Constellation, le dépôt institutionnel de l'Université du Québec à Chicoutimi

Development of a mathematical model to simulate raft formation

Thomas Roger, Fraser Kirk A., Kiss László, Poncsák Sándor, Guérard Sébastien, Bilodeau Jean-François et Bonneau G.. (2020). Development of a mathematical model to simulate raft formation. Light Metals, 2020, p. 688-695.

[thumbnail of __sfserv_sbi$_n2villen_Mes Documents_Services aux chercheurs_Laszlo Kiss_PDF_Development of a mathematical model to simulate raft formation.pdf] PDF - Version acceptée
Administrateurs seulement

1MB

URL officielle: http://dx.doi.org/doi:10.1007/978-3-030-36408-3_93

Résumé

The aluminum industry searches to improve the incorporation of the alumina into the electrolyte bath. This paper presents the development of a model to simulate the flow of alumina particles with the thermal exchange between the particles and the liquid. The first part of the model focuses on the interaction between spherical particles and their environment using the Discrete Element Method. The second part uses the equations of the Smoothed Particle Hydrodynamics to simulate the thermal exchange between the particles themselves and with the liquid. The thermal sub-model includes the phase change to integrate the raft formation with the solidification of the bath. To validate the thermal sub-model, a low temperature model and schlieren imaging was used. This method consists to observe a thermally disturbed area with the refraction of light. The experimental study involved the injection of organic particles into the water. The particles were previously cooled with liquid nitrogen. Finally, some thermal tuning factors are settled to adjust the calculated thermally disturbed area to the results of the visualization. A high-speed camera was used to study different injection methods and the results were compared to the simulations to validate the model.

Type de document:Article publié dans une revue avec comité d'évaluation
Volume:2020
Pages:p. 688-695
Version évaluée par les pairs:Oui
Date:28 Janvier 2020
Sujets:Sciences naturelles et génie > Génie
Sciences naturelles et génie > Génie > Génie des matériaux et génie métallurgique
Sciences naturelles et génie > Sciences appliquées
Département, module, service et unité de recherche:Départements et modules > Département des sciences appliquées > Module d'ingénierie
Mots-clés:Alumina injection, discrete element method, aluminum electrolysis, schlieren method, injection d'alumine, méthode des éléments discrets, électrolyse de l'aluminium, méthode schlieren
Déposé le:23 mars 2020 18:29
Dernière modification:23 mars 2020 18:29
Afficher les statistiques de telechargements

Éditer le document (administrateurs uniquement)

Creative Commons LicenseSauf indication contraire, les documents archivés dans Constellation sont rendus disponibles selon les termes de la licence Creative Commons "Paternité, pas d'utilisation commerciale, pas de modification" 2.5 Canada.

Bibliothèque Paul-Émile-Boulet, UQAC
555, boulevard de l'Université
Chicoutimi (Québec)  CANADA G7H 2B1
418 545-5011, poste 5630