Constellation, le dépôt institutionnel de l'Université du Québec à Chicoutimi

Did the massive magnetite "lava flows" of El Laco (Chile) form by magmatic or hydrothermal processes? New constraints from magnetite composition by LA-ICP-MS

Dare Sarah A. S., Barnes Sarah-Jane et Beaudoin Georges. (2015). Did the massive magnetite "lava flows" of El Laco (Chile) form by magmatic or hydrothermal processes? New constraints from magnetite composition by LA-ICP-MS. Mineralium Deposita, 50, (5), p. 607-617.

[img] PDF
Administrateurs seulement


URL officielle:


The El Laco magnetite deposits consist of more than 98 % magnetite but show field textures remarkably similar to mafic lava flows. Therefore, it has long been suggested that they represent a rare example of an effusive Fe oxide liquid. Field and petrographic evidence, however, suggest that the magnetite deposits represent replacement of andesite flows and that the textures are pseudomorphs. We determined the trace element content of magnetite by laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) from various settings at El Laco and compared them with magnetite from both igneous and hydrothermal environments. This new technique allows us to place constraints on the conditions under which magnetite in these supposed magnetite “lava flows” formed. The trace element content of magnetite from the massive magnetite samples is different to any known magmatic magnetite, including primary magnetite phenocrysts from the unaltered andesite host rocks at El Laco. Instead, the El Laco magnetite is most similar in composition to hydrothermal magnetite from high-temperature environments (>500 °C), such as iron oxide-copper-gold (IOCG) and porphyry-Cu deposits. The magnetite trace elements from massive magnetite are characterised by (1) depletion in elements considered relatively immobile in hydrothermal fluids (e.g. Ti, Al, Cr, Zr, Hf and Sc); (2) enrichment in elements that are highly incompatible with magmatic magnetite (rare earth elements (REE), Si, Ca, Na and P) and normally present in very low abundance in magmatic magnetite; (3) high Ni/Cr ratios which are typical of magnetite from hydrothermal environments; and (4) oscillatory zoning of Si, Ca, Mg, REE and most high field strength elements, and zoning truncations indicating dissolution, similar to that formed in hydrothermal Fe skarn deposits. In addition, secondary magnetite in altered, brecciated host rock, forming disseminations and veins, has the same composition as magnetite from the massive lenses. Euhedral magnetite lining both open-spaced veins in the brecciated host rock and along the walls of large, hollow chimneys in the massive magnetite lenses also displays oscillatory zoning and most likely formed by fluctuating composition and/or physio-chemical conditions of the fluid. Thus, the chemical fingerprint of magnetite from the supposed El Laco magnetite lava flows supports the hydrothermal model of metasomatic replacement of andesite lava flows, by dissolution and precipitation of magnetite from high-temperature fluids, rather than a magmatic origin from an effusive Fe oxide liquid.

Type de document:Article publié dans une revue avec comité d'évaluation
Pages:p. 607-617
Version évaluée par les pairs:Oui
Sujets:Sciences naturelles et génie > Sciences naturelles > Sciences de la terre (géologie, géographie)
Département, module, service et unité de recherche:Départements et modules > Département des sciences appliquées > Unité d'enseignement en sciences de la Terre
Mots-clés:magnetite, trace elements, oscillatory, zonation, hydrothermal replacement, Fe oxide liquid
Déposé le:07 juill. 2016 15:31
Dernière modification:02 mars 2018 01:43
Afficher les statistiques de telechargements

Éditer le document (administrateurs uniquement)

Creative Commons LicenseSauf indication contraire, les documents archivés dans Constellation sont rendus disponibles selon les termes de la licence Creative Commons "Paternité, pas d'utilisation commerciale, pas de modification" 2.5 Canada.

Bibliothèque Paul-Émile-Boulet, UQAC
555, boulevard de l'Université
Chicoutimi (Québec)  CANADA G7H 2B1
418 545-5011, poste 5630