Constellation, le dépôt institutionnel de l'Université du Québec à Chicoutimi

Experimental determination of the thermal diffusivity of α-Cryolite up to 810 K and comparison with first principles predictions

Gheribi Aïmen E., Poncsák Sándor, Kiss Làszlò, Guérard Sébastien, Bilodeau Jean-François et Chartrand Patrice. (2017). Experimental determination of the thermal diffusivity of α-Cryolite up to 810 K and comparison with first principles predictions. ACS Omega, 2, (5), p. 2224-2230.

[thumbnail of Experimental Determination of the Thermal Diffusivity of α‑Cryolite.pdf]
Prévisualisation
PDF - Version publiée
Disponible sous licence Creative Commons (CC-BY-NC-ND 2.5).

3MB

URL officielle: http://dx.doi.org/doi:10.1021/acsomega.7b00206

Résumé

In aluminum electrolysis cells, a ledge of frozen electrolyte is formed on the sides. Controlling the side ledge thickness (a few centimeters) is essential to maintain a reasonable life span of the electrolysis cell, as the ledge acts as a protective layer against chemical attacks from the electrolyte bath used to dissolve alumina. The numerical modeling of the side ledge thickness, by using, for example, finite element analysis, requires some input data on the thermal transport properties of the side ledge. Unfortunately, there is a severe lack of experimental data, in particular, for the main constituent of the side ledge, the cryolite (Na3AlF6). The aim of this study is twofold. First, the thermal transport properties of cryolite, not available in the literature, were measured experimentally. Second, the experimental data were compared with previous theoretical predictions based on first principle calculations. This was carried out to evaluate the capability of first principle methods in predicting the thermal transport properties of complex insulating materials. The thermal diffusivity of a porous synthetic cryolite sample containing 0.9 wt % of alumina was measured over a wide range of temperature (473–810 K), using the monotone heating method. Because of limited computational resources, the first principle method can be used only to determine the thermal properties of single crystals. The dependence of thermal diffusivity of the Na3AlF6 + 0.9 wt % Al2O3 mixture on the microstructural parameters is discussed. A simple analytical function describing both thermal diffusivity and thermal conductivity of cryolite as a function of temperature is proposed.

Type de document:Article publié dans une revue avec comité d'évaluation
Volume:2
Numéro:5
Pages:p. 2224-2230
Version évaluée par les pairs:Oui
Date:22 Mai 2017
Sujets:Sciences naturelles et génie > Génie > Génie des matériaux et génie métallurgique
Département, module, service et unité de recherche:Départements et modules > Département des sciences appliquées > Module d'ingénierie
Mots-clés:Porosity, quantum mechanical methods, thermal properties, porosité, méthodes mécaniques cantiques, propriétés thermiques
Déposé le:16 nov. 2017 22:59
Dernière modification:22 mai 2018 04:10
Afficher les statistiques de telechargements

Éditer le document (administrateurs uniquement)

Creative Commons LicenseSauf indication contraire, les documents archivés dans Constellation sont rendus disponibles selon les termes de la licence Creative Commons "Paternité, pas d'utilisation commerciale, pas de modification" 2.5 Canada.

Bibliothèque Paul-Émile-Boulet, UQAC
555, boulevard de l'Université
Chicoutimi (Québec)  CANADA G7H 2B1
418 545-5011, poste 5630