMILE: smart monitoring intelligent learning engine. An ontology-based context-aware system for supporting patients subjected to severe emergencies

Khareis Malak, Zaarour Iyad et Mcheick Hamid. (2016). SMILE: smart monitoring intelligent learning engine. An ontology-based context-aware system for supporting patients subjected to severe emergencies. International Journal of Healthcare Technology and Management (IJHTM), 15, (3), p. 194-209.

[img] Microsoft Word 2007+ (.docx) - Version acceptée
Disponible sous licence Creative Commons Attribution Non-commercial No Derivatives.

604kB
[img]
Prévisualisation
PDF
570kB

URL officielle: http://dx.doi.org/doi:10.1504/IJHTM.2016.078346

Résumé

Remote healthcare has made a revolution in the healthcare domain. However, an important problem this field is facing is supporting patients who are subjected to severe emergencies (as heart attacks) to be both monitored and protected while being at home. In this paper, we present a conceptual framework with the main objectives of: 1) emergency handling through monitoring patients, detecting emergencies and insuring fast emergency responses; 2) preventing an emergency from happening in the first place through protecting patients by organising their lifestyles and habits. To achieve these objectives, we propose a layered middleware. Our context model combines two modelling methods: probabilistic modelling to capture uncertain information and ontology to ease knowledge sharing and reuse. In addition, our system uses a two-level reasoning approach (ontology-based reasoning and Bayesian-based reasoning) to manage both certain and uncertain contextual parameters in an adaptive manner. Bayesian network is learned from ontology. Moreover, to ensure a more sophisticated decision-making for service presentation, influence diagram and analytic hierarchy process are used along with regular probabilistic rules (confidence level) and basic semantic logic rules.

Type de document:Article publié dans une revue avec comité d'évaluation
Volume:15
Numéro:3
Pages:p. 194-209
Version évaluée par les pairs:Oui
Date:Août 2016
Sujets:Sciences naturelles et génie > Sciences mathématiques > Informatique
Sciences de la santé > Sciences médicales
Département, module, service et unité de recherche:Départements et modules > Département d'informatique et de mathématique
Mots-clés:probabilistic reasoning, uncertainty, middleware, intelligent learning, pervasive computing, remote healthcare, ontology design, Bayes reasoning, Bayesian networks, smart monitoring, context awareness, patient support, severe emergencies, heart attacks, patient monitoring, remote monitoring, home care, emergency handling, healthcare emergencies, emergency response, emergency prevention, lifestyles, habits, probabilistic modelling, knowledge sharing, knoweldge reuse, decision making, influence diagrams, analytical hierarchy process, AHP, semantic logic
Déposé le:01 déc. 2016 01:07
Dernière modification:28 févr. 2017 05:10
Afficher les statistiques de telechargements

Éditer le document (administrateurs uniquement)

Creative Commons LicenseSauf indication contraire, les documents archivés dans Constellation sont rendus disponibles selon les termes de la licence Creative Commons "Paternité, pas d'utilisation commerciale, pas de modification" 2.5 Canada.

Bibliothèque Paul-Émile-Boulet, UQAC
555, boulevard de l'Université
Chicoutimi (Québec)  CANADA G7H 2B1
418 545-5011, poste 5630