Constellation, le dépôt institutionnel de l'Université du Québec à Chicoutimi

Atmospheric icing impact on wind turbine production

Lamraoui Fayçal, Fortin Guy, Benoit Robert, Perron Jean et Masson Christian. (2014). Atmospheric icing impact on wind turbine production. Cold Regions Science and Technology, 100, p. 36-49.

[thumbnail of Atmospheric icing impact on wind turbine production.pdf] PDF
Utilisateurs enregistrés seulement

3MB

URL officielle: http://dx.doi.org/doi:10.1016/j.coldregions.2013.1...

Résumé

Wind turbine performance depends mainly on the wind speed and aerodynamics of blades. The roughness generated from ice accretion can significantly reduce the aerodynamics and consequently the power production of the wind turbine. This study locates the glaze and rime ice on the blade, to detect the critical zones involved in significant power production loss. On the blade, the distribution of the elementary power production as well as the type and thickness of the accreted ice are inconsistent. Under icing conditions, the outer section of the blade starting from the radial position r/R=0.8 contribute significantly to the blades aerodynamics. The freezing fraction is unevenly distributed; since it initially forms rime ice near the root and then glaze toward the tip of the blade. The critical freezing fraction 0.88 associated with the double horn ice shape is spatially limited and occupies a restricted segment on the blade and gradually moves towards the tip with decreasing temperature. With the use of power degradation analogy with sub-scaled rotor blades of a helicopter under icing conditions, a power loss factor is introduced to quantify and locate power loss along the blades of wind turbines. The study is based on four values of liquid water content that delineate five classes of icing severity. Including power loss factor, the most significant power loss that corresponds to freezing fraction 0.88 is found to be located at r/R~[0.93 0.96] which corresponds to T=-2.6°C, -4.5°C, -12°C, and -20°C and for liquid water content LWC=0.04g·m-3, 0.07g·m-3, 0.2g·m-3, and 0.36g·m-3 respectively. The resulted power degradation can reach a maximum of 40%. Locally it is the shape rather than the thickness of ice that causes more power loss, meanwhile when considering the whole blade, power degradation is controlled mainly by ice thickness regardless of the type of ice. The results obtained can help the setup of a sensor that triggers the ice-protection system upon detection of critical freezing fraction.

Type de document:Article publié dans une revue avec comité d'évaluation
Volume:100
Pages:p. 36-49
Version évaluée par les pairs:Oui
Date:2014
Sujets:Sciences naturelles et génie > Génie > Génie des matériaux et génie métallurgique
Département, module, service et unité de recherche:Départements et modules > Département des sciences appliquées > Module d'ingénierie
Mots-clés:Atmospheric icing climatology, ice accretion, re-analysis, wind turbine, Climatologie de givrage atmosphérique, accumulation de glace, réanalyse, éolienne
Déposé le:21 janv. 2016 22:56
Dernière modification:09 déc. 2016 13:40
Afficher les statistiques de telechargements

Éditer le document (administrateurs uniquement)

Creative Commons LicenseSauf indication contraire, les documents archivés dans Constellation sont rendus disponibles selon les termes de la licence Creative Commons "Paternité, pas d'utilisation commerciale, pas de modification" 2.5 Canada.

Bibliothèque Paul-Émile-Boulet, UQAC
555, boulevard de l'Université
Chicoutimi (Québec)  CANADA G7H 2B1
418 545-5011, poste 5630