Constellation, le dépôt institutionnel de l'Université du Québec à Chicoutimi

Effects of Al(MnFe)Si dispersoids with different sizes and number densities on microstructure and ambient/elevated-temperature mechanical properties of extruded Al–Mg–Si AA6082 alloys with varying Mn content

Rakhmonov Jovid, Liu Kun, Rometsch Paul, Parson Nick et Chen X-Grant. (2021). Effects of Al(MnFe)Si dispersoids with different sizes and number densities on microstructure and ambient/elevated-temperature mechanical properties of extruded Al–Mg–Si AA6082 alloys with varying Mn content. Journal of Alloys and Compounds, 861, p. 157937.

[thumbnail of Effects of Al(MnFe)Si dispersoids with different sizes and number densities on microstructure.pdf]
Prévisualisation
PDF - Version acceptée
3MB

URL officielle: http://dx.doi.org/doi:10.1016/j.jallcom.2020.15793...

Résumé

The effects of Al(MnFe)Si dispersoids, with different sizes and number densities, on the evolution of microstructure and ambient/elevated-temperature mechanical properties of extruded AA6082 alloys, with varying Mn content, under T5 conditions, were investigated. Compared to the low density of coarse dispersoids formed during conventional homogenization, the high density of fine dispersoids formed during a new low-temperature homogenization was more effective in increasing the material’s resistance to plastic deformation during extrusion, resulting in the dissolution of more constituent Mg2Si particles into the α-Al matrix. A large amount of β", some β′ precipitates and fine dispersoids co-existed in the α-Al matrix of 0.5% Mn containing alloy, which afforded this alloy a substantial increase in ambient-temperature yield strength of 65–75 MPa under T5 conditions compared to the base alloy without dispersoids. A further increase in the Mn content decreased the number density of the β" precipitates, resulting in a decline in the mechanical properties. Upon thermal exposure at 300 °C for 100 h, β"/β′ fully transformed into an undesirable equilibrium β phase and lost their strengthening effect, while fine and dense dispersoids became the dominant strengthener, leading to a 55–70% increase in the elevated-temperature yield strength relative to the alloys either without dispersoids or with coarse dispersoids. Dispersoid strengthening was more pronounced at 0.7% Mn addition as further increasing the Mn content mainly contributed to the fraction of insoluble Mn-containing intermetallics.

Type de document:Article publié dans une revue avec comité d'évaluation
Volume:861
Pages:p. 157937
Version évaluée par les pairs:Oui
Date:25 Avril 2021
Sujets:Sciences naturelles et génie > Génie
Sciences naturelles et génie > Génie > Génie des matériaux et génie métallurgique
Sciences naturelles et génie > Sciences appliquées
Département, module, service et unité de recherche:Départements et modules > Département des sciences appliquées > Module d'ingénierie
Mots-clés:Al–Mg–Si AA6082 alloy, extrusion, Al(MnFe)Si dispersoids, microstructure, mechanical properties, alliage Al–Mg–Si AA6082, dispersoïdes Al(MnFe)Si, propriétés mécaniques
Déposé le:02 mars 2021 23:19
Dernière modification:25 avr. 2023 04:00
Afficher les statistiques de telechargements

Éditer le document (administrateurs uniquement)

Creative Commons LicenseSauf indication contraire, les documents archivés dans Constellation sont rendus disponibles selon les termes de la licence Creative Commons "Paternité, pas d'utilisation commerciale, pas de modification" 2.5 Canada.

Bibliothèque Paul-Émile-Boulet, UQAC
555, boulevard de l'Université
Chicoutimi (Québec)  CANADA G7H 2B1
418 545-5011, poste 5630