Li Ping, Meziane Ramy, Otis Martin J.-D., Ezzaidi Hassan et Cardou Philippe. A Smart Safety Helmet using IMU and EEG sensors for analysis of worker’s fatigue. Dans : IEEE International Symposium on Robotic and Sensors Environments (ROSE) , 16-18 Oct 2014, Timisoara, Romania.
Prévisualisation |
PDF
- Version acceptée
746kB |
Résumé
It is known that head gesture and mental states can reflect some human behaviors related to a risk of accident when using machine-tools. The research works presented in this paper aim to reduce the number of injury and thus increase worker safety. Instead using camera, this paper presents a Smart Safety Helmet (SSH) in order to track head gestures and mental states of worker able to recognize anomalous behavior. Information extracted from SSH is used for computing risk level of accident (a safety level) for preventing and reducing injury or accidents. The SSH system is an inexpensive, non-intrusive, non-invasive, and non-vision-based system, which consists of 9DOF Inertial Measurement Unit (IMU) and dry EEG electrodes. A haptic device, such as vibrotactile motor, is integrated to the helmet in order to alert the operator when computed risk level (fatigue, high stress or error) reach a threshold. Once the risk level of accident breaks the threshold, a signal will be sent wirelessly to stop the relevant machine tool or process.
Type de document: | Matériel de conférence (Non spécifié) |
---|---|
Sujets: | Sciences naturelles et génie > Génie > Génie électrique et génie électronique Sciences naturelles et génie > Génie > Génie informatique et génie logiciel |
Département, module, service et unité de recherche: | Départements et modules > Département des sciences appliquées > Module d'ingénierie |
Mots-clés: | Safety, Head motion recognition, IMU, EEG, accident avoidance, human machine interaction, sécurité, reconnaissance de mouvement de tête, évitement d'accident, interaction homme-machine |
Informations complémentaires: | DOI:10.1109/ROSE.2014.6952983 |
Déposé le: | 31 mai 2017 18:00 |
---|---|
Dernière modification: | 31 mai 2017 18:00 |
Éditer le document (administrateurs uniquement)