Bhattacharyay Dipankar, Kocaefe Duygu, Kocaefe Yasar S., Morais Brigitte et Gagnon Marc. (2013). A model for predicting the electrical resistivity of baked anodes. Light Metals, p. 1195-1199.
Doc
- Version acceptée
1MB | |
Prévisualisation |
PDF
- Version acceptée
196kB |
URL officielle: https://doi.org/10.1002/9781118663189.ch202
Résumé
Carbon anodes are one of the key components of primary aluminum production. One of the desired properties of the anodes is low electrical resistivity. A proper understanding of the effect of different parameters on electrical resistivity can help produce better quality anodes. A model has been developed to predict the anode electrical resistivity. First, using the Kopelman model for the thermal conductivity of a composite material, the specific electrical resistivity was modeled for the solid part (coke/cokified pitch) assuming coke as the dispersed phase in the cokified pitch matrix. Then, the effects of the anode porosity, distribution of particles, and coke properties are incorporated into the model using an approach based on the work of Shimizu. A factor which is a function of particle size and other properties is introduced. This factor was estimated using the artificial neural network. Published data were used to validate the model.
Type de document: | Article publié dans une revue avec comité d'évaluation |
---|---|
Pages: | p. 1195-1199 |
Version évaluée par les pairs: | Oui |
Date: | 2013 |
Sujets: | Sciences naturelles et génie > Génie > Génie des matériaux et génie métallurgique |
Département, module, service et unité de recherche: | Départements et modules > Département des sciences appliquées > Module d'ingénierie |
Mots-clés: | electrical resistivity, anode, artificial neural network |
Déposé le: | 06 mai 2019 19:42 |
---|---|
Dernière modification: | 06 mai 2019 19:42 |
Éditer le document (administrateurs uniquement)